RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895
Committer:
humlet
Date:
Sat Apr 20 09:52:09 2013 +0000
Revision:
4:eafa7efcd771
Parent:
3:967dde37e712
Child:
6:5b98c902a659
running

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 3:967dde37e712 1 #include "mbed.h"
humlet 3:967dde37e712 2 #include "rtos.h"
humlet 3:967dde37e712 3 #include "I2CMasterRtos.h"
humlet 3:967dde37e712 4 #include "I2CSlaveRtos.h"
humlet 3:967dde37e712 5
humlet 4:eafa7efcd771 6 const int freq = 400000;
humlet 3:967dde37e712 7 const int adr = 42;
humlet 3:967dde37e712 8 const int len=42;
humlet 4:eafa7efcd771 9 const char* mstMsg="We are mbed, resistance is futile";
humlet 4:eafa7efcd771 10 const char* slvMsg="Fine with me, let's get addicted";
humlet 3:967dde37e712 11
humlet 4:eafa7efcd771 12 static void slvRxMsg(I2CSlaveRtos& slv)
humlet 3:967dde37e712 13 {
humlet 4:eafa7efcd771 14 char rxMsg[len];
humlet 4:eafa7efcd771 15 memset(rxMsg,0,len);
humlet 3:967dde37e712 16 if ( slv.receive() == I2CSlave::WriteAddressed) {
humlet 4:eafa7efcd771 17 slv.read(rxMsg, len);
humlet 4:eafa7efcd771 18 //rMsg[len-1]=0;
humlet 4:eafa7efcd771 19 printf("thread %X received message as i2c slave: '%s'\n",Thread::gettid(),rxMsg);
humlet 3:967dde37e712 20 } else
humlet 4:eafa7efcd771 21 printf("Ouch slv rx failure\n");
humlet 3:967dde37e712 22 }
humlet 3:967dde37e712 23
humlet 4:eafa7efcd771 24 static void slvTxMsg(I2CSlaveRtos& slv)
humlet 4:eafa7efcd771 25 {
humlet 4:eafa7efcd771 26 if ( slv.receive() == I2CSlave::ReadAddressed) {
humlet 4:eafa7efcd771 27 slv.write(slvMsg, len);
humlet 4:eafa7efcd771 28 } else
humlet 4:eafa7efcd771 29 printf("Ouch slv tx failure\n");
humlet 4:eafa7efcd771 30 }
humlet 4:eafa7efcd771 31
humlet 4:eafa7efcd771 32 static void mstTxMsg(I2CMasterRtos& mst)
humlet 3:967dde37e712 33 {
humlet 4:eafa7efcd771 34 mst.write(adr,mstMsg,len);
humlet 4:eafa7efcd771 35 //printf("thread %X has sent the message\n",Thread::gettid());
humlet 4:eafa7efcd771 36 }
humlet 4:eafa7efcd771 37
humlet 4:eafa7efcd771 38 static void mstRxMsg(I2CMasterRtos& mst)
humlet 4:eafa7efcd771 39 {
humlet 4:eafa7efcd771 40 char rxMsg[len];
humlet 4:eafa7efcd771 41 memset(rxMsg,0,len);
humlet 4:eafa7efcd771 42 mst.read(adr,rxMsg,len);
humlet 4:eafa7efcd771 43 printf("thread %X received message as i2c master: '%s'\n",Thread::gettid(),rxMsg);
humlet 3:967dde37e712 44 }
humlet 3:967dde37e712 45
humlet 3:967dde37e712 46 static void channel1(void const *args)
humlet 3:967dde37e712 47 {
humlet 3:967dde37e712 48 I2CMasterRtos mst(p9,p10,freq);
humlet 3:967dde37e712 49 I2CSlaveRtos slv(p9,p10,freq,adr);
humlet 3:967dde37e712 50 while(1) {
humlet 4:eafa7efcd771 51 slvRxMsg(slv);
humlet 4:eafa7efcd771 52 slvTxMsg(slv);
humlet 3:967dde37e712 53 Thread::wait(100);
humlet 4:eafa7efcd771 54 mstTxMsg(mst);
humlet 3:967dde37e712 55 Thread::wait(100);
humlet 4:eafa7efcd771 56 mstRxMsg(mst);
humlet 3:967dde37e712 57 }
humlet 3:967dde37e712 58 }
humlet 3:967dde37e712 59
humlet 3:967dde37e712 60 void channel2(void const *args)
humlet 3:967dde37e712 61 {
humlet 3:967dde37e712 62 I2CMasterRtos mst(p28,p27,freq);
humlet 3:967dde37e712 63 I2CSlaveRtos slv(p28,p27,freq,adr);
humlet 3:967dde37e712 64 while(1) {
humlet 4:eafa7efcd771 65 Thread::wait(100);
humlet 4:eafa7efcd771 66 mstTxMsg(mst);
humlet 3:967dde37e712 67 Thread::wait(100);
humlet 4:eafa7efcd771 68 mstRxMsg(mst);
humlet 4:eafa7efcd771 69 slvRxMsg(slv);
humlet 4:eafa7efcd771 70 slvTxMsg(slv);
humlet 3:967dde37e712 71 }
humlet 3:967dde37e712 72 }
humlet 3:967dde37e712 73
humlet 3:967dde37e712 74 int doit()
humlet 3:967dde37e712 75 {
humlet 3:967dde37e712 76 Thread selftalk01(channel1,0,osPriorityAboveNormal);
humlet 3:967dde37e712 77 Thread selftalk02(channel2,0,osPriorityAboveNormal);
humlet 3:967dde37e712 78
humlet 3:967dde37e712 79 uint32_t cnt=0;
humlet 3:967dde37e712 80 while (++cnt<5) {
humlet 3:967dde37e712 81 const uint32_t dt=1e6;
humlet 3:967dde37e712 82 uint32_t tStart = us_ticker_read();
humlet 3:967dde37e712 83 uint32_t tLast = tStart;
humlet 3:967dde37e712 84 uint32_t tAct = tStart;
humlet 3:967dde37e712 85 uint32_t tMe=0;
humlet 3:967dde37e712 86 do {
humlet 3:967dde37e712 87 tAct=us_ticker_read();
humlet 3:967dde37e712 88 if(tAct>tLast) {
humlet 3:967dde37e712 89 if(tAct==tLast+1)++tMe;
humlet 3:967dde37e712 90 }
humlet 3:967dde37e712 91 tLast=tAct;
humlet 3:967dde37e712 92 } while(tAct-tStart<dt);
humlet 3:967dde37e712 93 printf("dc=%5.2f \n", 100.0*(float)tMe/dt);
humlet 3:967dde37e712 94 }
humlet 3:967dde37e712 95 return 0;
humlet 3:967dde37e712 96 }
humlet 3:967dde37e712 97