Data acquisition and device control with Scilab.

Dependencies:   Servo MPU6050

Desciription

Scilab is a freeware alternative to MATLAB. For low-cost data acquisition and device control a nice Arduino toolbox is available.

https://os.mbed.com/media/uploads/hudakz/scilab.png

This site presents a Mbed port which allows to use Mbed boards (equipped with Arduino header) rather than Arduino to import real time data into Scilab and to control real equipment witch Scilab.

https://os.mbed.com/media/uploads/hudakz/arduino-temp-read_imagelarge_1.jpeg

Installation
  • Install Scilab to your PC, if not done yet.
  • Launch Scilab and install the Arduino toolbox by executing the following command from the Scilab console:

--> atomsInstall("arduino")
Controlling Mbed's digital output from Scilab
  • In Xcos open examples/Arduino1.zcos

/media/uploads/hudakz/scilab_arduino1.png

  • Double click on the Board setup block and replace the serial port number with mbed's actual virtual serial port number.
  • Double click on the Digital WRITE block and set Digital Pin to 13 (D13 is connected to LED1).
  • Start simulation and LED1 on the Mbed board should start blinking.
Reading and displaying Mbed's analog input
  • In Xcos open examples/Arduino2.zcos

/media/uploads/hudakz/scilab_arduino2.png

  • Double click on the Board setup block and replace the serial port number with mbed's actual virtual serial port number.
  • Double click on the Analog READ block and set Analog Pin to 2.
  • Start simulation and a graph should appear showing the analog signal measured on Mbed's pin A2.

NOTE: Currently, there is bug in the toolbox ARDUINO_ANALOG_READ_sim function (I have reported to Scilab) so the analog readings are not correct.

/media/uploads/hudakz/scilab_graph.png

PID controller
  • In Xcos open examples/Arduino9.zcos

/media/uploads/hudakz/scilab_arduino9.png

Revision:
0:295b7e1c12f3
diff -r 000000000000 -r 295b7e1c12f3 README.md
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/README.md	Mon Jan 18 19:51:22 2021 +0000
@@ -0,0 +1,64 @@
+![](./resources/official_armmbed_example_badge.png)
+# Blinky Mbed OS example
+
+The example project is part of the [Arm Mbed OS Official Examples](https://os.mbed.com/code/) and is the [getting started example for Mbed OS](https://os.mbed.com/docs/mbed-os/v5.14/quick-start/index.html). It contains an application that repeatedly blinks an LED on supported [Mbed boards](https://os.mbed.com/platforms/).
+
+You can build the project with all supported [Mbed OS build tools](https://os.mbed.com/docs/mbed-os/latest/tools/index.html). However, this example project specifically refers to the command-line interface tool [Arm Mbed CLI](https://github.com/ARMmbed/mbed-cli#installing-mbed-cli).
+(Note: To see a rendered example you can import into the Arm Online Compiler, please see our [import quick start](https://os.mbed.com/docs/mbed-os/latest/quick-start/online-with-the-online-compiler.html#importing-the-code).)
+
+1. [Install Mbed CLI](https://os.mbed.com/docs/mbed-os/latest/quick-start/offline-with-mbed-cli.html).
+
+1. Clone this repository on your system, and change the current directory to where the project was cloned:
+
+    ```bash
+    $ git clone git@github.com:armmbed/mbed-os-example-blinky && cd mbed-os-example-blinky
+    ```
+
+    Alternatively, you can download the example project with Arm Mbed CLI using the `import` subcommand:
+
+    ```bash
+    $ mbed import mbed-os-example-blinky && cd mbed-os-example-blinky
+    ```
+
+
+## Application functionality
+
+The `main()` function is the single thread in the application. It toggles the state of a digital output connected to an LED on the board.
+
+## Building and running
+
+1. Connect a USB cable between the USB port on the board and the host computer.
+2. <a name="build_cmd"></a> Run the following command to build the example project and program the microcontroller flash memory:
+    ```bash
+    $ mbed compile -m <TARGET> -t <TOOLCHAIN> --flash
+    ```
+The binary is located at `./BUILD/<TARGET>/<TOOLCHAIN>/mbed-os-example-blinky.bin`.
+
+Alternatively, you can manually copy the binary to the board, which you mount on the host computer over USB.
+
+Depending on the target, you can build the example project with the `GCC_ARM`, `ARM` or `IAR` toolchain. After installing Arm Mbed CLI, run the command below to determine which toolchain supports your target:
+
+```bash
+$ mbed compile -S
+```
+
+## Expected output
+The LED on your target turns on and off every 500 milliseconds.
+
+
+## Troubleshooting
+If you have problems, you can review the [documentation](https://os.mbed.com/docs/latest/tutorials/debugging.html) for suggestions on what could be wrong and how to fix it.
+
+## Related Links
+
+* [Mbed OS Stats API](https://os.mbed.com/docs/latest/apis/mbed-statistics.html).
+* [Mbed OS Configuration](https://os.mbed.com/docs/latest/reference/configuration.html).
+* [Mbed OS Serial Communication](https://os.mbed.com/docs/latest/tutorials/serial-communication.html).
+* [Mbed OS bare metal](https://os.mbed.com/docs/mbed-os/latest/reference/mbed-os-bare-metal.html).
+* [Mbed boards](https://os.mbed.com/platforms/).
+
+### License and contributions
+
+The software is provided under Apache-2.0 license. Contributions to this project are accepted under the same license. Please see contributing.md for more info.
+
+This project contains code from other projects. The original license text is included in those source files. They must comply with our license guide.