Feng Hong / Mbed OS Nucleo_rtos_basic
Revision:
2:61a0169765bf
Parent:
1:eb499e2a1b9b
Child:
4:40bb33497de4
diff -r eb499e2a1b9b -r 61a0169765bf main.cpp
--- a/main.cpp	Sat Feb 16 07:02:56 2019 +0000
+++ b/main.cpp	Sat Mar 02 08:16:23 2019 +0000
@@ -1,5 +1,6 @@
 #include "mbed.h"
 #include <HX711.h>
+#include <eeprom.h>
 
 CAN can1(PD_0, PD_1);
 CAN can2(PB_5, PB_6);
@@ -7,45 +8,62 @@
 DigitalOut led2(LED2);
 //FlashIAP flashIAP;
 
-/* scale */
-HX711 hx711(PB_11, PB_10);
 
+#define EEPROM_ADDR 0x0   // I2c EEPROM address is 0x00
+ 
+#define SDA PB_9            // I2C SDA pin
+#define SCL PB_8           // I2C SCL pin
+ 
+#define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
+#define MAX(X,Y) ((X) > (Y) ? (X) : (Y))
+
+EEPROM ep(SDA,SCL,EEPROM_ADDR,EEPROM::T24C256);
 struct ScaleCalibrationData {
   unsigned int calibrationWeight;  // the weight (g) used for calibration for example 1000g or 10g. The maximum value is 3000. 
   long offsetValue;       // the value for scale offset
   float scaleValue;       // the ADC increment for 1g  
-  unsigned char checksum;  
+  uint8_t checksum;  
 };
+ScaleCalibrationData customVar;
+
 unsigned int calibration_ADC_value;
 //#define CALIBRATION_VALUE   10    // 10g as the calibration weight
 #define WEIGHT_DIFFERENCE   200   // 10g ADC value minimum difference
 #define CALIBRATION_WEIGHT  2000    // calibration weight
+#define MAXIMUM_CALIBRATION_WEIGHT  5000 
+#define MINIMUM_CALIBRATION_WEIGHT  100 
 
-ScaleCalibrationData customVar;
+/* scale */
+HX711 hx711(PB_11, PB_10);
 
 long zero_value;
 long calibration_value;
 unsigned int calibration_times; // must calibration 3 times
 unsigned int calibration_done = 0;
 float scale_value;
+int init_id = 0x537;  // first 8 bit is the address
 
 /* scale */
+
 void scaleCalibration()
 {
+    unsigned char eeprom_data[sizeof(customVar)];
+    unsigned char checksum = 0;
     printf("Start Calibration.\r\n");
     calibration_done = 0;
     if (!calibration_done)
     {
         led1 = 1; 
         led2 = 0;
-        customVar.calibrationWeight = CALIBRATION_WEIGHT;
+        if ((customVar.calibrationWeight > MAXIMUM_CALIBRATION_WEIGHT)||(customVar.calibrationWeight < MINIMUM_CALIBRATION_WEIGHT))
+            customVar.calibrationWeight = CALIBRATION_WEIGHT;
         zero_value = hx711.averageValue(10); // skip first 10 readings
         zero_value = hx711.averageValue(20);
         printf("zero_value=%d \r\n", zero_value);
         calibration_value = 0;
         scale_value = 0;
         calibration_times = 0;
-        
+        led2 = 1;
         while (( calibration_times < 5))
         {
         
@@ -61,8 +79,6 @@
         if (calibration_times >=5)
         {
             // calibration is OK
-            led1 = 0;
-            led2 = 1;
             calibration_times = 0;
             scale_value = (calibration_value - zero_value) / customVar.calibrationWeight;
             customVar.offsetValue = zero_value;
@@ -70,11 +86,78 @@
 //               EEPROM.put(0x00, customVar);
             hx711.setOffset(zero_value);
             hx711.setScale(scale_value);      // this value is obtained by calibrating the scale with known weights; see the README for details
+            memcpy(eeprom_data, &customVar, sizeof(customVar));
+            for (int cnt = 0; cnt < (sizeof(customVar)-4); cnt++)  // compiler bug need to -4 here 
+            {
+               checksum += eeprom_data[cnt];
+            }
+            customVar.checksum = checksum;     
+            printf("EEPROM write calibration data: \r\n");
+            printf("calibrationWeight=%d \r\n", customVar.calibrationWeight);
+            printf("offsetValue=%d \r\n", customVar.offsetValue);
+            printf("scaleValue=%f \r\n", customVar.scaleValue);
+            printf("checksum=0x%02x \r\n", customVar.checksum);    
+            ep.write((uint32_t)0x00,(void *)&customVar,sizeof(customVar)); // write a structure eeprom_size - 32              
             calibration_done = 1;
+            led1 = 1;   
+            printf("Calibration Done\r\n");         
         }
     } 
 }
 
+void init_scale()
+{
+    unsigned char eeprom_data;
+    unsigned char checksum = 0;
+    customVar.calibrationWeight = CALIBRATION_WEIGHT;
+
+#if 1
+    printf("sizeof(customVar)=%d \r\n", sizeof(customVar));
+    ep.read((uint32_t)0,(void *)&customVar, sizeof(customVar)); 
+    printf("EEPROM read calibration data: \r\n");
+    printf("calibrationWeight=%d \r\n", customVar.calibrationWeight);
+    printf("offsetValue=%d \r\n", customVar.offsetValue);
+    printf("scaleValue=%f \r\n", customVar.scaleValue);
+    printf("checksum=0x%02x \r\n", customVar.checksum);
+    printf("\r\n calculate checksum: \r\n");
+    for (int cnt = 0; cnt < (sizeof(customVar)-4); cnt++)  // compiler bug need to -4 here 
+    {
+        ep.read(cnt, (int8_t&)eeprom_data);
+        printf("0x%02x ", eeprom_data);
+        checksum += eeprom_data;
+        printf("checksum=0x%02x\r\n", checksum);
+    }
+    printf("\r\ncalculated checksum=0x%02x \r\n", checksum);
+    
+    if (checksum == customVar.checksum)
+    {
+        if ((customVar.calibrationWeight > MAXIMUM_CALIBRATION_WEIGHT) || (customVar.calibrationWeight < MINIMUM_CALIBRATION_WEIGHT))
+        {
+            customVar.calibrationWeight = CALIBRATION_WEIGHT;
+            scaleCalibration();
+        }
+        if ((customVar.offsetValue < 10000))
+        {
+            customVar.offsetValue = 10000;
+            scaleCalibration();
+        }
+        if ((customVar.scaleValue < 100))
+        {
+            customVar.scaleValue = 100; 
+            scaleCalibration();
+        }
+        //  delay(200);    
+        hx711.setOffset(customVar.offsetValue);
+        hx711.setScale(customVar.scaleValue);       
+    }
+    else
+    {
+        scaleCalibration();
+    }
+#endif  
+}
+
+/*scale end*/
 int a = 0;
 int b = 0;
 
@@ -135,20 +218,320 @@
     }
 }
 
+typedef struct _MyData {
+                         int16_t sdata;
+                         int32_t idata;
+                         float fdata;
+                       } MyData;
+ 
+static void myerror(std::string msg)
+{
+  printf("Error %s\n",msg.c_str());
+  exit(1);
+}
+ 
+void eeprom_test(void)
+{
+ // EEPROM ep(SDA,SCL,EEPROM_ADDR,EEPROM::T24C64);  // 24C64 eeprom with sda = p9 and scl = p10
+  uint8_t data[256],data_r[256];
+  int8_t ival;
+  uint16_t s;
+  int16_t sdata,sdata_r;
+  int32_t ldata[1024];
+  int32_t eeprom_size,max_size;
+  uint32_t addr;
+  int32_t idata,idata_r;
+  uint32_t i,j,k,l,t,id;
+  float fdata,fdata_r;
+  MyData md,md_r;
+    
+  eeprom_size = ep.getSize();
+  max_size = MIN(eeprom_size,256);
+  
+  printf("Test EEPROM I2C model %s of %d bytes\r\n",ep.getName(),eeprom_size);
+ 
+  // Test sequential read byte (max_size first bytes)
+  for(i = 0;i < max_size;i++) {
+     ep.read(i,ival);
+     data_r[i] = ival;
+     if(ep.getError() != 0)
+       myerror(ep.getErrorMessage());
+  }
+  
+  printf("Test sequential read %d first bytes :\r\n",max_size);
+  for(i = 0;i < max_size/16;i++) {
+     for(j = 0;j < 16;j++) {
+        addr = i * 16 + j;
+        printf("%3d ",(uint8_t)data_r[addr]);
+     }
+     printf("\r\n");
+  }
+   
+    // Test sequential read byte (max_size last bytes)
+  for(i = 0;i < max_size;i++) {
+        addr = eeprom_size - max_size + i;
+    ep.read(addr,ival);
+    data_r[i] = ival;
+    if(ep.getError() != 0)
+      myerror(ep.getErrorMessage());
+  }
+  
+  printf("\nTest sequential read %d last bytes :\r\n",max_size);
+  for(i = 0;i < max_size/16;i++) {
+     for(j = 0;j < 16;j++) {
+        addr = i * 16 + j;
+        printf("%3d ",(uint8_t)data_r[addr]);
+     }
+     printf("\r\n");
+  }
+    
+  // Test write byte (max_size first bytes)
+  for(i = 0;i < max_size;i++)
+     data[i] = i;
+  
+  for(i = 0;i < max_size;i++) {
+     ep.write(i,(int8_t)data[i]);
+     if(ep.getError() != 0)
+       myerror(ep.getErrorMessage());
+  }
+  
+  // Test read byte (max_size first bytes)
+  for(i = 0;i < max_size;i++) {
+     ep.read(i,(int8_t&)ival);
+     data_r[i] = (uint8_t)ival;
+     if(ep.getError() != 0)
+       myerror(ep.getErrorMessage());
+  }
+  
+  printf("\nTest write and read %d first bytes :\r\n",max_size);
+  for(i = 0;i < max_size/16;i++) {
+     for(j = 0;j < 16;j++) {
+        addr = i * 16 + j;
+        printf("%3d ",(uint8_t)data_r[addr]);
+     }
+     printf("\r\n");
+  }
+ 
+  // Test current address read byte (max_size first bytes)
+  ep.read((uint32_t)0,(int8_t&)ival); // current address is 0
+  data_r[0] = (uint8_t)ival;
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+  
+  for(i = 1;i < max_size;i++) {
+     ep.read((int8_t&)ival);
+     data_r[i] = (uint8_t)ival;
+     if(ep.getError() != 0)
+       myerror(ep.getErrorMessage());
+  }
+  
+  printf("\nTest current address read %d first bytes :\r\n",max_size);
+  for(i = 0;i < max_size/16;i++) {
+     for(j = 0;j < 16;j++) {
+        addr = i * 16 + j;
+        printf("%3d ",(uint8_t)data_r[addr]);
+     }
+     printf("\n");
+  }
+   
+  // Test sequential read byte (first max_size bytes)
+  ep.read((uint32_t)0,(int8_t *)data_r,(uint32_t) max_size);
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+  
+  printf("\nTest sequential read %d first bytes :\r\n",max_size);
+  for(i = 0;i < max_size/16;i++) {
+     for(j = 0;j < 16;j++) {
+        addr = i * 16 + j;
+        printf("%3d ",(uint8_t)data_r[addr]);
+     }
+     printf("\r\n");
+  }
+  
+  // Test write short, long, float 
+  sdata = -15202;
+    addr = eeprom_size - 16;
+  ep.write(addr,(int16_t)sdata); // short write at address eeprom_size - 16
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+  
+  idata = 45123;
+    addr = eeprom_size - 12;
+  ep.write(addr,(int32_t)idata); // long write at address eeprom_size - 12
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+    
+  fdata = -12.26;
+    addr = eeprom_size - 8;
+  ep.write(addr,(float)fdata); // float write at address eeprom_size - 8
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+  
+  // Test read short, long, float
+  printf("\nTest write and read short (%d), long (%d), float (%f) :\r\n",
+           sdata,idata,fdata);  
+  
+  ep.read((uint32_t)(eeprom_size - 16),(int16_t&)sdata_r);
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+  printf("sdata %d\r\n",sdata_r);
+  
+  ep.read((uint32_t)(eeprom_size - 12),(int32_t&)idata_r);
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+  printf("idata %d\r\n",idata_r);
+  
+  ep.read((uint32_t)(eeprom_size - 8),fdata_r);
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+  printf("fdata %f\r\n",fdata_r);
+  
+  // Test read and write a structure
+  md.sdata = -15203;
+  md.idata = 45124;
+  md.fdata = -12.27;
+ 
+  ep.write((uint32_t)(eeprom_size - 32),(void *)&md,sizeof(md)); // write a structure eeprom_size - 32
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+    
+  printf("\nTest write and read a structure (%d %d %f) :\r\n",md.sdata,md.idata,md.fdata);
+  
+  ep.read((uint32_t)(eeprom_size - 32),(void *)&md_r,sizeof(md_r));
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+  
+  printf("md.sdata %d\r\n",md_r.sdata);
+  printf("md.idata %d\r\n",md_r.idata);
+  printf("md.fdata %f\r\n",md_r.fdata);
+  
+    // Test read and write of an array of the first max_size bytes
+    for(i = 0;i < max_size;i++)
+       data[i] = max_size - i - 1;
+    
+    ep.write((uint32_t)(0),data,(uint32_t)max_size);
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+    
+    ep.read((uint32_t)(0),data_r,(uint32_t)max_size);
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+    
+    printf("\nTest write and read an array of the first %d bytes :\r\n",max_size);
+    for(i = 0;i < max_size/16;i++) {
+     for(j = 0;j < 16;j++) {
+        addr = i * 16 + j;
+        printf("%3d ",(uint8_t)data_r[addr]);
+     }
+     printf("\r\n");
+  }
+    printf("\r\n");
+ #if 0 
+  // Test write and read an array of int32
+  s = eeprom_size / 4;                // size of eeprom in int32
+  int ldata_size = sizeof(ldata) / 4; // size of data array in int32
+  l = s / ldata_size;                 // loop index
+  
+  // size of read / write in bytes
+  t = eeprom_size;
+  if(t > ldata_size * 4)
+    t = ldata_size * 4;
+  
+  printf("Test write and read an array of %d int32 (write entire memory) :\r\n",t/4);
+ 
+  // Write entire eeprom
+    if(l) {
+    for(k = 0;k < l;k++) {
+       for(i = 0;i < ldata_size;i++)
+          ldata[i] = ldata_size * k + i;
+        
+       addr = k * ldata_size * 4;
+       ep.write(addr,(void *)ldata,t);
+       if(ep.getError() != 0)
+         myerror(ep.getErrorMessage());
+    }  
+    
+      printf("Write OK\n");
+    
+    // Read entire eeprom
+      id = 0;
+    for(k = 0;k < l;k++) {
+       addr = k * ldata_size * 4;
+       ep.read(addr,(void *)ldata,t);
+       if(ep.getError() != 0)
+         myerror(ep.getErrorMessage());
+  
+       // format outputs with 8 words rows
+       for(i = 0;i < ldata_size / 8;i++) {
+                id++;
+          printf("%4d ",id);
+          for(j = 0;j < 8;j++) {
+             addr = i * 8 + j;
+             printf("%5d ",ldata[addr]);
+          }
+          printf("\n");
+       }
+    }
+  }
+    else {
+        for(i = 0;i < s;i++)
+       ldata[i] = i;
+        
+    addr = 0;
+    ep.write(addr,(void *)ldata,t);
+    if(ep.getError() != 0)
+      myerror(ep.getErrorMessage());
+        
+        printf("Write OK\n");
+    
+    // Read entire eeprom
+      id = 0;
+    
+    addr = 0;
+    ep.read(addr,(void *)ldata,t);
+    if(ep.getError() != 0)
+      myerror(ep.getErrorMessage());
+  
+    // format outputs with 8 words rows
+    for(i = 0;i < s / 8;i++) {
+             id++;
+       printf("%4d ",id);
+       for(j = 0;j < 8;j++) {
+          addr = i * 8 + j;
+          printf("%5d ",ldata[addr]);
+       }
+       printf("\n");
+    }
+    }
+#endif    
+  // clear eeprom
+  printf("\nClear eeprom\n");
+ 
+  ep.clear();
+  if(ep.getError() != 0)
+    myerror(ep.getErrorMessage());
+   
+  printf("End\n");  
+    
+}
+
+
 int main()
 {
-    printf("\n\n*** RTOS basic example ***\n");
-    scaleCalibration();
+    wait(1);
+    printf("\n\n*** RTOS basic example ***\r\n");
+    init_scale();
     thread.start(print_thread);
 
 //    flashIAP.init();
 //    printf("Flash start address: 0x%08x Flash Size: %d\r\n", flashIAP.get_flash_start(), flashIAP.get_flash_size());
 //    can1.reset();
 //    can2.reset();
-//    can1.frequency(100000);
+    can1.frequency(100000);
 //    can2.frequency(100000);
     //button1.mode(PullUp); // Activate pull-up
-   button1.fall(callback(button1_onpressed_cb)); // Attach ISR to handle button press event
+    button1.fall(callback(button1_onpressed_cb)); // Attach ISR to handle button press event
+//    eeprom_test();
 
     int idx = 0; // Just for printf below
 
@@ -156,8 +539,9 @@
         if (button1_pressed) { // Set when button is pressed
             printf("scale value %f. \r\n", hx711.getGram());
             button1_pressed = false;
-            printf("Button pressed %d\n", idx++);
-            can1.write(CANMessage(1337, reinterpret_cast<char*>(&a), 1));            
+            printf("Button pressed %d\r\n", idx++);
+            printf("ID=%d. \r\n", init_id + idx%10);
+            can1.write(CANMessage((init_id + idx%10), reinterpret_cast<char*>(&a), 1));            
             led1 = !led1;
             a++;
         }