Port of Maniacbug's Arduino RF24 library to mbed.
Dependents: STM32F407VET6_nRF24L01_Master STM32F407VET6_nRF24L01_Slave Main_ntp_sd_nrf IRC_MASTER
RF24.cpp
- Committer:
- hudakz
- Date:
- 2019-01-25
- Revision:
- 1:d96c2056bf37
- Parent:
- 0:2007da485383
File content as of revision 1:d96c2056bf37:
/* Copyright (C) 2011 J. Coliz <maniacbug@ymail.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */ #include "RF24.h" /** * @brief * @note * @param * @retval */ void RF24::csn(int mode) { // Minimum ideal spi bus speed is 2x data rate // If we assume 2Mbs data rate and 16Mhz clock, a // divider of 4 is the minimum we want. // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz //#ifdef ARDUINO // spi.setBitOrder(MSBFIRST); // spi.setDataMode(spi_MODE0); // spi.setClockDivider(spi_CLOCK_DIV4); //#endif // digitalWrite(csn_pin,mode); csn_pin = mode; } /** * @brief * @note * @param * @retval */ void RF24::ce(int level) { //digitalWrite(ce_pin,level); ce_pin = level; } /** * @brief * @note * @param * @retval */ uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) { /*-----------*/ uint8_t status; /*-----------*/ csn(LOW); status = spi.write(R_REGISTER | (REGISTER_MASK & reg)); while (len--) *buf++ = spi.write(0xff); csn(HIGH); return status; } /** * @brief * @note * @param * @retval */ uint8_t RF24::read_register(uint8_t reg) { csn(LOW); spi.write(R_REGISTER | (REGISTER_MASK & reg)); /*-----------------------------*/ uint8_t result = spi.write(0xff); /*-----------------------------*/ csn(HIGH); return result; } /** * @brief * @note * @param * @retval */ uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len) { /*-----------*/ uint8_t status; /*-----------*/ csn(LOW); status = spi.write(W_REGISTER | (REGISTER_MASK & reg)); while (len--) spi.write(*buf++); csn(HIGH); return status; } /** * @brief * @note * @param * @retval */ uint8_t RF24::write_register(uint8_t reg, uint8_t value) { /*-----------*/ uint8_t status; /*-----------*/ // IF_SERIAL_DEBUG(printf(("write_register(%02x,%02x)\r\n"),reg,value)); csn(LOW); status = spi.write(W_REGISTER | (REGISTER_MASK & reg)); spi.write(value); csn(HIGH); return status; } /** * @brief * @note * @param * @retval */ uint8_t RF24::write_payload(const void* buf, uint8_t len) { /*-------------------------------------------------------------------------------*/ uint8_t status; const uint8_t* current = reinterpret_cast < const uint8_t * > (buf); uint8_t data_len = min(len, payload_size); uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; /*-------------------------------------------------------------------------------*/ //printf("[Writing %u bytes %u blanks]",data_len,blank_len); csn(LOW); status = spi.write(W_TX_PAYLOAD); while (data_len--) spi.write(*current++); while (blank_len--) spi.write(0); csn(HIGH); return status; } /** * @brief * @note * @param * @retval */ uint8_t RF24::read_payload(void* buf, uint8_t len) { /*---------------------------------------------------------------------------*/ uint8_t status; uint8_t* current = reinterpret_cast < uint8_t * > (buf); uint8_t data_len = min(len, payload_size); uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; /*---------------------------------------------------------------------------*/ //printf("[Reading %u bytes %u blanks]",data_len,blank_len); csn(LOW); status = spi.write(R_RX_PAYLOAD); while (data_len--) *current++ = spi.write(0xff); while (blank_len--) spi.write(0xff); csn(HIGH); return status; } /** * @brief * @note * @param * @retval */ uint8_t RF24::flush_rx(void) { /*-----------*/ uint8_t status; /*-----------*/ csn(LOW); status = spi.write(FLUSH_RX); csn(HIGH); return status; } /** * @brief * @note * @param * @retval */ uint8_t RF24::flush_tx(void) { /*-----------*/ uint8_t status; /*-----------*/ csn(LOW); status = spi.write(FLUSH_TX); csn(HIGH); return status; } /** * @brief * @note * @param * @retval */ uint8_t RF24::get_status(void) { /*-----------*/ uint8_t status; /*-----------*/ csn(LOW); status = spi.write(NOP); csn(HIGH); return status; } //void RF24::print_status(uint8_t status) //{ // printf(("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"), // status, // (status & _BV(RX_DR))?1:0, // (status & _BV(TX_DS))?1:0, // (status & _BV(MAX_RT))?1:0, // ((status >> RX_P_NO) & 7), // (status & _BV(TX_FULL))?1:0 // ); //} // // // //void RF24::print_observe_tx(uint8_t value) //{ // printf(("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"), // value, // (value >> PLOS_CNT) & 15, // (value >> ARC_CNT) & 15 // ); //} // // // //void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty) //{ // char extra_tab = strlen(name) < 8 ? '\t' : 0; // printf("%s =",name); // while (qty--) // printf((" 0x%02x"),read_register(reg++)); // printf(("\r\n")); //} // // // //void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty) //{ // char extra_tab = strlen_P(name) < 8 ? '\t' : 0; // printf("%s =",name); // // while (qty--) // { // uint8_t buffer[5]; // read_register(reg++,buffer,sizeof buffer); // // printf((" 0x")); // uint8_t* bufptr = buffer + sizeof buffer; // while( --bufptr >= buffer ) // printf(("%02x"),*bufptr); // } // // printf(("\r\n")); //} // RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _csnpin, PinName _cepin) : ce_pin(_cepin), csn_pin(_csnpin), wide_band(true), p_variant(false), payload_size(32), ack_payload_available(false), dynamic_payloads_enabled(false), pipe0_reading_address(0), spi(mosi, miso, sck) { spi.frequency(10000000 / 5); // 2Mbit, 1/5th the maximum transfer rate for the spi bus spi.format(8, 0); // 8-bit, ClockPhase = 0, ClockPolarity = 0 wait_ms(100); } /** * @brief * @note * @param * @retval */ void RF24::setChannel(uint8_t channel) { // TODO: This method could take advantage of the 'wide_band' calculation // done in setChannel() to require certain channel spacing. /*------------------------------*/ const uint8_t max_channel = 127; /*------------------------------*/ write_register(RF_CH, min(channel, max_channel)); } /** * @brief * @note * @param * @retval */ void RF24::setPayloadSize(uint8_t size) { /*----------------------------------*/ const uint8_t max_payload_size = 32; /*----------------------------------*/ payload_size = min(size, max_payload_size); } /** * @brief * @note * @param * @retval */ uint8_t RF24::getPayloadSize(void) { return payload_size; } /*$off*/ static const char rf24_datarate_e_str_0[] = "1MBPS"; static const char rf24_datarate_e_str_1[] = "2MBPS"; static const char rf24_datarate_e_str_2[] = "250KBPS"; static const char *const rf24_datarate_e_str_P[] = { rf24_datarate_e_str_0, rf24_datarate_e_str_1, rf24_datarate_e_str_2, }; static const char rf24_model_e_str_0[] = "nRF24L01"; static const char rf24_model_e_str_1[] = "nRF24L01+"; static const char *const rf24_model_e_str_P[] = { rf24_model_e_str_0, rf24_model_e_str_1, }; static const char rf24_crclength_e_str_0[] = "Disabled"; static const char rf24_crclength_e_str_1[] = "8 bits"; static const char rf24_crclength_e_str_2[] = "16 bits"; static const char *const rf24_crclength_e_str_P[] = { rf24_crclength_e_str_0, rf24_crclength_e_str_1, rf24_crclength_e_str_2, }; static const char rf24_pa_dbm_e_str_0[] = "PA_MIN"; static const char rf24_pa_dbm_e_str_1[] = "PA_LOW"; static const char rf24_pa_dbm_e_str_2[] = "PA_MED"; static const char rf24_pa_dbm_e_str_3[] = "PA_HIGH"; static const char *const rf24_pa_dbm_e_str_P[] = { rf24_pa_dbm_e_str_0, rf24_pa_dbm_e_str_1, rf24_pa_dbm_e_str_2, rf24_pa_dbm_e_str_3, }; //void RF24::printDetails(void) //{ // print_status(get_status()); // // print_address_register(("RX_ADDR_P0-1"),RX_ADDR_P0,2); // print_byte_register(("RX_ADDR_P2-5"),RX_ADDR_P2,4); // print_address_register(("TX_ADDR"),TX_ADDR); // // print_byte_register(("RX_PW_P0-6"),RX_PW_P0,6); // print_byte_register(("EN_AA"),EN_AA); // print_byte_register(("EN_RXADDR"),EN_RXADDR); // print_byte_register(("RF_CH"),RF_CH); // print_byte_register(("RF_SETUP"),RF_SETUP); // print_byte_register(("CONFIG"),CONFIG); // print_byte_register(("DYNPD/FEATURE"),DYNPD,2); // // printf(("Data Rate\t = %s\r\n"), rf24_datarate_e_str_P[getDataRate()]); // printf(("Model\t\t = %s\r\n"), rf24_model_e_str_P[isPVariant()]); // printf(("CRC Length\t = %s\r\n"),rf24_crclength_e_str_P[getCRCLength()]); // printf(("PA Power\t = %s\r\n"),rf24_pa_dbm_e_str_P[getPALevel()]); //} // /*$on*/ bool RF24::begin (void) { // Initialize pins // pinMode(ce_pin,OUTPUT); // pinMode(csn_pin,OUTPUT); // Initialize spi bus //spi.begin(); mainTimer.start(); ce(LOW); csn(HIGH); // Must allow the radio time to settle else configuration bits will not necessarily stick. // This is actually only required following power up but some settling time also appears to // be required after resets too. For full coverage, we'll always assume the worst. // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped. // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure. // WARNING: wait_ms is based on P-variant whereby non-P *may* require different timing. wait_ms(5); // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet // sizes must never be used. See documentation for a more complete explanation. write_register(SETUP_RETR, (4 << ARD) | (15 << ARC)); // Test whether setPALevel works. setPALevel(RF24_PA_MIN); if (getPALevel() != RF24_PA_MIN) return false; // Something went wrog. Check whether nRF24L01 is connected. // Restore our default PA level setPALevel(RF24_PA_MAX); // Determine if this is a p or non-p RF24 module and then // reset our data rate back to default value. This works // because a non-P variant won't allow the data rate to // be set to 250Kbps. if (setDataRate(RF24_250KBPS)) { p_variant = true; } // Then set the data rate to the slowest (and most reliable) speed supported by all // hardware. setDataRate(RF24_1MBPS); // Initialize CRC and request 2-byte (16bit) CRC setCRCLength(RF24_CRC_16); // Disable dynamic payloads, to match dynamic_payloads_enabled setting write_register(DYNPD, 0); // Reset current status // Notice reset and flush is the last thing we do write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); // Set up default configuration. Callers can always change it later. // This channel should be universally safe and not bleed over into adjacent // spectrum. setChannel(76); //setChannel(90); // Flush buffers flush_rx(); flush_tx(); // set EN_RXADDRR to 0 to prevent pipe 0 and pipe 1 from receiving write_register(EN_RXADDR, 0); return true; } /** * @brief * @note * @param * @retval */ void RF24::startListening(void) { write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX)); write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); // Restore the pipe0 adddress, if exists if (pipe0_reading_address) write_register(RX_ADDR_P0, reinterpret_cast < const uint8_t * > (&pipe0_reading_address), 5); // Flush buffers flush_rx(); flush_tx(); // Go! ce(HIGH); // wait for the radio to come up wait_us(130); } static const uint8_t child_pipe[] = { RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 }; static const uint8_t child_payload_size[] = { RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 }; static const uint8_t child_pipe_enable[] = { ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 }; /** * @brief * @note * @param * @retval */ void RF24::stopListening(void) { ce(LOW); wait_us(txRxDelay); if (read_register(FEATURE) & _BV(EN_ACK_PAY)) { wait_us(txRxDelay); //200 flush_tx(); } //flush_rx(); write_register(CONFIG, (read_register(CONFIG)) &~_BV(PRIM_RX)); write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(child_pipe_enable[0])); // Enable RX on pipe0 wait_us(100); } /** * @brief * @note * @param * @retval */ void RF24::powerDown(void) { write_register(CONFIG, read_register(CONFIG) &~_BV(PWR_UP)); } /** * @brief * @note * @param * @retval */ void RF24::powerUp(void) { write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP)); } /** * @brief * @note * @param * @retval */ bool RF24::write(const void* buf, uint8_t len) { /*------------------------------------------*/ bool result = false; uint8_t observe_tx; uint8_t status; uint32_t sent_at = mainTimer.read_ms(); const uint32_t timeout = 500; //ms to wait for timeout /*------------------------------------------*/ // Begin the write startWrite(buf, len); // ------------ // At this point we could return from a non-blocking write, and then call // the rest after an interrupt // Instead, we are going to block here until we get TX_DS (transmission completed and ack'd) // or MAX_RT (maximum retries, transmission failed). Also, we'll timeout in case the radio // is flaky and we get neither. // IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster // if I tighted up the retry logic. (Default settings will be 1500us. // Monitor the send do { status = read_register(OBSERVE_TX, &observe_tx, 1); // IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX)); } while (!(status & (_BV(TX_DS) | _BV(MAX_RT))) && (mainTimer.read_ms() - sent_at < timeout)); // The part above is what you could recreate with your own interrupt handler, // and then call this when you got an interrupt // ------------ // Call this when you get an interrupt // The status tells us three things // * The send was successful (TX_DS) // * The send failed, too many retries (MAX_RT) // * There is an ack packet waiting (RX_DR) bool tx_ok, tx_fail; /*-------------------*/ whatHappened(tx_ok, tx_fail, ack_payload_available); //printf("%u%u%u\r\n",tx_ok,tx_fail,ack_payload_available); result = tx_ok; // IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed")); // Handle the ack packet if (ack_payload_available) { ack_payload_length = getDynamicPayloadSize(); // IF_SERIAL_DEBUG(Serial.print("[AckPacket]/")); // IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC)); } // Yay, we are done. // Power down // powerDown(); // Flush buffers (Is this a relic of past experimentation, and not needed anymore? // flush_tx(); return result; } /** * @brief * @note * @param * @retval */ void RF24::startWrite(const void* buf, uint8_t len) { // Transmitter power-up write_register(CONFIG, (read_register(CONFIG) | _BV(PWR_UP)) &~_BV(PRIM_RX)); wait_us(130); // Send the payload write_payload(buf, len); ce(HIGH); wait_us(15); ce(LOW); } /** * @brief * @note * @param * @retval */ uint8_t RF24::getDynamicPayloadSize(void) { /*---------------*/ uint8_t result = 0; /*---------------*/ csn(LOW); spi.write(R_RX_PL_WID); result = spi.write(0xff); csn(HIGH); return result; } /** * @brief * @note * @param * @retval */ bool RF24::available(void) { return available(NULL); } /** * @brief * @note * @param * @retval */ bool RF24::available(uint8_t* pipe_num) { /*-----------------------------------*/ uint8_t status = get_status(); bool result = (status & _BV(RX_DR)); /*-----------------------------------*/ // Too noisy, enable if you really want lots o data!! //IF_SERIAL_DEBUG(print_status(status)); if (result) { // If the caller wants the pipe number, include that if (pipe_num) *pipe_num = (status >> RX_P_NO) & 7; // Clear the status bit // ??? Should this REALLY be cleared now? Or wait until we // actually READ the payload? write_register(STATUS, _BV(RX_DR)); // Handle ack payload receipt if (status & _BV(TX_DS)) { write_register(STATUS, _BV(TX_DS)); } } return result; } /** * @brief * @note * @param * @retval */ bool RF24::read(void* buf, uint8_t len) { // Fetch the payload read_payload(buf, len); // was this the last of the data available? return read_register(FIFO_STATUS) & _BV(RX_EMPTY); } /** * @brief * @note * @param * @retval */ void RF24::whatHappened(bool& tx_ok, bool& tx_fail, bool& rx_ready) { // Read the status & reset the status in one easy call // Or is that such a good idea? uint8_t status = write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT)); // Report to the user what happened tx_ok = status & _BV(TX_DS); tx_fail = status & _BV(MAX_RT); rx_ready = status & _BV(RX_DR); } /** * @brief * @note * @param * @retval */ void RF24::openWritingPipe(uint64_t value) { // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) // expects it LSB first too, so we're good. write_register(RX_ADDR_P0, reinterpret_cast < uint8_t * > (&value), 5); write_register(TX_ADDR, reinterpret_cast < uint8_t * > (&value), 5); /*----------------------------------*/ const uint8_t max_payload_size = 32; /*----------------------------------*/ write_register(RX_PW_P0, min(payload_size, max_payload_size)); flush_tx(); } /** * @brief * @note * @param * @retval */ void RF24::openReadingPipe(uint8_t child, uint64_t address) { // If this is pipe 0, cache the address. This is needed because // openWritingPipe() will overwrite the pipe 0 address, so // startListening() will have to restore it. if (child == 0) pipe0_reading_address = address; if (child <= 6) { // For pipes 2-5, only write the LSB //if (child < 2) write_register(child_pipe[child], reinterpret_cast < const uint8_t * > (&address), 5); //else // write_register(child_pipe[child], reinterpret_cast < const uint8_t * > (&address), 1); write_register(child_payload_size[child], payload_size); // Note it would be more efficient to set all of the bits for all open // pipes at once. However, I thought it would make the calling code // more simple to do it this way. write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(child_pipe_enable[child])); } } /** * @brief * @note * @param * @retval */ void RF24::toggle_features(void) { csn(LOW); spi.write(ACTIVATE); spi.write(0x73); csn(HIGH); } /** * @brief * @note * @param * @retval */ void RF24::enableDynamicPayloads(void) { // Enable dynamic payload throughout the system write_register(FEATURE, read_register(FEATURE) | _BV(EN_DPL)); // If it didn't work, the features are not enabled if (!read_register(FEATURE)) { // So enable them and try again toggle_features(); write_register(FEATURE, read_register(FEATURE) | _BV(EN_DPL)); } // IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); // Enable dynamic payload on all pipes // // Not sure the use case of only having dynamic payload on certain // pipes, so the library does not support it. write_register ( DYNPD, read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0) ); dynamic_payloads_enabled = true; } /** * @brief * @note * @param * @retval */ void RF24::enableAckPayload(void) { // // enable ack payload and dynamic payload features // write_register(FEATURE, read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL)); // If it didn't work, the features are not enabled if (!read_register(FEATURE)) { // So enable them and try again toggle_features(); write_register(FEATURE, read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL)); } // IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); // // Enable dynamic payload on pipes 0 & 1 // write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); } /** * @brief * @note * @param * @retval */ void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len) { /*-----------------------------------------------------------------*/ const uint8_t* current = reinterpret_cast < const uint8_t * > (buf); /*-----------------------------------------------------------------*/ csn(LOW); spi.write(W_ACK_PAYLOAD | (pipe & 7)); /*--------------------------------------------------*/ const uint8_t max_payload_size = 32; uint8_t data_len = min(len, max_payload_size); /*--------------------------------------------------*/ while (data_len--) spi.write(*current++); csn(HIGH); } /** * @brief * @note * @param * @retval */ bool RF24::isAckPayloadAvailable(void) { /*-----------------------------------*/ bool result = ack_payload_available; /*-----------------------------------*/ ack_payload_available = false; return result; } /** * @brief * @note * @param * @retval */ bool RF24::isPVariant(void) { return p_variant; } /** * @brief * @note * @param * @retval */ void RF24::setAutoAck(bool enable) { if (enable) write_register(EN_AA, 63); else write_register(EN_AA, 0); } /** * @brief * @note * @param * @retval */ void RF24::setAutoAck(uint8_t pipe, bool enable) { if (pipe <= 6) { /*---------------------------------*/ uint8_t en_aa = read_register(EN_AA); /*---------------------------------*/ if (enable) { en_aa |= _BV(pipe); } else { en_aa &= ~_BV(pipe); } write_register(EN_AA, en_aa); } } /** * @brief * @note * @param * @retval */ bool RF24::testCarrier(void) { return(read_register(CD) & 1); } /** * @brief * @note * @param * @retval */ bool RF24::testRPD(void) { return(read_register(RPD) & 1); } /** * @brief * @note * @param * @retval */ void RF24::setPALevel(rf24_pa_dbm_e level) { /*------------------------------------*/ uint8_t setup = read_register(RF_SETUP); /*------------------------------------*/ setup &= ~(_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)); // switch uses RAM (evil!) if (level == RF24_PA_MAX) { setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)); } else if (level == RF24_PA_HIGH) { setup |= _BV(RF_PWR_HIGH); } else if (level == RF24_PA_LOW) { setup |= _BV(RF_PWR_LOW); } else if (level == RF24_PA_MIN) { // nothing } else if (level == RF24_PA_ERROR) { // On error, go to maximum PA setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)); } write_register(RF_SETUP, setup); } /** * @brief * @note * @param * @retval */ rf24_pa_dbm_e RF24::getPALevel(void) { /*-----------------------------------------------------------------------------------*/ rf24_pa_dbm_e result = RF24_PA_ERROR; uint8_t power = read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)); /*-----------------------------------------------------------------------------------*/ // switch uses RAM (evil!) if (power == (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) { result = RF24_PA_MAX; } else if (power == _BV(RF_PWR_HIGH)) { result = RF24_PA_HIGH; } else if (power == _BV(RF_PWR_LOW)) { result = RF24_PA_LOW; } else { result = RF24_PA_MIN; } return result; } /** * @brief * @note * @param * @retval */ bool RF24::setDataRate(rf24_datarate_e speed) { /*------------------------------------*/ bool result = false; uint8_t setup = read_register(RF_SETUP); /*------------------------------------*/ // HIGH and LOW '00' is 1Mbs - our default setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); txRxDelay = 250; if (speed == RF24_250KBPS) { // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0 // Making it '10'. setup |= _BV(RF_DR_LOW); txRxDelay = 450; } else { // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1 // Making it '01' if (speed == RF24_2MBPS) { setup |= _BV(RF_DR_HIGH); txRxDelay = 190; } } write_register(RF_SETUP, setup); // Verify our result if (read_register(RF_SETUP) == setup) { result = true; } return result; } /** * @brief * @note * @param * @retval */ rf24_datarate_e RF24::getDataRate(void) { /*------------------------------------------------------------------------------*/ rf24_datarate_e result; uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); /*------------------------------------------------------------------------------*/ // switch uses RAM (evil!) // Order matters in our case below if (dr == _BV(RF_DR_LOW)) { // '10' = 250KBPS result = RF24_250KBPS; } else if (dr == _BV(RF_DR_HIGH)) { // '01' = 2MBPS result = RF24_2MBPS; } else { // '00' = 1MBPS result = RF24_1MBPS; } return result; } /** * @brief * @note * @param * @retval */ void RF24::setCRCLength(rf24_crclength_e length) { /*---------------------------------------------------------------*/ uint8_t config = read_register(CONFIG) &~(_BV(CRCO) | _BV(EN_CRC)); /*---------------------------------------------------------------*/ if (length == RF24_CRC_DISABLED) { // Do nothing, we turned it off above. } else if (length == RF24_CRC_8) { config |= _BV(EN_CRC); } else { config |= _BV(EN_CRC); config |= _BV(CRCO); } write_register(CONFIG, config); } /** * @brief * @note * @param * @retval */ rf24_crclength_e RF24::getCRCLength(void) { /*---------------------------------------------------------------------------*/ rf24_crclength_e result = RF24_CRC_DISABLED; uint8_t config = read_register(CONFIG) & (_BV(CRCO) | _BV(EN_CRC)); /*---------------------------------------------------------------------------*/ if (config & _BV(EN_CRC)) { if (config & _BV(CRCO)) result = RF24_CRC_16; else result = RF24_CRC_8; } return result; } /** * @brief * @note * @param * @retval */ void RF24::disableCRC(void) { /*--------------------------------------------------*/ uint8_t disable = read_register(CONFIG) &~_BV(EN_CRC); /*--------------------------------------------------*/ write_register(CONFIG, disable); } /** * @brief * @note * @param * @retval */ void RF24::setRetries(uint8_t delay, uint8_t count) { write_register(SETUP_RETR, (delay & 0xf) << ARD | (count & 0xf) << ARC); } /** * @brief * @note * @param * @retval */ uint8_t RF24::min(uint8_t a, uint8_t b) { if (a < b) return a; else return b; }