V148

Fork of RadioHead-148 by David Rimer

Revision:
0:ab4e012489ef
diff -r 000000000000 -r ab4e012489ef RH_NRF24.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/RH_NRF24.h	Thu Oct 15 01:27:00 2015 +0000
@@ -0,0 +1,623 @@
+// RH_NRF24.h
+// Author: Mike McCauley
+// Copyright (C) 2012 Mike McCauley
+// $Id: RH_NRF24.h,v 1.16 2015/08/13 02:45:47 mikem Exp $
+//
+
+#ifndef RH_NRF24_h
+#define RH_NRF24_h
+
+#include <RHGenericSPI.h>
+#include <RHNRFSPIDriver.h>
+
+// This is the maximum number of bytes that can be carried by the nRF24.
+// We use some for headers, keeping fewer for RadioHead messages
+#define RH_NRF24_MAX_PAYLOAD_LEN 32
+
+// The length of the headers we add.
+// The headers are inside the nRF24 payload
+#define RH_NRF24_HEADER_LEN 4
+
+// This is the maximum RadioHead user message length that can be supported by this library. Limited by
+// the supported message lengths in the nRF24
+#define RH_NRF24_MAX_MESSAGE_LEN (RH_NRF24_MAX_PAYLOAD_LEN-RH_NRF24_HEADER_LEN)
+
+// SPI Command names
+#define RH_NRF24_COMMAND_R_REGISTER                        0x00
+#define RH_NRF24_COMMAND_W_REGISTER                        0x20
+#define RH_NRF24_COMMAND_ACTIVATE                          0x50 // only on RFM73 ?
+#define RH_NRF24_COMMAND_R_RX_PAYLOAD                      0x61
+#define RH_NRF24_COMMAND_W_TX_PAYLOAD                      0xa0
+#define RH_NRF24_COMMAND_FLUSH_TX                          0xe1
+#define RH_NRF24_COMMAND_FLUSH_RX                          0xe2
+#define RH_NRF24_COMMAND_REUSE_TX_PL                       0xe3
+#define RH_NRF24_COMMAND_R_RX_PL_WID                       0x60
+#define RH_NRF24_COMMAND_W_ACK_PAYLOAD(pipe)               (0xa8|(pipe&0x7))
+#define RH_NRF24_COMMAND_W_TX_PAYLOAD_NOACK                0xb0
+#define RH_NRF24_COMMAND_NOP                               0xff
+
+// Register names
+#define RH_NRF24_REGISTER_MASK                             0x1f
+#define RH_NRF24_REG_00_CONFIG                             0x00
+#define RH_NRF24_REG_01_EN_AA                              0x01
+#define RH_NRF24_REG_02_EN_RXADDR                          0x02
+#define RH_NRF24_REG_03_SETUP_AW                           0x03
+#define RH_NRF24_REG_04_SETUP_RETR                         0x04
+#define RH_NRF24_REG_05_RF_CH                              0x05
+#define RH_NRF24_REG_06_RF_SETUP                           0x06
+#define RH_NRF24_REG_07_STATUS                             0x07
+#define RH_NRF24_REG_08_OBSERVE_TX                         0x08
+#define RH_NRF24_REG_09_RPD                                0x09
+#define RH_NRF24_REG_0A_RX_ADDR_P0                         0x0a
+#define RH_NRF24_REG_0B_RX_ADDR_P1                         0x0b
+#define RH_NRF24_REG_0C_RX_ADDR_P2                         0x0c
+#define RH_NRF24_REG_0D_RX_ADDR_P3                         0x0d
+#define RH_NRF24_REG_0E_RX_ADDR_P4                         0x0e
+#define RH_NRF24_REG_0F_RX_ADDR_P5                         0x0f
+#define RH_NRF24_REG_10_TX_ADDR                            0x10
+#define RH_NRF24_REG_11_RX_PW_P0                           0x11
+#define RH_NRF24_REG_12_RX_PW_P1                           0x12
+#define RH_NRF24_REG_13_RX_PW_P2                           0x13
+#define RH_NRF24_REG_14_RX_PW_P3                           0x14
+#define RH_NRF24_REG_15_RX_PW_P4                           0x15
+#define RH_NRF24_REG_16_RX_PW_P5                           0x16
+#define RH_NRF24_REG_17_FIFO_STATUS                        0x17
+#define RH_NRF24_REG_1C_DYNPD                              0x1c
+#define RH_NRF24_REG_1D_FEATURE                            0x1d
+
+// These register masks etc are named wherever possible
+// corresponding to the bit and field names in the nRF24L01 Product Specification
+// #define RH_NRF24_REG_00_CONFIG                             0x00
+#define RH_NRF24_MASK_RX_DR                                0x40
+#define RH_NRF24_MASK_TX_DS                                0x20
+#define RH_NRF24_MASK_MAX_RT                               0x10
+#define RH_NRF24_EN_CRC                                    0x08
+#define RH_NRF24_CRCO                                      0x04
+#define RH_NRF24_PWR_UP                                    0x02
+#define RH_NRF24_PRIM_RX                                   0x01
+
+// #define RH_NRF24_REG_01_EN_AA                              0x01
+#define RH_NRF24_ENAA_P5                                   0x20
+#define RH_NRF24_ENAA_P4                                   0x10
+#define RH_NRF24_ENAA_P3                                   0x08
+#define RH_NRF24_ENAA_P2                                   0x04
+#define RH_NRF24_ENAA_P1                                   0x02
+#define RH_NRF24_ENAA_P0                                   0x01
+
+// #define RH_NRF24_REG_02_EN_RXADDR                          0x02
+#define RH_NRF24_ERX_P5                                    0x20
+#define RH_NRF24_ERX_P4                                    0x10
+#define RH_NRF24_ERX_P3                                    0x08
+#define RH_NRF24_ERX_P2                                    0x04
+#define RH_NRF24_ERX_P1                                    0x02
+#define RH_NRF24_ERX_P0                                    0x01
+
+// #define RH_NRF24_REG_03_SETUP_AW                           0x03
+#define RH_NRF24_AW_3_BYTES                                0x01
+#define RH_NRF24_AW_4_BYTES                                0x02
+#define RH_NRF24_AW_5_BYTES                                0x03
+
+// #define RH_NRF24_REG_04_SETUP_RETR                         0x04
+#define RH_NRF24_ARD                                       0xf0
+#define RH_NRF24_ARC                                       0x0f
+
+// #define RH_NRF24_REG_05_RF_CH                              0x05
+#define RH_NRF24_RF_CH                                     0x7f
+
+// #define RH_NRF24_REG_06_RF_SETUP                           0x06
+#define RH_NRF24_CONT_WAVE                                 0x80
+#define RH_NRF24_RF_DR_LOW                                 0x20
+#define RH_NRF24_PLL_LOCK                                  0x10
+#define RH_NRF24_RF_DR_HIGH                                0x08
+#define RH_NRF24_PWR                                       0x06
+#define RH_NRF24_PWR_m18dBm                                0x00
+#define RH_NRF24_PWR_m12dBm                                0x02
+#define RH_NRF24_PWR_m6dBm                                 0x04
+#define RH_NRF24_PWR_0dBm                                  0x06
+#define RH_NRF24_LNA_HCURR                                 0x01
+
+// #define RH_NRF24_REG_07_STATUS                             0x07
+#define RH_NRF24_RX_DR                                     0x40
+#define RH_NRF24_TX_DS                                     0x20
+#define RH_NRF24_MAX_RT                                    0x10
+#define RH_NRF24_RX_P_NO                                   0x0e
+#define RH_NRF24_STATUS_TX_FULL                            0x01
+
+// #define RH_NRF24_REG_08_OBSERVE_TX                         0x08
+#define RH_NRF24_PLOS_CNT                                  0xf0
+#define RH_NRF24_ARC_CNT                                   0x0f
+
+// #define RH_NRF24_REG_09_RPD                                0x09
+#define RH_NRF24_RPD                                       0x01
+
+// #define RH_NRF24_REG_17_FIFO_STATUS                        0x17
+#define RH_NRF24_TX_REUSE                                  0x40
+#define RH_NRF24_TX_FULL                                   0x20
+#define RH_NRF24_TX_EMPTY                                  0x10
+#define RH_NRF24_RX_FULL                                   0x02
+#define RH_NRF24_RX_EMPTY                                  0x01
+
+// #define RH_NRF24_REG_1C_DYNPD                              0x1c
+#define RH_NRF24_DPL_ALL                                   0x3f
+#define RH_NRF24_DPL_P5                                    0x20
+#define RH_NRF24_DPL_P4                                    0x10
+#define RH_NRF24_DPL_P3                                    0x08
+#define RH_NRF24_DPL_P2                                    0x04
+#define RH_NRF24_DPL_P1                                    0x02
+#define RH_NRF24_DPL_P0                                    0x01
+
+// #define RH_NRF24_REG_1D_FEATURE                            0x1d
+#define RH_NRF24_EN_DPL                                    0x04
+#define RH_NRF24_EN_ACK_PAY                                0x02
+#define RH_NRF24_EN_DYN_ACK                                0x01
+
+
+/////////////////////////////////////////////////////////////////////
+/// \class RH_NRF24 RH_NRF24.h <RH_NRF24.h>
+/// \brief Send and receive addressed, reliable, acknowledged datagrams by nRF24L01 and compatible transceivers.
+///
+/// Supported transceivers include:
+/// - Nordic nRF24 based 2.4GHz radio modules, such as nRF24L01 http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
+/// and other compatible transceivers. 
+/// - nRF24L01p with PA and LNA modules that produce a higher power output similar to this one: 
+/// http://www.elecfreaks.com/wiki/index.php?title=2.4G_Wireless_nRF24L01p_with_PA_and_LNA
+/// - Sparkfun WRL-00691 module with nRF24L01 https://www.sparkfun.com/products/691 
+/// or WRL-00705 https://www.sparkfun.com/products/705 etc.
+/// - Hope-RF RFM73 http://www.hoperf.com/rf/2.4g_module/RFM73.htm and 
+/// http://www.anarduino.com/details.jsp?pid=121
+/// and compatible devices (such as BK2423). nRF24L01 and RFM73 can interoperate
+/// with each other.
+///
+/// This base class provides basic functions for sending and receiving unaddressed, unreliable datagrams
+/// of arbitrary length to 28 octets per packet. Use one of the Manager classes to get addressing and 
+/// acknowledgement reliability, routing, meshes etc.
+///
+/// The nRF24L01 (http://www.sparkfun.com/datasheets/Wireless/Nordic/nRF24L01P_Product_Specification_1_0.pdf)
+/// is a low-cost 2.4GHz ISM transceiver module. It supports a number of channel frequencies in the 2.4GHz band
+/// and a range of data rates.
+///
+/// This library provides functions for sending and receiving messages of up to 28 octets on any 
+/// frequency supported by the nRF24L01, at a selected data rate.
+///
+/// Several nRF24L01 modules can be connected to an Arduino, permitting the construction of translators
+/// and frequency changers, etc.
+///
+/// The nRF24 transceiver is configured to use Enhanced Shockburst with no acknowledgement and no retransmits.
+/// TX_ADDR and RX_ADDR_P0 are set to the network address. If you need the low level auto-acknowledgement
+/// feature supported by this chip, you can use our original NRF24 library 
+/// at http://www.airspayce.com/mikem/arduino/NRF24
+///
+/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and 
+/// data rate, and with identical network addresses.
+///
+/// Example Arduino programs are included to show the main modes of use.
+///
+/// \par Packet Format
+///
+/// All messages sent and received by this class conform to this packet format, as specified by 
+/// the nRF24L01 product specification:
+///
+/// - 1 octets PREAMBLE
+/// - 3 to 5 octets NETWORK ADDRESS
+/// - 9 bits packet control field
+/// - 0 to 32 octets PAYLOAD, consisting of:
+///   - 1 octet TO header
+///   - 1 octet FROM header
+///   - 1 octet ID header
+///   - 1 octet FLAGS header
+///   - 0 to 28 octets of user message
+/// - 2 octets CRC 
+///
+/// \par Connecting nRF24L01 to Arduino
+///
+/// The electrical connection between the nRF24L01 and the Arduino require 3.3V, the 3 x SPI pins (SCK, SDI, SDO), 
+/// a Chip Enable pin and a Slave Select pin.
+/// If you are using the Sparkfun WRL-00691 module, it has a voltage regulator on board and 
+/// can be should with 5V VCC if possible.
+/// The examples below assume the Sparkfun WRL-00691 module
+///
+/// Connect the nRF24L01 to most Arduino's like this (Caution, Arduino Mega has different pins for SPI, 
+/// see below). Use these same connections for Teensy 3.1 (use 3.3V not 5V Vcc).
+/// \code
+///                 Arduino      Sparkfun WRL-00691
+///                 5V-----------VCC   (3.3V to 7V in)
+///             pin D8-----------CE    (chip enable in)
+///          SS pin D10----------CSN   (chip select in)
+///         SCK pin D13----------SCK   (SPI clock in)
+///        MOSI pin D11----------SDI   (SPI Data in)
+///        MISO pin D12----------SDO   (SPI data out)
+///                              IRQ   (Interrupt output, not connected)
+///                 GND----------GND   (ground in)
+/// \endcode
+///
+/// For an Arduino Leonardo (the SPI pins do not come out on the Digital pins as for normal Arduino, but only
+/// appear on the ICSP header)
+/// \code
+///                Leonardo      Sparkfun WRL-00691
+///                 5V-----------VCC   (3.3V to 7V in)
+///             pin D8-----------CE    (chip enable in)
+///          SS pin D10----------CSN   (chip select in)
+///      SCK ICSP pin 3----------SCK   (SPI clock in)
+///     MOSI ICSP pin 4----------SDI   (SPI Data in)
+///     MISO ICSP pin 1----------SDO   (SPI data out)
+///                              IRQ   (Interrupt output, not connected)
+///                 GND----------GND   (ground in)
+/// \endcode
+/// and initialise the NRF24 object like this to explicitly set the SS pin
+/// NRF24 nrf24(8, 10);
+///
+/// For an Arduino Mega:
+/// \code
+///                 Mega         Sparkfun WRL-00691
+///                 5V-----------VCC   (3.3V to 7V in)
+///             pin D8-----------CE    (chip enable in)
+///          SS pin D53----------CSN   (chip select in)
+///         SCK pin D52----------SCK   (SPI clock in)
+///        MOSI pin D51----------SDI   (SPI Data in)
+///        MISO pin D50----------SDO   (SPI data out)
+///                              IRQ   (Interrupt output, not connected)
+///                 GND----------GND   (ground in)
+/// \endcode
+/// and you can then use the constructor RH_NRF24(8, 53). 
+///
+/// For an Itead Studio IBoard Pro http://imall.iteadstudio.com/iboard-pro.html, connected by hardware SPI to the 
+/// ITDB02 Parallel LCD Module Interface pins:
+/// \code
+///  IBoard Signal=ITDB02 pin          Sparkfun WRL-00691
+///        3.3V      37-----------VCC  (3.3V to 7V in)
+///         D2       28-----------CE   (chip enable in)
+///         D29      27----------CSN   (chip select in)
+///         SCK D52  32----------SCK   (SPI clock in)
+///        MOSI D51  34----------SDI   (SPI Data in)
+///        MISO D50  30----------SDO   (SPI data out)
+///                              IRQ   (Interrupt output, not connected)
+///        GND       39----------GND   (ground in)
+/// \endcode
+/// And initialise like this:
+/// \code
+/// RH_NRF24 nrf24(2, 29);
+/// \endcode
+///
+/// For an Itead Studio IBoard Pro http://imall.iteadstudio.com/iboard-pro.html, connected by software SPI to the 
+/// nRF24L01+ Module Interface pins. CAUTION: performance of software SPI is very slow and is not
+/// compatible with other modules running hardware SPI.
+/// \code
+///  IBoard Signal=Module pin          Sparkfun WRL-00691
+///        3.3V      2----------VCC   (3.3V to 7V in)
+///         D12      3-----------CE   (chip enable in)
+///         D29      4----------CSN   (chip select in)
+///         D9       5----------SCK   (SPI clock in)
+///         D8       6----------SDI   (SPI Data in)
+///         D7       7----------SDO   (SPI data out)
+///                              IRQ   (Interrupt output, not connected)
+///        GND       1----------GND   (ground in)
+/// \endcode
+/// And initialise like this:
+/// \code
+/// #include <SPI.h>
+/// #include <RH_NRF24.h>
+/// #include <RHSoftwareSPI.h>
+/// Singleton instance of the radio driver
+/// RHSoftwareSPI spi;
+/// RH_NRF24 nrf24(12, 11, spi);
+/// void setup() {
+///     spi.setPins(7, 8, 9);
+///     ....
+/// \endcode
+///
+///
+/// For Raspberry Pi with Sparkfun WRL-00691 
+/// \code
+///     Raspberry Pi P1 pin          Sparkfun WRL-00691
+///             5V      2-----------VCC   (3.3V to 7V in)
+///         GPIO25      22-----------CE   (chip enable in)
+///         GPIO8       24----------CSN   (chip select in)
+///         GPIO11      23----------SCK   (SPI clock in)
+///         GPIO10      19----------SDI   (SPI Data in)
+///         GPIO9       21----------SDO   (SPI data out)
+///                                 IRQ   (Interrupt output, not connected)
+///            GND       6----------GND   (ground in)
+/// \endcode
+/// and initialise like this:
+/// \code
+///  RH_NRF24 nrf24(RPI_V2_GPIO_P1_22, RPI_V2_GPIO_P1_24);
+/// \endcode
+/// See the example program and Makefile in examples/raspi. Requires bcm2835 library to be previously installed.
+/// \code
+/// cd examples/raspi
+/// make
+/// sudo ./RasPiRH
+/// \endcode
+/// \code
+///
+/// You can override the default settings for the CSN and CE pins 
+/// in the NRF24() constructor if you wish to connect the slave select CSN to other than the normal one for your 
+/// Arduino (D10 for Diecimila, Uno etc and D53 for Mega)
+///
+/// Caution: on some Arduinos such as the Mega 2560, if you set the slave select pin to be other than the usual SS 
+/// pin (D53 on  Mega 2560), you may need to set the usual SS pin to be an output to force the Arduino into SPI 
+/// master mode.
+///
+/// Caution: this module has not been proved to work with Leonardo, at least without level 
+/// shifters between the nRF24 and the Leonardo. Tests seem to indicate that such level shifters would be required
+/// with Leonardo to make it work.
+///
+/// It is possible to have 2 radios conected to one arduino, provided each radio has its own 
+/// CSN and CE line (SCK, SDI and SDO are common to both radios)
+///
+/// \par SPI Interface
+///
+/// You can interface to nRF24L01 with with hardware or software SPI. Use of software SPI with the RHSoftwareSPI 
+/// class depends on a fast enough processor and digitalOut() functions to achieve a high enough SPI bus frequency.
+/// If you observe reliable behaviour with the default hardware SPI RHHardwareSPI, but unreliable behaviour 
+/// with Software SPI RHSoftwareSPI, it may be due to slow CPU performance.
+///
+/// Initialisation example with hardware SPI
+/// \code
+/// #include <RH_NRF24.h>
+/// RH_NRF24 driver;
+/// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
+/// \endcode
+///
+/// Initialisation example with software SPI
+/// \code
+/// #include <RH_NRF24.h>
+/// #include <RHSoftwareSPI.h>
+/// RHSoftwareSPI spi;
+/// RH_NRF24 driver(8, 10, spi);
+/// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
+/// \endcode
+///
+/// \par Example programs
+///
+/// Several example programs are provided.
+///
+/// \par Radio Performance
+///
+/// Frequency accuracy may be debatable. For nominal frequency of 2401.000 MHz (ie channel 1), 
+/// my Yaesu VR-5000 receiver indicated the center frequency for my test radios
+/// was 2401.121 MHz. Its not clear to me if the Yaesu
+/// is the source of the error, but I tend to believe it, which would make the nRF24l01 frequency out by 121kHz.
+///
+/// The measured power output for a nRF24L01p with PA and LNA set to 0dBm output is about 18dBm.
+/// 
+/// \par Radio operating strategy and defaults
+///
+/// The radio is enabled all the time, and switched between TX and RX modes depending on 
+/// whether there is any data to send. Sending data sets the radio to TX mode.
+/// After data is sent, the radio automatically returns to Standby II mode. Calling waitAvailable() or
+/// waitAvailableTimeout() starts the radio in RX mode.
+///
+/// The radio is configured by default to Channel 2, 2Mbps, 0dBm power, 5 bytes address, payload width 1, CRC enabled
+/// 2 byte CRC, No Auto-Ack mode. Enhanced shockburst is used. 
+/// TX and P0 are set to the Network address. Node addresses and decoding are handled with the RH_NRF24 module.
+///
+/// \par Memory
+///
+/// Memory usage of this class is minimal. The compiled client and server sketches are about 6000 bytes on Arduino. 
+/// The reliable client and server sketches compile to about 8500 bytes on Arduino.
+/// RAM requirements are minimal.
+///
+class RH_NRF24 : public RHNRFSPIDriver
+{
+public:
+
+    /// \brief Defines convenient values for setting data rates in setRF()
+    typedef enum
+    {
+	DataRate1Mbps = 0,   ///< 1 Mbps
+	DataRate2Mbps,       ///< 2 Mbps
+	DataRate250kbps      ///< 250 kbps
+    } DataRate;
+
+    /// \brief Convenient values for setting transmitter power in setRF()
+    /// These are designed to agree with the values for RF_PWR in RH_NRF24_REG_06_RF_SETUP
+    /// To be passed to setRF();
+    typedef enum
+    {
+	// Add 20dBm for nRF24L01p with PA and LNA modules
+	TransmitPowerm18dBm = 0,        ///< On nRF24, -18 dBm
+	TransmitPowerm12dBm,            ///< On nRF24, -12 dBm
+	TransmitPowerm6dBm,             ///< On nRF24, -6 dBm
+	TransmitPower0dBm,              ///< On nRF24, 0 dBm
+	// Sigh, different power levels for the same bit patterns on RFM73:
+	// On RFM73P-S, there is a Tx power amp, so expect higher power levels, up to 20dBm. Alas
+	// there is no clear documentation on the power for different settings :-(
+	RFM73TransmitPowerm10dBm = 0,   ///< On RFM73, -10 dBm
+	RFM73TransmitPowerm5dBm,        ///< On RFM73, -5 dBm
+	RFM73TransmitPowerm0dBm,        ///< On RFM73, 0 dBm
+	RFM73TransmitPower5dBm          ///< On RFM73, 5 dBm. 20dBm on RFM73P-S2 ?
+
+    } TransmitPower;
+
+    /// Constructor. You can have multiple instances, but each instance must have its own
+    /// chip enable and slave select pin. 
+    /// After constructing, you must call init() to initialise the interface
+    /// and the radio module
+    /// \param[in] chipEnablePin the Arduino pin to use to enable the chip for transmit/receive
+    /// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the NRF24 before
+    /// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, 
+    /// D10 for Maple)
+    /// \param[in] spi Pointer to the SPI interface object to use. 
+    ///                Defaults to the standard Arduino hardware SPI interface
+    RH_NRF24(PINS chipEnablePin, PINS slaveSelectPin, RHGenericSPI& spi = hardware_spi);
+  
+    /// Initialises this instance and the radio module connected to it.
+    /// The following steps are taken:g
+    /// - Set the chip enable and chip select pins to output LOW, HIGH respectively.
+    /// - Initialise the SPI output pins
+    /// - Initialise the SPI interface library to 8MHz (Hint, if you want to lower
+    /// the SPI frequency (perhaps where you have other SPI shields, low voltages etc), 
+    /// call SPI.setClockDivider() after init()).
+    /// -Flush the receiver and transmitter buffers
+    /// - Set the radio to receive with powerUpRx();
+    /// \return  true if everything was successful
+    bool        init();
+
+    /// Reads a single register from the NRF24
+    /// \param[in] reg Register number, one of NRF24_REG_*
+    /// \return The value of the register
+    uint8_t        spiReadRegister(uint8_t reg);
+
+    /// Writes a single byte to the NRF24, and at the ame time reads the current STATUS register
+    /// \param[in] reg Register number, one of NRF24_REG_*
+    /// \param[in] val The value to write
+    /// \return the current STATUS (read while the command is sent)
+    uint8_t        spiWriteRegister(uint8_t reg, uint8_t val);
+
+    /// Reads a number of consecutive registers from the NRF24 using burst read mode
+    /// \param[in] reg Register number of the first register, one of NRF24_REG_*
+    /// \param[in] dest Array to write the register values to. Must be at least len bytes
+    /// \param[in] len Number of bytes to read
+    /// \return the current STATUS (read while the command is sent)
+    uint8_t           spiBurstReadRegister(uint8_t reg, uint8_t* dest, uint8_t len);
+
+    /// Write a number of consecutive registers using burst write mode
+    /// \param[in] reg Register number of the first register, one of NRF24_REG_*
+    /// \param[in] src Array of new register values to write. Must be at least len bytes
+    /// \param[in] len Number of bytes to write
+    /// \return the current STATUS (read while the command is sent)
+    uint8_t        spiBurstWriteRegister(uint8_t reg, uint8_t* src, uint8_t len);
+
+    /// Reads and returns the device status register NRF24_REG_02_DEVICE_STATUS
+    /// \return The value of the device status register
+    uint8_t        statusRead();
+  
+    /// Sets the transmit and receive channel number.
+    /// The frequency used is (2400 + channel) MHz
+    /// \return true on success
+    bool setChannel(uint8_t channel);
+
+    /// Sets the chip configuration that will be used to set
+    /// the NRF24 NRF24_REG_00_CONFIG register when in Idle mode. This allows you to change some
+    /// chip configuration for compatibility with libraries other than this one.
+    /// You should not normally need to call this.
+    /// Defaults to NRF24_EN_CRC| RH_NRF24_CRCO, which is the standard configuration for this library 
+    /// (2 byte CRC enabled).
+    /// \param[in] mode The chip configuration to be used whe in Idle mode.
+    /// \return true on success
+    bool setOpMode(uint8_t mode);
+
+    /// Sets the Network address.
+    /// Only nodes with the same network address can communicate with each other. You 
+    /// can set different network addresses in different sets of nodes to isolate them from each other.
+    /// Internally, this sets the nRF24 TX_ADDR and RX_ADDR_P0 to be the given network address.
+    /// The default network address is 0xE7E7E7E7E7
+    /// \param[in] address The new network address. Must match the network address of any receiving node(s).
+    /// \param[in] len Number of bytes of address to set (3 to 5).
+    /// \return true on success, false if len is not in the range 3-5 inclusive.
+    bool setNetworkAddress(uint8_t* address, uint8_t len);
+
+    /// Sets the data rate and transmitter power to use. Note that the nRF24 and the RFM73 have different
+    /// available power levels, and for convenience, 2 different sets of values are available in the 
+    /// RH_NRF24::TransmitPower enum. The ones with the RFM73 only have meaning on the RFM73 and compatible
+    /// devces. The others are for the nRF24.
+    /// \param [in] data_rate The data rate to use for all packets transmitted and received. One of RH_NRF24::DataRate.
+    /// \param [in] power Transmitter power. One of RH_NRF24::TransmitPower.
+    /// \return true on success
+    bool setRF(DataRate data_rate, TransmitPower power);
+
+    /// Sets the radio in power down mode, with the configuration set to the
+    /// last value from setOpMode().
+    /// Sets chip enable to LOW.
+    void setModeIdle();
+
+    /// Sets the radio in RX mode.
+    /// Sets chip enable to HIGH to enable the chip in RX mode.
+    void setModeRx();
+
+    /// Sets the radio in TX mode.
+    /// Pulses the chip enable LOW then HIGH to enable the chip in TX mode.
+    void setModeTx();
+
+    /// Sends data to the address set by setTransmitAddress()
+    /// Sets the radio to TX mode
+    /// \param [in] data Data bytes to send.
+    /// \param [in] len Number of data bytes to send
+    /// \return true on success (which does not necessarily mean the receiver got the message, only that the message was
+    /// successfully transmitted).
+    bool send(const uint8_t* data, uint8_t len);
+
+    /// Blocks until the current message (if any) 
+    /// has been transmitted
+    /// \return true on success, false if the chip is not in transmit mode or other transmit failure
+    virtual bool waitPacketSent();
+
+    /// Indicates if the chip is in transmit mode and 
+    /// there is a packet currently being transmitted
+    /// \return true if the chip is in transmit mode and there is a transmission in progress
+    bool isSending();
+
+    /// Prints the value of all chip registers
+    /// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
+    /// For debugging purposes only.
+    /// \return true on success
+    bool printRegisters();
+
+    /// Checks whether a received message is available.
+    /// This can be called multiple times in a timeout loop
+    /// \return true if a complete, valid message has been received and is able to be retrieved by
+    /// recv()
+    bool        available();
+
+    /// Turns the receiver on if it not already on.
+    /// If there is a valid message available, copy it to buf and return true
+    /// else return false.
+    /// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
+    /// You should be sure to call this function frequently enough to not miss any messages
+    /// It is recommended that you call it in your main loop.
+    /// \param[in] buf Location to copy the received message
+    /// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
+    /// \return true if a valid message was copied to buf
+    bool        recv(uint8_t* buf, uint8_t* len);
+
+    /// The maximum message length supported by this driver
+    /// \return The maximum message length supported by this driver
+    uint8_t maxMessageLength();
+
+    /// Sets the radio into Power Down mode.
+    /// If successful, the radio will stay in Power Down mode until woken by 
+    /// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
+    /// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
+    /// \return true if sleep mode was successfully entered.
+    virtual bool    sleep();
+
+protected:
+    /// Flush the TX FIFOs
+    /// \return the value of the device status register
+    uint8_t flushTx();
+
+    /// Flush the RX FIFOs
+    /// \return the value of the device status register
+    uint8_t flushRx();
+
+    /// Examine the receive buffer to determine whether the message is for this node
+    void validateRxBuf();
+
+    /// Clear our local receive buffer
+    void clearRxBuf();
+
+private:
+    /// This idle mode chip configuration
+    uint8_t             _configuration;
+
+    /// the number of the chip enable pin
+    uint8_t             _chipEnablePin;
+
+    /// Number of octets in the buffer
+    uint8_t             _bufLen;
+    
+    /// The receiver/transmitter buffer
+    uint8_t             _buf[RH_NRF24_MAX_PAYLOAD_LEN];
+
+    /// True when there is a valid message in the buffer
+    bool                _rxBufValid;
+};
+
+/// @example nrf24_client.pde
+/// @example nrf24_server.pde
+/// @example nrf24_reliable_datagram_client.pde
+/// @example nrf24_reliable_datagram_server.pde
+/// @example RasPiRH.cpp
+
+#endif