Port of Maniacbug's Arduino RF24 library to mbed.

Dependents:   STM32F407VET6_nRF24L01_Master STM32F407VET6_nRF24L01_Slave Main_ntp_sd_nrf IRC_MASTER

RF24.cpp

Committer:
hudakz
Date:
2019-01-23
Revision:
0:2007da485383
Child:
1:d96c2056bf37

File content as of revision 0:2007da485383:

/*
 Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 version 2 as published by the Free Software Foundation.
 */
#include "RF24.h"

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::csn(int mode)
{
    // Minimum ideal spi bus speed is 2x data rate

    // If we assume 2Mbs data rate and 16Mhz clock, a
    // divider of 4 is the minimum we want.
    // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
    //#ifdef ARDUINO
    //  spi.setBitOrder(MSBFIRST);
    //  spi.setDataMode(spi_MODE0);
    //  spi.setClockDivider(spi_CLOCK_DIV4);
    //#endif
    //  digitalWrite(csn_pin,mode);
    csn_pin = mode;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::ce(int level)
{
    //digitalWrite(ce_pin,level);

    ce_pin = level;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
{
    /*-----------*/
    uint8_t status;
    /*-----------*/

    csn(LOW);
    status = spi.write(R_REGISTER | (REGISTER_MASK & reg));
    while (len--)
        *buf++ = spi.write(0xff);

    csn(HIGH);

    return status;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::read_register(uint8_t reg)
{
    csn(LOW);
    spi.write(R_REGISTER | (REGISTER_MASK & reg));

    /*-----------------------------*/
    uint8_t result = spi.write(0xff);
    /*-----------------------------*/

    csn(HIGH);
    return result;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
{
    /*-----------*/
    uint8_t status;
    /*-----------*/

    csn(LOW);
    status = spi.write(W_REGISTER | (REGISTER_MASK & reg));
    while (len--)
        spi.write(*buf++);

    csn(HIGH);

    return status;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::write_register(uint8_t reg, uint8_t value)
{
    /*-----------*/
    uint8_t status;
    /*-----------*/

    //  IF_SERIAL_DEBUG(printf(("write_register(%02x,%02x)\r\n"),reg,value));
    csn(LOW);
    status = spi.write(W_REGISTER | (REGISTER_MASK & reg));
    spi.write(value);
    csn(HIGH);

    return status;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::write_payload(const void* buf, uint8_t len)
{
    /*-------------------------------------------------------------------------------*/
    uint8_t         status;
    const uint8_t*  current = reinterpret_cast < const uint8_t * > (buf);
    uint8_t         data_len = min(len, payload_size);
    uint8_t         blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
    /*-------------------------------------------------------------------------------*/

    //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
    csn(LOW);
    status = spi.write(W_TX_PAYLOAD);
    while (data_len--)
        spi.write(*current++);
    while (blank_len--)
        spi.write(0);
    csn(HIGH);

    return status;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::read_payload(void* buf, uint8_t len)
{
    /*---------------------------------------------------------------------------*/
    uint8_t     status;
    uint8_t*    current = reinterpret_cast < uint8_t * > (buf);
    uint8_t     data_len = min(len, payload_size);
    uint8_t     blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
    /*---------------------------------------------------------------------------*/

    //printf("[Reading %u bytes %u blanks]",data_len,blank_len);
    csn(LOW);
    status = spi.write(R_RX_PAYLOAD);
    while (data_len--)
        *current++ = spi.write(0xff);
    while (blank_len--)
        spi.write(0xff);
    csn(HIGH);

    return status;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::flush_rx(void)
{
    /*-----------*/
    uint8_t status;
    /*-----------*/

    csn(LOW);
    status = spi.write(FLUSH_RX);
    csn(HIGH);

    return status;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::flush_tx(void)
{
    /*-----------*/
    uint8_t status;
    /*-----------*/

    csn(LOW);
    status = spi.write(FLUSH_TX);
    csn(HIGH);

    return status;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::get_status(void)
{
    /*-----------*/
    uint8_t status;
    /*-----------*/

    csn(LOW);
    status = spi.write(NOP);
    csn(HIGH);

    return status;
}

//void RF24::print_status(uint8_t status)
//{
//  printf(("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"),
//           status,
//           (status & _BV(RX_DR))?1:0,
//           (status & _BV(TX_DS))?1:0,
//           (status & _BV(MAX_RT))?1:0,
//           ((status >> RX_P_NO) & 7),
//           (status & _BV(TX_FULL))?1:0
//          );
//}
//
//
//
//void RF24::print_observe_tx(uint8_t value)
//{
//  printf(("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"),
//           value,
//           (value >> PLOS_CNT) & 15,
//           (value >> ARC_CNT) & 15
//          );
//}
//
//
//
//void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
//{
//  char extra_tab = strlen(name) < 8 ? '\t' : 0;
//  printf("%s =",name);
//  while (qty--)
//    printf((" 0x%02x"),read_register(reg++));
//  printf(("\r\n"));
//}
//
//
//
//void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
//{
//  char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
//  printf("%s =",name);
//
//  while (qty--)
//  {
//    uint8_t buffer[5];
//    read_register(reg++,buffer,sizeof buffer);
//
//    printf((" 0x"));
//    uint8_t* bufptr = buffer + sizeof buffer;
//    while( --bufptr >= buffer )
//      printf(("%02x"),*bufptr);
//  }
//
//  printf(("\r\n"));
//}

//
RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _csnpin, PinName _cepin) :
    ce_pin(_cepin),
    csn_pin(_csnpin),
    wide_band(true),
    p_variant(false),
    payload_size(32),
    ack_payload_available(false),
    dynamic_payloads_enabled(false),
    pipe0_reading_address(0),
    spi(mosi, miso, sck)
{
    spi.frequency(10000000 / 5);    // 2Mbit, 1/5th the maximum transfer rate for the spi bus
    spi.format(8, 0);   // 8-bit, ClockPhase = 0, ClockPolarity = 0
    wait_ms(100);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::setChannel(uint8_t channel)
{
    // TODO: This method could take advantage of the 'wide_band' calculation

    // done in setChannel() to require certain channel spacing.
    /*------------------------------*/
    const uint8_t   max_channel = 127;
    /*------------------------------*/

    write_register(RF_CH, min(channel, max_channel));
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::setPayloadSize(uint8_t size)
{
    /*----------------------------------*/
    const uint8_t   max_payload_size = 32;
    /*----------------------------------*/

    payload_size = min(size, max_payload_size);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::getPayloadSize(void)
{
    return payload_size;
}

/*$off*/
static const char           rf24_datarate_e_str_0[] = "1MBPS";
static const char           rf24_datarate_e_str_1[] = "2MBPS";
static const char           rf24_datarate_e_str_2[] = "250KBPS";
static const char *const    rf24_datarate_e_str_P[] = { rf24_datarate_e_str_0, rf24_datarate_e_str_1, rf24_datarate_e_str_2, };

static const char           rf24_model_e_str_0[] = "nRF24L01";
static const char           rf24_model_e_str_1[] = "nRF24L01+";
static const char *const    rf24_model_e_str_P[] = { rf24_model_e_str_0, rf24_model_e_str_1, };

static const char           rf24_crclength_e_str_0[] = "Disabled";
static const char           rf24_crclength_e_str_1[] = "8 bits";
static const char           rf24_crclength_e_str_2[] = "16 bits";
static const char *const    rf24_crclength_e_str_P[] = { rf24_crclength_e_str_0, rf24_crclength_e_str_1, rf24_crclength_e_str_2, };

static const char           rf24_pa_dbm_e_str_0[] = "PA_MIN";
static const char           rf24_pa_dbm_e_str_1[] = "PA_LOW";
static const char           rf24_pa_dbm_e_str_2[] = "PA_MED";
static const char           rf24_pa_dbm_e_str_3[] = "PA_HIGH";
static const char *const    rf24_pa_dbm_e_str_P[] = { rf24_pa_dbm_e_str_0, rf24_pa_dbm_e_str_1, rf24_pa_dbm_e_str_2, rf24_pa_dbm_e_str_3, };

//void RF24::printDetails(void)

//{
//  print_status(get_status());
//
//  print_address_register(("RX_ADDR_P0-1"),RX_ADDR_P0,2);
//  print_byte_register(("RX_ADDR_P2-5"),RX_ADDR_P2,4);
//  print_address_register(("TX_ADDR"),TX_ADDR);
//
//  print_byte_register(("RX_PW_P0-6"),RX_PW_P0,6);
//  print_byte_register(("EN_AA"),EN_AA);
//  print_byte_register(("EN_RXADDR"),EN_RXADDR);
//  print_byte_register(("RF_CH"),RF_CH);
//  print_byte_register(("RF_SETUP"),RF_SETUP);
//  print_byte_register(("CONFIG"),CONFIG);
//  print_byte_register(("DYNPD/FEATURE"),DYNPD,2);
//
//  printf(("Data Rate\t = %s\r\n"), rf24_datarate_e_str_P[getDataRate()]);
//  printf(("Model\t\t = %s\r\n"), rf24_model_e_str_P[isPVariant()]);
//  printf(("CRC Length\t = %s\r\n"),rf24_crclength_e_str_P[getCRCLength()]);
//  printf(("PA Power\t = %s\r\n"),rf24_pa_dbm_e_str_P[getPALevel()]);
//}

//

/*$on*/
void RF24::begin (void)
{
    // Initialize pins
    // pinMode(ce_pin,OUTPUT);
    // pinMode(csn_pin,OUTPUT);
    // Initialize spi bus
    //spi.begin();
    mainTimer.start();

    ce(LOW);
    csn(HIGH);

    // Must allow the radio time to settle else configuration bits will not necessarily stick.
    // This is actually only required following power up but some settling time also appears to
    // be required after resets too. For full coverage, we'll always assume the worst.
    // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
    // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
    // WARNING: wait_ms is based on P-variant whereby non-P *may* require different timing.
    wait_ms(5);

    // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
    // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
    // sizes must never be used. See documentation for a more complete explanation.
    write_register(SETUP_RETR, (4 << ARD) | (15 << ARC));

    // Restore our default PA level
    setPALevel(RF24_PA_MAX);

    // Determine if this is a p or non-p RF24 module and then
    // reset our data rate back to default value. This works
    // because a non-P variant won't allow the data rate to
    // be set to 250Kbps.
    if (setDataRate(RF24_250KBPS))
    {
        p_variant = true;
    }
    // Then set the data rate to the slowest (and most reliable) speed supported by all
    // hardware.
    setDataRate(RF24_1MBPS);

    // Initialize CRC and request 2-byte (16bit) CRC
    setCRCLength(RF24_CRC_16);

    // Disable dynamic payloads, to match dynamic_payloads_enabled setting
    write_register(DYNPD, 0);

    // Reset current status
    // Notice reset and flush is the last thing we do
    write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT));

    // Set up default configuration.  Callers can always change it later.
    // This channel should be universally safe and not bleed over into adjacent
    // spectrum.
    setChannel(76);

    //setChannel(90);
    // Flush buffers
    flush_rx();
    flush_tx();

    // set EN_RXADDRR to 0 to prevent pipe 0 and pipe 1 from receiving
    write_register(EN_RXADDR, 0);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::startListening(void)
{
    write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX));
    write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT));

    // Restore the pipe0 adddress, if exists
    if (pipe0_reading_address)
        write_register(RX_ADDR_P0, reinterpret_cast < const uint8_t * > (&pipe0_reading_address), 5);

    // Flush buffers
    flush_rx();
    flush_tx();

    // Go!
    ce(HIGH);

    // wait for the radio to come up
    wait_us(130);
}

static const uint8_t    child_pipe[] = { RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 };
static const uint8_t    child_payload_size[] = { RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 };
static const uint8_t    child_pipe_enable[] = { ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 };

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::stopListening(void)
{
    ce(LOW);

    wait_us(txRxDelay);

    if (read_register(FEATURE) & _BV(EN_ACK_PAY))
    {
        wait_us(txRxDelay); //200
        flush_tx();
    }

    //flush_rx();
    write_register(CONFIG, (read_register(CONFIG)) &~_BV(PRIM_RX));

    write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(child_pipe_enable[0]));    // Enable RX on pipe0
    wait_us(100);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::powerDown(void)
{
    write_register(CONFIG, read_register(CONFIG) &~_BV(PWR_UP));
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::powerUp(void)
{
    write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP));
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
bool RF24::write(const void* buf, uint8_t len)
{
    /*------------------------------------------*/
    bool            result = false;
    uint8_t         observe_tx;
    uint8_t         status;
    uint32_t        sent_at = mainTimer.read_ms();
    const uint32_t  timeout = 500;  //ms to wait for timeout

    /*------------------------------------------*/
    // Begin the write
    startWrite(buf, len);

    // ------------
    // At this point we could return from a non-blocking write, and then call
    // the rest after an interrupt
    // Instead, we are going to block here until we get TX_DS (transmission completed and ack'd)
    // or MAX_RT (maximum retries, transmission failed).  Also, we'll timeout in case the radio
    // is flaky and we get neither.
    // IN the end, the send should be blocking.  It comes back in 60ms worst case, or much faster
    // if I tighted up the retry logic.  (Default settings will be 1500us.
    // Monitor the send
    do {
        status = read_register(OBSERVE_TX, &observe_tx, 1);

        //    IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
    } while (!(status & (_BV(TX_DS) | _BV(MAX_RT))) && (mainTimer.read_ms() - sent_at < timeout));

    // The part above is what you could recreate with your own interrupt handler,
    // and then call this when you got an interrupt
    // ------------
    // Call this when you get an interrupt
    // The status tells us three things
    // * The send was successful (TX_DS)
    // * The send failed, too many retries (MAX_RT)
    // * There is an ack packet waiting (RX_DR)
    bool    tx_ok, tx_fail;
    /*-------------------*/

    whatHappened(tx_ok, tx_fail, ack_payload_available);

    //printf("%u%u%u\r\n",tx_ok,tx_fail,ack_payload_available);
    result = tx_ok;

    //  IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed"));
    // Handle the ack packet
    if (ack_payload_available)
    {
        ack_payload_length = getDynamicPayloadSize();

        //    IF_SERIAL_DEBUG(Serial.print("[AckPacket]/"));
        //    IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC));
    }

    // Yay, we are done.
    // Power down
    //  powerDown();
    // Flush buffers (Is this a relic of past experimentation, and not needed anymore?
    //  flush_tx();
    return result;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::startWrite(const void* buf, uint8_t len)
{
    // Transmitter power-up

    write_register(CONFIG, (read_register(CONFIG) | _BV(PWR_UP)) &~_BV(PRIM_RX));
    wait_us(130);

    // Send the payload
    write_payload(buf, len);

    ce(HIGH);
    wait_us(15);
    ce(LOW);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::getDynamicPayloadSize(void)
{
    /*---------------*/
    uint8_t result = 0;
    /*---------------*/

    csn(LOW);
    spi.write(R_RX_PL_WID);
    result = spi.write(0xff);
    csn(HIGH);

    return result;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
bool RF24::available(void)
{
    return available(NULL);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
bool RF24::available(uint8_t* pipe_num)
{
    /*-----------------------------------*/
    uint8_t status = get_status();
    bool    result = (status & _BV(RX_DR));
    /*-----------------------------------*/

    // Too noisy, enable if you really want lots o data!!
    //IF_SERIAL_DEBUG(print_status(status));
    if (result)
    {
        // If the caller wants the pipe number, include that
        if (pipe_num)
            *pipe_num = (status >> RX_P_NO) & 7;

        // Clear the status bit
        // ??? Should this REALLY be cleared now?  Or wait until we
        // actually READ the payload?
        write_register(STATUS, _BV(RX_DR));

        // Handle ack payload receipt
        if (status & _BV(TX_DS))
        {
            write_register(STATUS, _BV(TX_DS));
        }
    }

    return result;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
bool RF24::read(void* buf, uint8_t len)
{
    // Fetch the payload

    read_payload(buf, len);

    // was this the last of the data available?
    return read_register(FIFO_STATUS) & _BV(RX_EMPTY);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::whatHappened(bool& tx_ok, bool& tx_fail, bool& rx_ready)
{
    // Read the status & reset the status in one easy call

    // Or is that such a good idea?
    uint8_t status = write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT));

    // Report to the user what happened

    tx_ok = status & _BV(TX_DS);
    tx_fail = status & _BV(MAX_RT);
    rx_ready = status & _BV(RX_DR);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::openWritingPipe(uint64_t value)
{
    // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
    // expects it LSB first too, so we're good.
    write_register(RX_ADDR_P0, reinterpret_cast < uint8_t * > (&value), 5);
    write_register(TX_ADDR, reinterpret_cast < uint8_t * > (&value), 5);

    /*----------------------------------*/
    const uint8_t   max_payload_size = 32;
    /*----------------------------------*/

    write_register(RX_PW_P0, min(payload_size, max_payload_size));

    flush_tx();
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::openReadingPipe(uint8_t child, uint64_t address)
{
    // If this is pipe 0, cache the address.  This is needed because
    // openWritingPipe() will overwrite the pipe 0 address, so
    // startListening() will have to restore it.
    if (child == 0)
        pipe0_reading_address = address;

    if (child <= 6)
    {
        // For pipes 2-5, only write the LSB
        //if (child < 2)
            write_register(child_pipe[child], reinterpret_cast < const uint8_t * > (&address), 5);
        //else
        //    write_register(child_pipe[child], reinterpret_cast < const uint8_t * > (&address), 1);

        write_register(child_payload_size[child], payload_size);

        // Note it would be more efficient to set all of the bits for all open
        // pipes at once.  However, I thought it would make the calling code
        // more simple to do it this way.
        write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(child_pipe_enable[child]));
    }
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::toggle_features(void)
{
    csn(LOW);
    spi.write(ACTIVATE);
    spi.write(0x73);
    csn(HIGH);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::enableDynamicPayloads(void)
{
    // Enable dynamic payload throughout the system

    write_register(FEATURE, read_register(FEATURE) | _BV(EN_DPL));

    // If it didn't work, the features are not enabled
    if (!read_register(FEATURE))
    {
        // So enable them and try again
        toggle_features();
        write_register(FEATURE, read_register(FEATURE) | _BV(EN_DPL));
    }

    //  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
    // Enable dynamic payload on all pipes
    //
    // Not sure the use case of only having dynamic payload on certain
    // pipes, so the library does not support it.
    write_register
    (
        DYNPD,
        read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0)
    );

    dynamic_payloads_enabled = true;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::enableAckPayload(void)
{
    //

    // enable ack payload and dynamic payload features
    //
    write_register(FEATURE, read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL));

    // If it didn't work, the features are not enabled
    if (!read_register(FEATURE))
    {
        // So enable them and try again
        toggle_features();
        write_register(FEATURE, read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL));
    }

    //  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
    //
    // Enable dynamic payload on pipes 0 & 1
    //
    write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
{
    /*-----------------------------------------------------------------*/
    const uint8_t*  current = reinterpret_cast < const uint8_t * > (buf);
    /*-----------------------------------------------------------------*/

    csn(LOW);
    spi.write(W_ACK_PAYLOAD | (pipe & 7));

    /*--------------------------------------------------*/
    const uint8_t   max_payload_size = 32;
    uint8_t         data_len = min(len, max_payload_size);
    /*--------------------------------------------------*/

    while (data_len--)
        spi.write(*current++);

    csn(HIGH);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
bool RF24::isAckPayloadAvailable(void)
{
    /*-----------------------------------*/
    bool    result = ack_payload_available;
    /*-----------------------------------*/

    ack_payload_available = false;
    return result;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
bool RF24::isPVariant(void)
{
    return p_variant;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::setAutoAck(bool enable)
{
    if (enable)
        write_register(EN_AA, 63);
    else
        write_register(EN_AA, 0);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::setAutoAck(uint8_t pipe, bool enable)
{
    if (pipe <= 6)
    {
        /*---------------------------------*/
        uint8_t en_aa = read_register(EN_AA);
        /*---------------------------------*/

        if (enable)
        {
            en_aa |= _BV(pipe);
        }
        else
        {
            en_aa &= ~_BV(pipe);
        }

        write_register(EN_AA, en_aa);
    }
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
bool RF24::testCarrier(void)
{
    return(read_register(CD) & 1);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
bool RF24::testRPD(void)
{
    return(read_register(RPD) & 1);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::setPALevel(rf24_pa_dbm_e level)
{
    /*------------------------------------*/
    uint8_t setup = read_register(RF_SETUP);
    /*------------------------------------*/

    setup &= ~(_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH));

    // switch uses RAM (evil!)
    if (level == RF24_PA_MAX)
    {
        setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH));
    }
    else
    if (level == RF24_PA_HIGH)
    {
        setup |= _BV(RF_PWR_HIGH);
    }
    else
    if (level == RF24_PA_LOW)
    {
        setup |= _BV(RF_PWR_LOW);
    }
    else
    if (level == RF24_PA_MIN)
    {
        // nothing
    }
    else
    if (level == RF24_PA_ERROR)
    {
        // On error, go to maximum PA
        setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH));
    }

    write_register(RF_SETUP, setup);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
rf24_pa_dbm_e RF24::getPALevel(void)
{
    /*-----------------------------------------------------------------------------------*/
    rf24_pa_dbm_e   result = RF24_PA_ERROR;
    uint8_t         power = read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH));
    /*-----------------------------------------------------------------------------------*/

    // switch uses RAM (evil!)
    if (power == (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)))
    {
        result = RF24_PA_MAX;
    }
    else
    if (power == _BV(RF_PWR_HIGH))
    {
        result = RF24_PA_HIGH;
    }
    else
    if (power == _BV(RF_PWR_LOW))
    {
        result = RF24_PA_LOW;
    }
    else
    {
        result = RF24_PA_MIN;
    }

    return result;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
bool RF24::setDataRate(rf24_datarate_e speed)
{
    /*------------------------------------*/
    bool    result = false;
    uint8_t setup = read_register(RF_SETUP);
    /*------------------------------------*/

    // HIGH and LOW '00' is 1Mbs - our default
    setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));

    txRxDelay = 250;
    if (speed == RF24_250KBPS)
    {
        // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
        // Making it '10'.
        setup |= _BV(RF_DR_LOW);
        txRxDelay = 450;
    }
    else
    {
        // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
        // Making it '01'
        if (speed == RF24_2MBPS)
        {
            setup |= _BV(RF_DR_HIGH);
            txRxDelay = 190;
        }
    }

    write_register(RF_SETUP, setup);

    // Verify our result
    if (read_register(RF_SETUP) == setup)
    {
        result = true;
    }

    return result;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
rf24_datarate_e RF24::getDataRate(void)
{
    /*------------------------------------------------------------------------------*/
    rf24_datarate_e result;
    uint8_t         dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
    /*------------------------------------------------------------------------------*/

    // switch uses RAM (evil!)
    // Order matters in our case below
    if (dr == _BV(RF_DR_LOW))
    {
        // '10' = 250KBPS
        result = RF24_250KBPS;
    }
    else
    if (dr == _BV(RF_DR_HIGH))
    {
        // '01' = 2MBPS
        result = RF24_2MBPS;
    }
    else
    {
        // '00' = 1MBPS
        result = RF24_1MBPS;
    }

    return result;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::setCRCLength(rf24_crclength_e length)
{
    /*---------------------------------------------------------------*/
    uint8_t config = read_register(CONFIG) &~(_BV(CRCO) | _BV(EN_CRC));
    /*---------------------------------------------------------------*/

    if (length == RF24_CRC_DISABLED)
    {
        // Do nothing, we turned it off above.
    }
    else
    if (length == RF24_CRC_8)
    {
        config |= _BV(EN_CRC);
    }
    else
    {
        config |= _BV(EN_CRC);
        config |= _BV(CRCO);
    }

    write_register(CONFIG, config);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
rf24_crclength_e RF24::getCRCLength(void)
{
    /*---------------------------------------------------------------------------*/
    rf24_crclength_e    result = RF24_CRC_DISABLED;
    uint8_t             config = read_register(CONFIG) & (_BV(CRCO) | _BV(EN_CRC));
    /*---------------------------------------------------------------------------*/

    if (config & _BV(EN_CRC))
    {
        if (config & _BV(CRCO))
            result = RF24_CRC_16;
        else
            result = RF24_CRC_8;
    }

    return result;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::disableCRC(void)
{
    /*--------------------------------------------------*/
    uint8_t disable = read_register(CONFIG) &~_BV(EN_CRC);
    /*--------------------------------------------------*/

    write_register(CONFIG, disable);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void RF24::setRetries(uint8_t delay, uint8_t count)
{
    write_register(SETUP_RETR, (delay & 0xf) << ARD | (count & 0xf) << ARC);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t RF24::min(uint8_t a, uint8_t b)
{
    if (a < b)
        return a;
    else
        return b;
}