Feng Hong / Mbed OS Nucleo_rtos_basic

main.cpp

Committer:
hi1000
Date:
2019-03-02
Revision:
2:61a0169765bf
Parent:
1:eb499e2a1b9b
Child:
4:40bb33497de4

File content as of revision 2:61a0169765bf:

#include "mbed.h"
#include <HX711.h>
#include <eeprom.h>

CAN can1(PD_0, PD_1);
CAN can2(PB_5, PB_6);
DigitalOut led1(LED1);
DigitalOut led2(LED2);
//FlashIAP flashIAP;


#define EEPROM_ADDR 0x0   // I2c EEPROM address is 0x00
 
#define SDA PB_9            // I2C SDA pin
#define SCL PB_8           // I2C SCL pin
 
#define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
#define MAX(X,Y) ((X) > (Y) ? (X) : (Y))

EEPROM ep(SDA,SCL,EEPROM_ADDR,EEPROM::T24C256);
struct ScaleCalibrationData {
  unsigned int calibrationWeight;  // the weight (g) used for calibration for example 1000g or 10g. The maximum value is 3000. 
  long offsetValue;       // the value for scale offset
  float scaleValue;       // the ADC increment for 1g  
  uint8_t checksum;  
};
ScaleCalibrationData customVar;

unsigned int calibration_ADC_value;
//#define CALIBRATION_VALUE   10    // 10g as the calibration weight
#define WEIGHT_DIFFERENCE   200   // 10g ADC value minimum difference
#define CALIBRATION_WEIGHT  2000    // calibration weight
#define MAXIMUM_CALIBRATION_WEIGHT  5000 
#define MINIMUM_CALIBRATION_WEIGHT  100 

/* scale */
HX711 hx711(PB_11, PB_10);

long zero_value;
long calibration_value;
unsigned int calibration_times; // must calibration 3 times
unsigned int calibration_done = 0;
float scale_value;
int init_id = 0x537;  // first 8 bit is the address

/* scale */

void scaleCalibration()
{
    unsigned char eeprom_data[sizeof(customVar)];
    unsigned char checksum = 0;
    printf("Start Calibration.\r\n");
    calibration_done = 0;
    if (!calibration_done)
    {
        led1 = 1; 
        led2 = 0;
        if ((customVar.calibrationWeight > MAXIMUM_CALIBRATION_WEIGHT)||(customVar.calibrationWeight < MINIMUM_CALIBRATION_WEIGHT))
            customVar.calibrationWeight = CALIBRATION_WEIGHT;
        zero_value = hx711.averageValue(10); // skip first 10 readings
        zero_value = hx711.averageValue(20);
        printf("zero_value=%d \r\n", zero_value);
        calibration_value = 0;
        scale_value = 0;
        calibration_times = 0;
        led2 = 1;
        while (( calibration_times < 5))
        {
        
            calibration_value = hx711.averageValue(20);
            if (calibration_value > (zero_value + WEIGHT_DIFFERENCE))
            {
                calibration_times++;
            }
            else
                calibration_times = 0; 
        }
        printf("calibration_value=%d calibration_times=%d\r\n", calibration_value, calibration_times);
        if (calibration_times >=5)
        {
            // calibration is OK
            calibration_times = 0;
            scale_value = (calibration_value - zero_value) / customVar.calibrationWeight;
            customVar.offsetValue = zero_value;
            customVar.scaleValue = scale_value;
//               EEPROM.put(0x00, customVar);
            hx711.setOffset(zero_value);
            hx711.setScale(scale_value);      // this value is obtained by calibrating the scale with known weights; see the README for details
            memcpy(eeprom_data, &customVar, sizeof(customVar));
            for (int cnt = 0; cnt < (sizeof(customVar)-4); cnt++)  // compiler bug need to -4 here 
            {
               checksum += eeprom_data[cnt];
            }
            customVar.checksum = checksum;     
            printf("EEPROM write calibration data: \r\n");
            printf("calibrationWeight=%d \r\n", customVar.calibrationWeight);
            printf("offsetValue=%d \r\n", customVar.offsetValue);
            printf("scaleValue=%f \r\n", customVar.scaleValue);
            printf("checksum=0x%02x \r\n", customVar.checksum);    
            ep.write((uint32_t)0x00,(void *)&customVar,sizeof(customVar)); // write a structure eeprom_size - 32              
            calibration_done = 1;
            led1 = 1;   
            printf("Calibration Done\r\n");         
        }
    } 
}

void init_scale()
{
    unsigned char eeprom_data;
    unsigned char checksum = 0;
    customVar.calibrationWeight = CALIBRATION_WEIGHT;

#if 1
    printf("sizeof(customVar)=%d \r\n", sizeof(customVar));
    ep.read((uint32_t)0,(void *)&customVar, sizeof(customVar)); 
    printf("EEPROM read calibration data: \r\n");
    printf("calibrationWeight=%d \r\n", customVar.calibrationWeight);
    printf("offsetValue=%d \r\n", customVar.offsetValue);
    printf("scaleValue=%f \r\n", customVar.scaleValue);
    printf("checksum=0x%02x \r\n", customVar.checksum);
    printf("\r\n calculate checksum: \r\n");
    for (int cnt = 0; cnt < (sizeof(customVar)-4); cnt++)  // compiler bug need to -4 here 
    {
        ep.read(cnt, (int8_t&)eeprom_data);
        printf("0x%02x ", eeprom_data);
        checksum += eeprom_data;
        printf("checksum=0x%02x\r\n", checksum);
    }
    printf("\r\ncalculated checksum=0x%02x \r\n", checksum);
    
    if (checksum == customVar.checksum)
    {
        if ((customVar.calibrationWeight > MAXIMUM_CALIBRATION_WEIGHT) || (customVar.calibrationWeight < MINIMUM_CALIBRATION_WEIGHT))
        {
            customVar.calibrationWeight = CALIBRATION_WEIGHT;
            scaleCalibration();
        }
        if ((customVar.offsetValue < 10000))
        {
            customVar.offsetValue = 10000;
            scaleCalibration();
        }
        if ((customVar.scaleValue < 100))
        {
            customVar.scaleValue = 100; 
            scaleCalibration();
        }
        //  delay(200);    
        hx711.setOffset(customVar.offsetValue);
        hx711.setScale(customVar.scaleValue);       
    }
    else
    {
        scaleCalibration();
    }
#endif  
}

/*scale end*/
int a = 0;
int b = 0;

void print_char(char c = '*')
{
    printf("%c\r\n", c);
    fflush(stdout);
}

Thread thread;


CANMessage  msg;


InterruptIn button1(USER_BUTTON);
volatile bool button1_pressed = false; // Used in the main loop
volatile bool button1_enabled = true; // Used for debouncing
Timeout button1_timeout; // Used for debouncing

// Enables button when bouncing is over
void button1_enabled_cb(void)
{
    button1_enabled = true;
}

// ISR handling button pressed event
void button1_onpressed_cb(void)
{
    if (button1_enabled) { // Disabled while the button is bouncing
        button1_enabled = false;
        button1_pressed = true; // To be read by the main loop
        button1_timeout.attach(callback(button1_enabled_cb), 0.3); // Debounce time 300 ms
    }
}

void print_thread()
{
    while (true) {
 #if 1       
        if(can1.read(msg)) {
            print_char();
            printf("got message id=%d 0x%08x\r\n", msg.id, msg.id);
//            b = *reinterpret_cast<int*>(msg.data);
            b = msg.data[0];
            printf("got data %d 0x%08x \r\n", b, b);
            if(msg.id == 1337) {
                led2 = !led2;
 
                b = *reinterpret_cast<int*>(msg.data);
                printf("got message %d\r\n", b);
                if(b % 5 == 0)
                    led2 = !led2;
             }
        }
//        wait(0.2);
#endif
    }
}

typedef struct _MyData {
                         int16_t sdata;
                         int32_t idata;
                         float fdata;
                       } MyData;
 
static void myerror(std::string msg)
{
  printf("Error %s\n",msg.c_str());
  exit(1);
}
 
void eeprom_test(void)
{
 // EEPROM ep(SDA,SCL,EEPROM_ADDR,EEPROM::T24C64);  // 24C64 eeprom with sda = p9 and scl = p10
  uint8_t data[256],data_r[256];
  int8_t ival;
  uint16_t s;
  int16_t sdata,sdata_r;
  int32_t ldata[1024];
  int32_t eeprom_size,max_size;
  uint32_t addr;
  int32_t idata,idata_r;
  uint32_t i,j,k,l,t,id;
  float fdata,fdata_r;
  MyData md,md_r;
    
  eeprom_size = ep.getSize();
  max_size = MIN(eeprom_size,256);
  
  printf("Test EEPROM I2C model %s of %d bytes\r\n",ep.getName(),eeprom_size);
 
  // Test sequential read byte (max_size first bytes)
  for(i = 0;i < max_size;i++) {
     ep.read(i,ival);
     data_r[i] = ival;
     if(ep.getError() != 0)
       myerror(ep.getErrorMessage());
  }
  
  printf("Test sequential read %d first bytes :\r\n",max_size);
  for(i = 0;i < max_size/16;i++) {
     for(j = 0;j < 16;j++) {
        addr = i * 16 + j;
        printf("%3d ",(uint8_t)data_r[addr]);
     }
     printf("\r\n");
  }
   
    // Test sequential read byte (max_size last bytes)
  for(i = 0;i < max_size;i++) {
        addr = eeprom_size - max_size + i;
    ep.read(addr,ival);
    data_r[i] = ival;
    if(ep.getError() != 0)
      myerror(ep.getErrorMessage());
  }
  
  printf("\nTest sequential read %d last bytes :\r\n",max_size);
  for(i = 0;i < max_size/16;i++) {
     for(j = 0;j < 16;j++) {
        addr = i * 16 + j;
        printf("%3d ",(uint8_t)data_r[addr]);
     }
     printf("\r\n");
  }
    
  // Test write byte (max_size first bytes)
  for(i = 0;i < max_size;i++)
     data[i] = i;
  
  for(i = 0;i < max_size;i++) {
     ep.write(i,(int8_t)data[i]);
     if(ep.getError() != 0)
       myerror(ep.getErrorMessage());
  }
  
  // Test read byte (max_size first bytes)
  for(i = 0;i < max_size;i++) {
     ep.read(i,(int8_t&)ival);
     data_r[i] = (uint8_t)ival;
     if(ep.getError() != 0)
       myerror(ep.getErrorMessage());
  }
  
  printf("\nTest write and read %d first bytes :\r\n",max_size);
  for(i = 0;i < max_size/16;i++) {
     for(j = 0;j < 16;j++) {
        addr = i * 16 + j;
        printf("%3d ",(uint8_t)data_r[addr]);
     }
     printf("\r\n");
  }
 
  // Test current address read byte (max_size first bytes)
  ep.read((uint32_t)0,(int8_t&)ival); // current address is 0
  data_r[0] = (uint8_t)ival;
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
  
  for(i = 1;i < max_size;i++) {
     ep.read((int8_t&)ival);
     data_r[i] = (uint8_t)ival;
     if(ep.getError() != 0)
       myerror(ep.getErrorMessage());
  }
  
  printf("\nTest current address read %d first bytes :\r\n",max_size);
  for(i = 0;i < max_size/16;i++) {
     for(j = 0;j < 16;j++) {
        addr = i * 16 + j;
        printf("%3d ",(uint8_t)data_r[addr]);
     }
     printf("\n");
  }
   
  // Test sequential read byte (first max_size bytes)
  ep.read((uint32_t)0,(int8_t *)data_r,(uint32_t) max_size);
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
  
  printf("\nTest sequential read %d first bytes :\r\n",max_size);
  for(i = 0;i < max_size/16;i++) {
     for(j = 0;j < 16;j++) {
        addr = i * 16 + j;
        printf("%3d ",(uint8_t)data_r[addr]);
     }
     printf("\r\n");
  }
  
  // Test write short, long, float 
  sdata = -15202;
    addr = eeprom_size - 16;
  ep.write(addr,(int16_t)sdata); // short write at address eeprom_size - 16
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
  
  idata = 45123;
    addr = eeprom_size - 12;
  ep.write(addr,(int32_t)idata); // long write at address eeprom_size - 12
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
    
  fdata = -12.26;
    addr = eeprom_size - 8;
  ep.write(addr,(float)fdata); // float write at address eeprom_size - 8
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
  
  // Test read short, long, float
  printf("\nTest write and read short (%d), long (%d), float (%f) :\r\n",
           sdata,idata,fdata);  
  
  ep.read((uint32_t)(eeprom_size - 16),(int16_t&)sdata_r);
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
  printf("sdata %d\r\n",sdata_r);
  
  ep.read((uint32_t)(eeprom_size - 12),(int32_t&)idata_r);
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
  printf("idata %d\r\n",idata_r);
  
  ep.read((uint32_t)(eeprom_size - 8),fdata_r);
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
  printf("fdata %f\r\n",fdata_r);
  
  // Test read and write a structure
  md.sdata = -15203;
  md.idata = 45124;
  md.fdata = -12.27;
 
  ep.write((uint32_t)(eeprom_size - 32),(void *)&md,sizeof(md)); // write a structure eeprom_size - 32
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
    
  printf("\nTest write and read a structure (%d %d %f) :\r\n",md.sdata,md.idata,md.fdata);
  
  ep.read((uint32_t)(eeprom_size - 32),(void *)&md_r,sizeof(md_r));
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
  
  printf("md.sdata %d\r\n",md_r.sdata);
  printf("md.idata %d\r\n",md_r.idata);
  printf("md.fdata %f\r\n",md_r.fdata);
  
    // Test read and write of an array of the first max_size bytes
    for(i = 0;i < max_size;i++)
       data[i] = max_size - i - 1;
    
    ep.write((uint32_t)(0),data,(uint32_t)max_size);
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
    
    ep.read((uint32_t)(0),data_r,(uint32_t)max_size);
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
    
    printf("\nTest write and read an array of the first %d bytes :\r\n",max_size);
    for(i = 0;i < max_size/16;i++) {
     for(j = 0;j < 16;j++) {
        addr = i * 16 + j;
        printf("%3d ",(uint8_t)data_r[addr]);
     }
     printf("\r\n");
  }
    printf("\r\n");
 #if 0 
  // Test write and read an array of int32
  s = eeprom_size / 4;                // size of eeprom in int32
  int ldata_size = sizeof(ldata) / 4; // size of data array in int32
  l = s / ldata_size;                 // loop index
  
  // size of read / write in bytes
  t = eeprom_size;
  if(t > ldata_size * 4)
    t = ldata_size * 4;
  
  printf("Test write and read an array of %d int32 (write entire memory) :\r\n",t/4);
 
  // Write entire eeprom
    if(l) {
    for(k = 0;k < l;k++) {
       for(i = 0;i < ldata_size;i++)
          ldata[i] = ldata_size * k + i;
        
       addr = k * ldata_size * 4;
       ep.write(addr,(void *)ldata,t);
       if(ep.getError() != 0)
         myerror(ep.getErrorMessage());
    }  
    
      printf("Write OK\n");
    
    // Read entire eeprom
      id = 0;
    for(k = 0;k < l;k++) {
       addr = k * ldata_size * 4;
       ep.read(addr,(void *)ldata,t);
       if(ep.getError() != 0)
         myerror(ep.getErrorMessage());
  
       // format outputs with 8 words rows
       for(i = 0;i < ldata_size / 8;i++) {
                id++;
          printf("%4d ",id);
          for(j = 0;j < 8;j++) {
             addr = i * 8 + j;
             printf("%5d ",ldata[addr]);
          }
          printf("\n");
       }
    }
  }
    else {
        for(i = 0;i < s;i++)
       ldata[i] = i;
        
    addr = 0;
    ep.write(addr,(void *)ldata,t);
    if(ep.getError() != 0)
      myerror(ep.getErrorMessage());
        
        printf("Write OK\n");
    
    // Read entire eeprom
      id = 0;
    
    addr = 0;
    ep.read(addr,(void *)ldata,t);
    if(ep.getError() != 0)
      myerror(ep.getErrorMessage());
  
    // format outputs with 8 words rows
    for(i = 0;i < s / 8;i++) {
             id++;
       printf("%4d ",id);
       for(j = 0;j < 8;j++) {
          addr = i * 8 + j;
          printf("%5d ",ldata[addr]);
       }
       printf("\n");
    }
    }
#endif    
  // clear eeprom
  printf("\nClear eeprom\n");
 
  ep.clear();
  if(ep.getError() != 0)
    myerror(ep.getErrorMessage());
   
  printf("End\n");  
    
}


int main()
{
    wait(1);
    printf("\n\n*** RTOS basic example ***\r\n");
    init_scale();
    thread.start(print_thread);

//    flashIAP.init();
//    printf("Flash start address: 0x%08x Flash Size: %d\r\n", flashIAP.get_flash_start(), flashIAP.get_flash_size());
//    can1.reset();
//    can2.reset();
    can1.frequency(100000);
//    can2.frequency(100000);
    //button1.mode(PullUp); // Activate pull-up
    button1.fall(callback(button1_onpressed_cb)); // Attach ISR to handle button press event
//    eeprom_test();

    int idx = 0; // Just for printf below

    while(1) {
        if (button1_pressed) { // Set when button is pressed
            printf("scale value %f. \r\n", hx711.getGram());
            button1_pressed = false;
            printf("Button pressed %d\r\n", idx++);
            printf("ID=%d. \r\n", init_id + idx%10);
            can1.write(CANMessage((init_id + idx%10), reinterpret_cast<char*>(&a), 1));            
            led1 = !led1;
            a++;
        }
    }
 #if 0
    while(1) {
 //       can1.write(CANMessage(1337, reinterpret_cast<char*>(&a), sizeof(a)));
#if  
        can1.write(CANMessage(1337, reinterpret_cast<char*>(&a), 1));
#endif        
        printf("loop a=%d\n", a);
        led1 = !led1;
        a++;
        wait(0.2);
    }
#endif    
}