4 directional EMG control of the XY table. Made during my bachelor end assignment.

Dependencies:   C12832_lcd HIDScope mbed-dsp mbed

main.cpp

Committer:
jessekaiser
Date:
2015-06-04
Revision:
43:42bfab67c4a5
Parent:
42:e67627d11789
Child:
44:d5aa53e4778c

File content as of revision 43:42bfab67c4a5:

#include "mbed.h"
#include "C12832_lcd.h"
#include "arm_math.h"
#include "HIDScope.h"

#define K_Gain      14      //Gain of the filtered EMG signal
#define Damp        5       //Deceleration of the motor
#define Mass        1       // Mass value
#define dt          0.002   //Sample frequency
#define MAX_bi      0.09    //Can be used for normalisation of the EMG signal of the biceps
#define MAX_tri     0.09
#define MIN_freq    500     //The motor turns off below this frequency
#define EMG_tresh   0.02

//Motor control
DigitalOut Dir(p21);
PwmOut Step(p22);

//Signal to and from computer
Serial pc(USBTX, USBRX);

DigitalOut Enable(p25);

//Microstepping
DigitalOut MS1(p27);
DigitalOut MS2(p28);
DigitalOut MS3(p29);

//Potmeter and EMG
AnalogIn Pot1(p19);
AnalogIn Pot2(p20);

AnalogIn emg1(p17); //EMG bordje bovenop, biceps
AnalogIn emg2(p15); //triceps
HIDScope scope(2);
Ticker   scopeTimer;

//lcd
C12832_LCD lcd;

//Variables for motor control
float setpoint = 4400; //Frequentie setpint
float step_freq1 = 1;
float step_freq2 = 1;

//EMG filter
arm_biquad_casd_df1_inst_f32 lowpass_biceps;
arm_biquad_casd_df1_inst_f32 lowpass_triceps;
//lowpass filter settings: Fc = 2 Hz, Fs = 500 Hz, Gain = -3 dB
float lowpass_const[] = {0.00015514839749793376, 0.00031029679499586753, 0.00015514839749793376, 1.9644602512795832, -0.9650808448695751};
arm_biquad_casd_df1_inst_f32 highnotch_biceps;
arm_biquad_casd_df1_inst_f32 highnotch_triceps;
//highpass filter settings: Fc = 20 Hz, Fs = 500 Hz, notch Fc = 50, Fs = 500 Hz
float highnotch_const[] = {0.8370879899975344, -1.6741759799950688, 0.8370879899975344, 1.6474576182593796, -0.7008943417307579, 0.7063988100714527, -1.1429772843080923, 0.7063988100714527, 1.1429772843080923, -0.41279762014290533};

//state values
float lowpass_biceps_states[4];
float highnotch_biceps_states[8];
float lowpass_triceps_states[4];
float highnotch_triceps_states[8];

//global variabels
float filtered_biceps;
float filtered_triceps;
float speed_old1;
float speed_old2;
float acc1;
float acc2;
float force1;
float force2;
float speed1;
float speed2;
float damping1;
float damping2;

void looper_emg()
{


    float emg_value1_f32;
    emg_value1_f32 = emg1.read();

    float emg_value2_f32;
    emg_value2_f32 = emg2.read();

    //process emg biceps
    arm_biquad_cascade_df1_f32(&highnotch_biceps, &emg_value1_f32, &filtered_biceps, 1 );
    filtered_biceps = fabs(filtered_biceps);
    arm_biquad_cascade_df1_f32(&lowpass_biceps, &filtered_biceps, &filtered_biceps, 1 );

    //process emg triceps
    arm_biquad_cascade_df1_f32(&highnotch_triceps, &emg_value2_f32, &filtered_triceps, 1 );
    filtered_triceps = fabs(filtered_triceps);
    arm_biquad_cascade_df1_f32(&lowpass_triceps, &filtered_triceps, &filtered_triceps, 1 );

    /*send value to PC. */
    scope.set(0,filtered_biceps); //Filtered EMG signal
    scope.set(1,filtered_triceps);
}

void looper_motor()
{
    //Vooruit
    force1 = K_Gain*(filtered_biceps/MAX_bi);
    force1 = force1 - damping1;
    acc1 = force1/Mass;
    speed1 = speed_old1 + (acc1 * dt);
    damping1 = speed1 * Damp;
    step_freq1 = (setpoint*speed1);
    speed_old1 = speed1;
    
    //Achteruit triceps
    force2 = K_Gain*(filtered_triceps/MAX_tri);
    force2 = force2 - damping2;
    acc2 = force2/Mass;
    speed2 = speed_old2 + (acc2 * dt);
    damping2 = speed2 * Damp;
    step_freq2 = (setpoint*speed2);
    speed_old2 = speed2;
    if (filtered_biceps > filtered_triceps) {
        Dir = 0;
        speed2 = 0.01;
        speed_old2 = 0.01;
        Step.period(1.0/step_freq1);
    } if (filtered_triceps > filtered_biceps) {
        Dir = 1;
        speed1 = 0.01;
        speed_old1 = 0.01;  
        Step.period(1.0/step_freq2);
    }
    //Speed limit
    if (speed1 > 1) {
        speed1 = 1;
        step_freq1 = setpoint;
    }
    if (speed2 > 1) {
        speed2 = 1;
        step_freq2 = setpoint;
    }
    //EMG treshold
    if (filtered_biceps < EMG_tresh && filtered_triceps < EMG_tresh) {
        Enable = 1; //Enable = 1 turns the motor off. 
    } else {
        Enable = 0;
    }

}

int main()
{
    // Attach the HIDScope::send method from the scope object to the timer at 500Hz. Hier wordt de sample freq aangegeven.
    scopeTimer.attach_us(&scope, &HIDScope::send, 2e3);

    Ticker emgtimer;
    arm_biquad_cascade_df1_init_f32(&lowpass_biceps, 1 , lowpass_const, lowpass_biceps_states);
    arm_biquad_cascade_df1_init_f32(&highnotch_biceps, 2 , highnotch_const, highnotch_biceps_states);
    arm_biquad_cascade_df1_init_f32(&lowpass_triceps, 1 , lowpass_const, lowpass_triceps_states);
    arm_biquad_cascade_df1_init_f32(&highnotch_triceps, 2 , highnotch_const, highnotch_triceps_states);
    emgtimer.attach(looper_emg, 0.002);

    Ticker looptimer;
    looptimer.attach(looper_motor, 0.01); //Uitzoeken waarom deze frequentie!

    //Microstepping control
    MS1 = 1;
    MS2 = 0;
    MS3 = 0;
    Step.write(0.5); // Duty cycle van 50%

    while (1) {

        //lcd.printf("Bi %.2f ,Tri %.2f \n", filtered_biceps, filtered_triceps); //snelheid meting op lcd
        lcd.printf("1 %.0f, 2 %.0f \n", step_freq1, step_freq2);
        wait(0.01);
    }
}