RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895
Committer:
humlet
Date:
Sun May 19 11:21:16 2013 +0000
Revision:
14:352609d395c1
almost beta?; ***refactored (removed mbed-NXP and mbed-src hacks/dependencies) ; *** bugs fixed; *** performance improved (read/write sequence now handled in ISR);

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 14:352609d395c1 1 // several threads try to read concurrently from a MPU6050 gyro/acc meter
humlet 14:352609d395c1 2 // via the same globally defined i2c driver interface
humlet 14:352609d395c1 3
humlet 14:352609d395c1 4 #include "mbed.h"
humlet 14:352609d395c1 5 #include "rtos.h"
humlet 14:352609d395c1 6 #include "I2CMasterRtos.h"
humlet 14:352609d395c1 7 #include "stdint.h"
humlet 14:352609d395c1 8
humlet 14:352609d395c1 9 const uint32_t i2cAdr = 0x68<<1;
humlet 14:352609d395c1 10 const char reg= 0x3b; // accelerometer x,y,z
humlet 14:352609d395c1 11 volatile osThreadId i2cDrvThrdID[2];
humlet 14:352609d395c1 12
humlet 14:352609d395c1 13 I2CMasterRtos g_i2c(p28, p27, 400000);
humlet 14:352609d395c1 14
humlet 14:352609d395c1 15 static void config(I2CMasterRtos& i2c);
humlet 14:352609d395c1 16
humlet 14:352609d395c1 17 void highPrioCallBck(void const *args)
humlet 14:352609d395c1 18 {
humlet 14:352609d395c1 19 osSignalSet(i2cDrvThrdID[1], 1<<5);
humlet 14:352609d395c1 20 osSignalSet(i2cDrvThrdID[0], 1<<5);
humlet 14:352609d395c1 21 }
humlet 14:352609d395c1 22
humlet 14:352609d395c1 23 void highPrioThreadFun(void const *args)
humlet 14:352609d395c1 24 {
humlet 14:352609d395c1 25 int thrdID = (int)args;
humlet 14:352609d395c1 26 i2cDrvThrdID[thrdID] = Thread::gettid();
humlet 14:352609d395c1 27
humlet 14:352609d395c1 28 char result[64];
humlet 14:352609d395c1 29 while(true) {
humlet 14:352609d395c1 30 Thread::signal_wait(1<<5,osWaitForever);
humlet 14:352609d395c1 31 g_i2c.lock();
humlet 14:352609d395c1 32 g_i2c.read(i2cAdr, reg, result, 3*2);
humlet 14:352609d395c1 33 printf("%s prio thread has read from MPU650:", (thrdID==0?"high ":"even higher"));
humlet 14:352609d395c1 34 for(int i=0; i<3; i++) {
humlet 14:352609d395c1 35 int16_t acc=((static_cast<int16_t>(result[i*2])<<8)|static_cast<int16_t>(result[i*2+1]));
humlet 14:352609d395c1 36 printf("%7i",acc);
humlet 14:352609d395c1 37 }
humlet 14:352609d395c1 38 printf("\n");
humlet 14:352609d395c1 39 g_i2c.unlock();
humlet 14:352609d395c1 40 }
humlet 14:352609d395c1 41 }
humlet 14:352609d395c1 42
humlet 14:352609d395c1 43 int doit()
humlet 14:352609d395c1 44 {
humlet 14:352609d395c1 45 I2CMasterRtos i2c(p28, p27, 100000);
humlet 14:352609d395c1 46 config(i2c);
humlet 14:352609d395c1 47
humlet 14:352609d395c1 48 Thread highPrioThread(highPrioThreadFun, 0, osPriorityAboveNormal);
humlet 14:352609d395c1 49 Thread evenHigherPrioThread(highPrioThreadFun, (void*)1, osPriorityHigh);
humlet 14:352609d395c1 50 RtosTimer highPrioTicker(highPrioCallBck, osTimerPeriodic, (void *)0);
humlet 14:352609d395c1 51
humlet 14:352609d395c1 52 Thread::wait(1000);
humlet 14:352609d395c1 53 highPrioTicker.start(503);
humlet 14:352609d395c1 54
humlet 14:352609d395c1 55 char result[64];
humlet 14:352609d395c1 56 for(int i=0; i<100; ++i) {
humlet 14:352609d395c1 57 i2c.read(i2cAdr, reg, result, 3*2);
humlet 14:352609d395c1 58 printf("normal prio thread has read from MPU650:");
humlet 14:352609d395c1 59 for(int i=0; i<3; i++) {
humlet 14:352609d395c1 60 int16_t acc=((static_cast<int16_t>(result[i*2])<<8)|static_cast<int16_t>(result[i*2+1]));
humlet 14:352609d395c1 61 printf("%7i",acc);
humlet 14:352609d395c1 62 }
humlet 14:352609d395c1 63 printf("\n");
humlet 14:352609d395c1 64 Thread::wait(100);
humlet 14:352609d395c1 65 }
humlet 14:352609d395c1 66 return 0;
humlet 14:352609d395c1 67 }
humlet 14:352609d395c1 68
humlet 14:352609d395c1 69 void readModWrite(I2CMasterRtos& i2c, uint8_t reg, uint8_t dta)
humlet 14:352609d395c1 70 {
humlet 14:352609d395c1 71 char rd1;
humlet 14:352609d395c1 72 int rStat1 = i2c.read(i2cAdr, reg, &rd1,1);
humlet 14:352609d395c1 73 char data[2];
humlet 14:352609d395c1 74 data[0]=(char)reg;
humlet 14:352609d395c1 75 data[1]=(char)dta;
humlet 14:352609d395c1 76 char rd2;
humlet 14:352609d395c1 77 int wStat = i2c.write(i2cAdr, data, 2);
humlet 14:352609d395c1 78 osDelay(100);
humlet 14:352609d395c1 79 int rStat2 = i2c.read(i2cAdr, reg, &rd2,1);
humlet 14:352609d395c1 80 printf("(%3x%3x%3x) %2x <- %2x => %2x -> %2x \n", rStat1, wStat, rStat2, reg, dta, rd1, rd2);
humlet 14:352609d395c1 81 }
humlet 14:352609d395c1 82
humlet 14:352609d395c1 83 static void config(I2CMasterRtos& i2c)
humlet 14:352609d395c1 84 {
humlet 14:352609d395c1 85 uint8_t ncfg=32;
humlet 14:352609d395c1 86 uint8_t regs[ncfg];
humlet 14:352609d395c1 87 uint8_t vals[ncfg];
humlet 14:352609d395c1 88 int cnt=0;
humlet 14:352609d395c1 89 regs[cnt]=0x6b;
humlet 14:352609d395c1 90 vals[cnt++]=(1<<7); // pwr 1 reg //: device reset
humlet 14:352609d395c1 91 regs[cnt]=0x6b;
humlet 14:352609d395c1 92 vals[cnt++]=1; // pwr 1 reg // clock from x gyro all pwr sav modes off
humlet 14:352609d395c1 93 regs[cnt]=0x19;
humlet 14:352609d395c1 94 vals[cnt++]=0; // sample rate divider reg // sapmle rate = gyro rate / (1+x)
humlet 14:352609d395c1 95 regs[cnt]=0x1a;
humlet 14:352609d395c1 96 vals[cnt++]=0x01;// conf reg // no ext frame sync / no dig low pass set to 1 => 1kHz Sampling
humlet 14:352609d395c1 97 regs[cnt]=0x1b;
humlet 14:352609d395c1 98 vals[cnt++]=0;// gyro conf reg // no test mode and gyro range 250°/s
humlet 14:352609d395c1 99 regs[cnt]=0x1c;
humlet 14:352609d395c1 100 vals[cnt++]=0;// accl conf reg // no test mode and accl range 2g
humlet 14:352609d395c1 101 regs[cnt]=0x23;
humlet 14:352609d395c1 102 //vals[cnt++]=0x1f<<3;// fifo conf reg // accl + all gyro -> fifo
humlet 14:352609d395c1 103 //regs[cnt]=0x6a;
humlet 14:352609d395c1 104 //vals[cnt++]=(1<<2); // pwr 1 reg // fifo reset
humlet 14:352609d395c1 105 //regs[cnt]=0x6a;
humlet 14:352609d395c1 106 //vals[cnt++]=(1<<6); // pwr 1 reg // fifo on
humlet 14:352609d395c1 107
humlet 14:352609d395c1 108 for(int i=0; i<cnt; i++)
humlet 14:352609d395c1 109 readModWrite(i2c, regs[i], vals[i]);
humlet 14:352609d395c1 110 }