Jean-Pierre Aulas
/
CanS-Homes
start adapt S-Homes structure
main.cpp
- Committer:
- hudakz
- Date:
- 2017-03-18
- Revision:
- 1:6f8ffb2c2dd7
- Parent:
- 0:1b9561cd1c36
- Child:
- 2:6546e4a2d593
File content as of revision 1:6f8ffb2c2dd7:
/* * An example showing how to use the mbed CAN API: * * Two affordable (less than $3 on ebay) STM32F103C8T6 boards (20kB SRAM, 64kB Flash), * (see [https://developer.mbed.org/users/hudakz/code/STM32F103C8T6_Hello/] for more details) * are connected to the same CAN bus via transceivers (MCP2551 or TJA1040, or etc.). * CAN transceivers are not part of NUCLEO boards, therefore must be added by you. * Remember also that CAN bus (even a short one) must be terminated with 120 Ohm resitors at both ends. * * For more details see the wiki page <https://developer.mbed.org/users/hudakz/code/CAN_Hello/> * * NOTE: If you'd like to use an STM32F103C8T6 board uncomment line 23 * * The same code is used for both mbed boards, but: * For board #1 compile the example without any change. * For board #2 comment out line 23 before compiling * * Once the binaries have been downloaded to the boards reset board #1. * */ #define BOARD1 1 // comment out this line when compiling for board #2 //#define TARGET_STM32F103C8T6 1 // uncomment this line when using STM32F103C8T6 boards! #if defined(TARGET_STM32F103C8T6) #include "stm32f103c8t6.h" #define LED_PIN PC_13 const int OFF = 1; const int ON = 0; #else #define LED_PIN LED1 const int OFF = 0; const int ON = 1; #endif #if defined(BOARD1) const unsigned int RX_ID = 0x100; const unsigned int TX_ID = 0x101; #else const unsigned int RX_ID = 0x101; const unsigned int TX_ID = 0x100; #endif #include "mbed.h" #include "CANMsg.h" Serial pc(PA_2, PA_3); CAN can(PA_11, PA_12); // CAN Rx pin name, CAN Tx pin name CANMsg rxMsg; CANMsg txMsg; DigitalOut led(LED_PIN); Timer timer; uint8_t counter = 0; AnalogIn analogIn(A0); float voltage; /** * @brief Prints CAN msg to PC's serial terminal * @note} * @param CANMessage to print * @retval none */ void printMsg(CANMessage& msg) { pc.printf(" ID = 0x%.3x\r\n", msg.id); pc.printf(" Type = %d\r\n", msg.type); pc.printf(" Format = %d\r\n", msg.format); pc.printf(" Length = %d\r\n", msg.len); pc.printf(" Data ="); for(int i = 0; i < msg.len; i++) pc.printf(" 0x%.2X", msg.data[i]); pc.printf("\r\n"); } /** * @brief Main * @note * @param * @retval */ int main(void) { #if defined(TARGET_STM32F103C8T6) confSysClock(); //Configure system clock (72MHz HSE clock, 48MHz USB clock) #endif pc.baud(9600); // set Serial speed can.frequency(1000000); // set bit rate to 1Mbps #if defined(BOARD1) led = ON; // turn the LED on timer.start(); // start timer pc.printf("CAN_Hello board #1\r\n"); #else led = OFF; // turn LED off pc.printf("CAN_Hello board #2\r\n"); #endif while(1) { if(timer.read_ms() >= 1000) { // check for timeout timer.stop(); // stop timer timer.reset(); // reset timer counter++; // increment counter voltage = (analogIn * 3.3f) / 4096.0f; // read the small drifting voltage from analog input txMsg.clear(); // clear Tx message storage txMsg.id = TX_ID; // set ID txMsg << counter << voltage;// append data (total data length must be <= 8 bytes!) if(can.write(txMsg)) { // transmit message led = OFF; // turn the LED off pc.printf("-------------------------------------\r\n"); pc.printf("CAN message sent\r\n"); printMsg(txMsg); pc.printf(" counter = %d\r\n", counter); pc.printf(" voltage = %e V\r\n", voltage); } else pc.printf("Transmission error\r\n"); } if(can.read(rxMsg)) { led = ON; // turn the LED on pc.printf("-------------------------------------\r\n"); pc.printf("CAN message received\r\n"); printMsg(rxMsg); // Filtering performed by software: if(rxMsg.id == RX_ID) { rxMsg >> counter >> voltage; // extract data from the received CAN message pc.printf(" counter = %d\r\n", counter); pc.printf(" voltage = %e V\r\n", voltage); timer.start(); // transmission lag } } } }