NetTribute library with debug turned on in FShandler Donatien Garner -> Segundo Equipo -> this version

Committer:
hexley
Date:
Fri Nov 19 01:54:45 2010 +0000
Revision:
0:281d6ff68967

        

Who changed what in which revision?

UserRevisionLine numberNew contents of line
hexley 0:281d6ff68967 1 #pragma diag_remark 177
hexley 0:281d6ff68967 2 /**
hexley 0:281d6ff68967 3 * @file
hexley 0:281d6ff68967 4 * Dynamic memory manager
hexley 0:281d6ff68967 5 *
hexley 0:281d6ff68967 6 * This is a lightweight replacement for the standard C library malloc().
hexley 0:281d6ff68967 7 *
hexley 0:281d6ff68967 8 * If you want to use the standard C library malloc() instead, define
hexley 0:281d6ff68967 9 * MEM_LIBC_MALLOC to 1 in your lwipopts.h
hexley 0:281d6ff68967 10 *
hexley 0:281d6ff68967 11 * To let mem_malloc() use pools (prevents fragmentation and is much faster than
hexley 0:281d6ff68967 12 * a heap but might waste some memory), define MEM_USE_POOLS to 1, define
hexley 0:281d6ff68967 13 * MEM_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list
hexley 0:281d6ff68967 14 * of pools like this (more pools can be added between _START and _END):
hexley 0:281d6ff68967 15 *
hexley 0:281d6ff68967 16 * Define three pools with sizes 256, 512, and 1512 bytes
hexley 0:281d6ff68967 17 * LWIP_MALLOC_MEMPOOL_START
hexley 0:281d6ff68967 18 * LWIP_MALLOC_MEMPOOL(20, 256)
hexley 0:281d6ff68967 19 * LWIP_MALLOC_MEMPOOL(10, 512)
hexley 0:281d6ff68967 20 * LWIP_MALLOC_MEMPOOL(5, 1512)
hexley 0:281d6ff68967 21 * LWIP_MALLOC_MEMPOOL_END
hexley 0:281d6ff68967 22 */
hexley 0:281d6ff68967 23
hexley 0:281d6ff68967 24 /*
hexley 0:281d6ff68967 25 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
hexley 0:281d6ff68967 26 * All rights reserved.
hexley 0:281d6ff68967 27 *
hexley 0:281d6ff68967 28 * Redistribution and use in source and binary forms, with or without modification,
hexley 0:281d6ff68967 29 * are permitted provided that the following conditions are met:
hexley 0:281d6ff68967 30 *
hexley 0:281d6ff68967 31 * 1. Redistributions of source code must retain the above copyright notice,
hexley 0:281d6ff68967 32 * this list of conditions and the following disclaimer.
hexley 0:281d6ff68967 33 * 2. Redistributions in binary form must reproduce the above copyright notice,
hexley 0:281d6ff68967 34 * this list of conditions and the following disclaimer in the documentation
hexley 0:281d6ff68967 35 * and/or other materials provided with the distribution.
hexley 0:281d6ff68967 36 * 3. The name of the author may not be used to endorse or promote products
hexley 0:281d6ff68967 37 * derived from this software without specific prior written permission.
hexley 0:281d6ff68967 38 *
hexley 0:281d6ff68967 39 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
hexley 0:281d6ff68967 40 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
hexley 0:281d6ff68967 41 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
hexley 0:281d6ff68967 42 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
hexley 0:281d6ff68967 43 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
hexley 0:281d6ff68967 44 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
hexley 0:281d6ff68967 45 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
hexley 0:281d6ff68967 46 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
hexley 0:281d6ff68967 47 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
hexley 0:281d6ff68967 48 * OF SUCH DAMAGE.
hexley 0:281d6ff68967 49 *
hexley 0:281d6ff68967 50 * This file is part of the lwIP TCP/IP stack.
hexley 0:281d6ff68967 51 *
hexley 0:281d6ff68967 52 * Author: Adam Dunkels <adam@sics.se>
hexley 0:281d6ff68967 53 * Simon Goldschmidt
hexley 0:281d6ff68967 54 *
hexley 0:281d6ff68967 55 */
hexley 0:281d6ff68967 56
hexley 0:281d6ff68967 57 #include "lwip/opt.h"
hexley 0:281d6ff68967 58
hexley 0:281d6ff68967 59 #if !MEM_LIBC_MALLOC /* don't build if not configured for use in lwipopts.h */
hexley 0:281d6ff68967 60
hexley 0:281d6ff68967 61 #include "lwip/def.h"
hexley 0:281d6ff68967 62 #include "lwip/mem.h"
hexley 0:281d6ff68967 63 #include "lwip/sys.h"
hexley 0:281d6ff68967 64 #include "lwip/stats.h"
hexley 0:281d6ff68967 65 #include "lwip/err.h"
hexley 0:281d6ff68967 66
hexley 0:281d6ff68967 67 #include <string.h>
hexley 0:281d6ff68967 68
hexley 0:281d6ff68967 69 #if MEM_USE_POOLS
hexley 0:281d6ff68967 70 /* lwIP head implemented with different sized pools */
hexley 0:281d6ff68967 71
hexley 0:281d6ff68967 72 /**
hexley 0:281d6ff68967 73 * Allocate memory: determine the smallest pool that is big enough
hexley 0:281d6ff68967 74 * to contain an element of 'size' and get an element from that pool.
hexley 0:281d6ff68967 75 *
hexley 0:281d6ff68967 76 * @param size the size in bytes of the memory needed
hexley 0:281d6ff68967 77 * @return a pointer to the allocated memory or NULL if the pool is empty
hexley 0:281d6ff68967 78 */
hexley 0:281d6ff68967 79 void *
hexley 0:281d6ff68967 80 mem_malloc(mem_size_t size)
hexley 0:281d6ff68967 81 {
hexley 0:281d6ff68967 82 struct memp_malloc_helper *element;
hexley 0:281d6ff68967 83 memp_t poolnr;
hexley 0:281d6ff68967 84 mem_size_t required_size = size + sizeof(struct memp_malloc_helper);
hexley 0:281d6ff68967 85
hexley 0:281d6ff68967 86 for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) {
hexley 0:281d6ff68967 87 #if MEM_USE_POOLS_TRY_BIGGER_POOL
hexley 0:281d6ff68967 88 again:
hexley 0:281d6ff68967 89 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
hexley 0:281d6ff68967 90 /* is this pool big enough to hold an element of the required size
hexley 0:281d6ff68967 91 plus a struct memp_malloc_helper that saves the pool this element came from? */
hexley 0:281d6ff68967 92 if (required_size <= memp_sizes[poolnr]) {
hexley 0:281d6ff68967 93 break;
hexley 0:281d6ff68967 94 }
hexley 0:281d6ff68967 95 }
hexley 0:281d6ff68967 96 if (poolnr > MEMP_POOL_LAST) {
hexley 0:281d6ff68967 97 LWIP_ASSERT("mem_malloc(): no pool is that big!", 0);
hexley 0:281d6ff68967 98 return NULL;
hexley 0:281d6ff68967 99 }
hexley 0:281d6ff68967 100 element = (struct memp_malloc_helper*)memp_malloc(poolnr);
hexley 0:281d6ff68967 101 if (element == NULL) {
hexley 0:281d6ff68967 102 /* No need to DEBUGF or ASSERT: This error is already
hexley 0:281d6ff68967 103 taken care of in memp.c */
hexley 0:281d6ff68967 104 #if MEM_USE_POOLS_TRY_BIGGER_POOL
hexley 0:281d6ff68967 105 /** Try a bigger pool if this one is empty! */
hexley 0:281d6ff68967 106 if (poolnr < MEMP_POOL_LAST) {
hexley 0:281d6ff68967 107 poolnr++;
hexley 0:281d6ff68967 108 goto again;
hexley 0:281d6ff68967 109 }
hexley 0:281d6ff68967 110 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
hexley 0:281d6ff68967 111 return NULL;
hexley 0:281d6ff68967 112 }
hexley 0:281d6ff68967 113
hexley 0:281d6ff68967 114 /* save the pool number this element came from */
hexley 0:281d6ff68967 115 element->poolnr = poolnr;
hexley 0:281d6ff68967 116 /* and return a pointer to the memory directly after the struct memp_malloc_helper */
hexley 0:281d6ff68967 117 element++;
hexley 0:281d6ff68967 118
hexley 0:281d6ff68967 119 return element;
hexley 0:281d6ff68967 120 }
hexley 0:281d6ff68967 121
hexley 0:281d6ff68967 122 /**
hexley 0:281d6ff68967 123 * Free memory previously allocated by mem_malloc. Loads the pool number
hexley 0:281d6ff68967 124 * and calls memp_free with that pool number to put the element back into
hexley 0:281d6ff68967 125 * its pool
hexley 0:281d6ff68967 126 *
hexley 0:281d6ff68967 127 * @param rmem the memory element to free
hexley 0:281d6ff68967 128 */
hexley 0:281d6ff68967 129 void
hexley 0:281d6ff68967 130 mem_free(void *rmem)
hexley 0:281d6ff68967 131 {
hexley 0:281d6ff68967 132 struct memp_malloc_helper *hmem = (struct memp_malloc_helper*)rmem;
hexley 0:281d6ff68967 133
hexley 0:281d6ff68967 134 LWIP_ASSERT("rmem != NULL", (rmem != NULL));
hexley 0:281d6ff68967 135 LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
hexley 0:281d6ff68967 136
hexley 0:281d6ff68967 137 /* get the original struct memp_malloc_helper */
hexley 0:281d6ff68967 138 hmem--;
hexley 0:281d6ff68967 139
hexley 0:281d6ff68967 140 LWIP_ASSERT("hmem != NULL", (hmem != NULL));
hexley 0:281d6ff68967 141 LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem)));
hexley 0:281d6ff68967 142 LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX));
hexley 0:281d6ff68967 143
hexley 0:281d6ff68967 144 /* and put it in the pool we saved earlier */
hexley 0:281d6ff68967 145 memp_free(hmem->poolnr, hmem);
hexley 0:281d6ff68967 146 }
hexley 0:281d6ff68967 147
hexley 0:281d6ff68967 148 #else /* MEM_USE_POOLS */
hexley 0:281d6ff68967 149 /* lwIP replacement for your libc malloc() */
hexley 0:281d6ff68967 150
hexley 0:281d6ff68967 151 /**
hexley 0:281d6ff68967 152 * The heap is made up as a list of structs of this type.
hexley 0:281d6ff68967 153 * This does not have to be aligned since for getting its size,
hexley 0:281d6ff68967 154 * we only use the macro SIZEOF_STRUCT_MEM, which automatically alignes.
hexley 0:281d6ff68967 155 */
hexley 0:281d6ff68967 156 struct mem {
hexley 0:281d6ff68967 157 /** index (-> ram[next]) of the next struct */
hexley 0:281d6ff68967 158 mem_size_t next;
hexley 0:281d6ff68967 159 /** index (-> ram[prev]) of the previous struct */
hexley 0:281d6ff68967 160 mem_size_t prev;
hexley 0:281d6ff68967 161 /** 1: this area is used; 0: this area is unused */
hexley 0:281d6ff68967 162 u8_t used;
hexley 0:281d6ff68967 163 };
hexley 0:281d6ff68967 164
hexley 0:281d6ff68967 165 /** All allocated blocks will be MIN_SIZE bytes big, at least!
hexley 0:281d6ff68967 166 * MIN_SIZE can be overridden to suit your needs. Smaller values save space,
hexley 0:281d6ff68967 167 * larger values could prevent too small blocks to fragment the RAM too much. */
hexley 0:281d6ff68967 168 #ifndef MIN_SIZE
hexley 0:281d6ff68967 169 #define MIN_SIZE 12
hexley 0:281d6ff68967 170 #endif /* MIN_SIZE */
hexley 0:281d6ff68967 171 /* some alignment macros: we define them here for better source code layout */
hexley 0:281d6ff68967 172 #define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE)
hexley 0:281d6ff68967 173 #define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem))
hexley 0:281d6ff68967 174 #define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE)
hexley 0:281d6ff68967 175
hexley 0:281d6ff68967 176 /** If you want to relocate the heap to external memory, simply define
hexley 0:281d6ff68967 177 * LWIP_RAM_HEAP_POINTER as a void-pointer to that location.
hexley 0:281d6ff68967 178 * If so, make sure the memory at that location is big enough (see below on
hexley 0:281d6ff68967 179 * how that space is calculated). */
hexley 0:281d6ff68967 180 #ifndef LWIP_RAM_HEAP_POINTER
hexley 0:281d6ff68967 181 /** the heap. we need one struct mem at the end and some room for alignment */
hexley 0:281d6ff68967 182 u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT] MEM_POSITION;
hexley 0:281d6ff68967 183 #define LWIP_RAM_HEAP_POINTER ram_heap
hexley 0:281d6ff68967 184 #endif /* LWIP_RAM_HEAP_POINTER */
hexley 0:281d6ff68967 185
hexley 0:281d6ff68967 186 /** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */
hexley 0:281d6ff68967 187 static u8_t *ram;
hexley 0:281d6ff68967 188 /** the last entry, always unused! */
hexley 0:281d6ff68967 189 static struct mem *ram_end;
hexley 0:281d6ff68967 190 /** pointer to the lowest free block, this is used for faster search */
hexley 0:281d6ff68967 191 static struct mem *lfree;
hexley 0:281d6ff68967 192
hexley 0:281d6ff68967 193 /** concurrent access protection */
hexley 0:281d6ff68967 194 static sys_mutex_t mem_mutex;
hexley 0:281d6ff68967 195
hexley 0:281d6ff68967 196 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
hexley 0:281d6ff68967 197
hexley 0:281d6ff68967 198 static volatile u8_t mem_free_count;
hexley 0:281d6ff68967 199
hexley 0:281d6ff68967 200 /* Allow mem_free from other (e.g. interrupt) context */
hexley 0:281d6ff68967 201 #define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free)
hexley 0:281d6ff68967 202 #define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free)
hexley 0:281d6ff68967 203 #define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free)
hexley 0:281d6ff68967 204 #define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc)
hexley 0:281d6ff68967 205 #define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc)
hexley 0:281d6ff68967 206 #define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc)
hexley 0:281d6ff68967 207
hexley 0:281d6ff68967 208 #else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
hexley 0:281d6ff68967 209
hexley 0:281d6ff68967 210 /* Protect the heap only by using a semaphore */
hexley 0:281d6ff68967 211 #define LWIP_MEM_FREE_DECL_PROTECT()
hexley 0:281d6ff68967 212 #define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex)
hexley 0:281d6ff68967 213 #define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex)
hexley 0:281d6ff68967 214 /* mem_malloc is protected using semaphore AND LWIP_MEM_ALLOC_PROTECT */
hexley 0:281d6ff68967 215 #define LWIP_MEM_ALLOC_DECL_PROTECT()
hexley 0:281d6ff68967 216 #define LWIP_MEM_ALLOC_PROTECT()
hexley 0:281d6ff68967 217 #define LWIP_MEM_ALLOC_UNPROTECT()
hexley 0:281d6ff68967 218
hexley 0:281d6ff68967 219 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
hexley 0:281d6ff68967 220
hexley 0:281d6ff68967 221
hexley 0:281d6ff68967 222 /**
hexley 0:281d6ff68967 223 * "Plug holes" by combining adjacent empty struct mems.
hexley 0:281d6ff68967 224 * After this function is through, there should not exist
hexley 0:281d6ff68967 225 * one empty struct mem pointing to another empty struct mem.
hexley 0:281d6ff68967 226 *
hexley 0:281d6ff68967 227 * @param mem this points to a struct mem which just has been freed
hexley 0:281d6ff68967 228 * @internal this function is only called by mem_free() and mem_trim()
hexley 0:281d6ff68967 229 *
hexley 0:281d6ff68967 230 * This assumes access to the heap is protected by the calling function
hexley 0:281d6ff68967 231 * already.
hexley 0:281d6ff68967 232 */
hexley 0:281d6ff68967 233 static void
hexley 0:281d6ff68967 234 plug_holes(struct mem *mem)
hexley 0:281d6ff68967 235 {
hexley 0:281d6ff68967 236 struct mem *nmem;
hexley 0:281d6ff68967 237 struct mem *pmem;
hexley 0:281d6ff68967 238
hexley 0:281d6ff68967 239 LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram);
hexley 0:281d6ff68967 240 LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end);
hexley 0:281d6ff68967 241 LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0);
hexley 0:281d6ff68967 242
hexley 0:281d6ff68967 243 /* plug hole forward */
hexley 0:281d6ff68967 244 LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED);
hexley 0:281d6ff68967 245
hexley 0:281d6ff68967 246 nmem = (struct mem *)(void *)&ram[mem->next];
hexley 0:281d6ff68967 247 if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) {
hexley 0:281d6ff68967 248 /* if mem->next is unused and not end of ram, combine mem and mem->next */
hexley 0:281d6ff68967 249 if (lfree == nmem) {
hexley 0:281d6ff68967 250 lfree = mem;
hexley 0:281d6ff68967 251 }
hexley 0:281d6ff68967 252 mem->next = nmem->next;
hexley 0:281d6ff68967 253 ((struct mem *)(void *)&ram[nmem->next])->prev = (mem_size_t)((u8_t *)mem - ram);
hexley 0:281d6ff68967 254 }
hexley 0:281d6ff68967 255
hexley 0:281d6ff68967 256 /* plug hole backward */
hexley 0:281d6ff68967 257 pmem = (struct mem *)(void *)&ram[mem->prev];
hexley 0:281d6ff68967 258 if (pmem != mem && pmem->used == 0) {
hexley 0:281d6ff68967 259 /* if mem->prev is unused, combine mem and mem->prev */
hexley 0:281d6ff68967 260 if (lfree == mem) {
hexley 0:281d6ff68967 261 lfree = pmem;
hexley 0:281d6ff68967 262 }
hexley 0:281d6ff68967 263 pmem->next = mem->next;
hexley 0:281d6ff68967 264 ((struct mem *)(void *)&ram[mem->next])->prev = (mem_size_t)((u8_t *)pmem - ram);
hexley 0:281d6ff68967 265 }
hexley 0:281d6ff68967 266 }
hexley 0:281d6ff68967 267
hexley 0:281d6ff68967 268 /**
hexley 0:281d6ff68967 269 * Zero the heap and initialize start, end and lowest-free
hexley 0:281d6ff68967 270 */
hexley 0:281d6ff68967 271 void
hexley 0:281d6ff68967 272 mem_init(void)
hexley 0:281d6ff68967 273 {
hexley 0:281d6ff68967 274 struct mem *mem;
hexley 0:281d6ff68967 275
hexley 0:281d6ff68967 276 LWIP_ASSERT("Sanity check alignment",
hexley 0:281d6ff68967 277 (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0);
hexley 0:281d6ff68967 278
hexley 0:281d6ff68967 279 /* align the heap */
hexley 0:281d6ff68967 280 ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER);
hexley 0:281d6ff68967 281 /* initialize the start of the heap */
hexley 0:281d6ff68967 282 mem = (struct mem *)(void *)ram;
hexley 0:281d6ff68967 283 mem->next = MEM_SIZE_ALIGNED;
hexley 0:281d6ff68967 284 mem->prev = 0;
hexley 0:281d6ff68967 285 mem->used = 0;
hexley 0:281d6ff68967 286 /* initialize the end of the heap */
hexley 0:281d6ff68967 287 ram_end = (struct mem *)(void *)&ram[MEM_SIZE_ALIGNED];
hexley 0:281d6ff68967 288 ram_end->used = 1;
hexley 0:281d6ff68967 289 ram_end->next = MEM_SIZE_ALIGNED;
hexley 0:281d6ff68967 290 ram_end->prev = MEM_SIZE_ALIGNED;
hexley 0:281d6ff68967 291
hexley 0:281d6ff68967 292 /* initialize the lowest-free pointer to the start of the heap */
hexley 0:281d6ff68967 293 lfree = (struct mem *)(void *)ram;
hexley 0:281d6ff68967 294
hexley 0:281d6ff68967 295 MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED);
hexley 0:281d6ff68967 296
hexley 0:281d6ff68967 297 if(sys_mutex_new(&mem_mutex) != ERR_OK) {
hexley 0:281d6ff68967 298 LWIP_ASSERT("failed to create mem_mutex", 0);
hexley 0:281d6ff68967 299 }
hexley 0:281d6ff68967 300 }
hexley 0:281d6ff68967 301
hexley 0:281d6ff68967 302 /**
hexley 0:281d6ff68967 303 * Put a struct mem back on the heap
hexley 0:281d6ff68967 304 *
hexley 0:281d6ff68967 305 * @param rmem is the data portion of a struct mem as returned by a previous
hexley 0:281d6ff68967 306 * call to mem_malloc()
hexley 0:281d6ff68967 307 */
hexley 0:281d6ff68967 308 void
hexley 0:281d6ff68967 309 mem_free(void *rmem)
hexley 0:281d6ff68967 310 {
hexley 0:281d6ff68967 311 struct mem *mem;
hexley 0:281d6ff68967 312 LWIP_MEM_FREE_DECL_PROTECT();
hexley 0:281d6ff68967 313
hexley 0:281d6ff68967 314 if (rmem == NULL) {
hexley 0:281d6ff68967 315 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n"));
hexley 0:281d6ff68967 316 return;
hexley 0:281d6ff68967 317 }
hexley 0:281d6ff68967 318 LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0);
hexley 0:281d6ff68967 319
hexley 0:281d6ff68967 320 LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
hexley 0:281d6ff68967 321 (u8_t *)rmem < (u8_t *)ram_end);
hexley 0:281d6ff68967 322
hexley 0:281d6ff68967 323 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
hexley 0:281d6ff68967 324 SYS_ARCH_DECL_PROTECT(lev);
hexley 0:281d6ff68967 325 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n"));
hexley 0:281d6ff68967 326 /* protect mem stats from concurrent access */
hexley 0:281d6ff68967 327 SYS_ARCH_PROTECT(lev);
hexley 0:281d6ff68967 328 MEM_STATS_INC(illegal);
hexley 0:281d6ff68967 329 SYS_ARCH_UNPROTECT(lev);
hexley 0:281d6ff68967 330 return;
hexley 0:281d6ff68967 331 }
hexley 0:281d6ff68967 332 /* protect the heap from concurrent access */
hexley 0:281d6ff68967 333 LWIP_MEM_FREE_PROTECT();
hexley 0:281d6ff68967 334 /* Get the corresponding struct mem ... */
hexley 0:281d6ff68967 335 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
hexley 0:281d6ff68967 336 /* ... which has to be in a used state ... */
hexley 0:281d6ff68967 337 LWIP_ASSERT("mem_free: mem->used", mem->used);
hexley 0:281d6ff68967 338 /* ... and is now unused. */
hexley 0:281d6ff68967 339 mem->used = 0;
hexley 0:281d6ff68967 340
hexley 0:281d6ff68967 341 if (mem < lfree) {
hexley 0:281d6ff68967 342 /* the newly freed struct is now the lowest */
hexley 0:281d6ff68967 343 lfree = mem;
hexley 0:281d6ff68967 344 }
hexley 0:281d6ff68967 345
hexley 0:281d6ff68967 346 MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram)));
hexley 0:281d6ff68967 347
hexley 0:281d6ff68967 348 /* finally, see if prev or next are free also */
hexley 0:281d6ff68967 349 plug_holes(mem);
hexley 0:281d6ff68967 350 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
hexley 0:281d6ff68967 351 mem_free_count = 1;
hexley 0:281d6ff68967 352 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
hexley 0:281d6ff68967 353 LWIP_MEM_FREE_UNPROTECT();
hexley 0:281d6ff68967 354 }
hexley 0:281d6ff68967 355
hexley 0:281d6ff68967 356 /**
hexley 0:281d6ff68967 357 * Shrink memory returned by mem_malloc().
hexley 0:281d6ff68967 358 *
hexley 0:281d6ff68967 359 * @param rmem pointer to memory allocated by mem_malloc the is to be shrinked
hexley 0:281d6ff68967 360 * @param newsize required size after shrinking (needs to be smaller than or
hexley 0:281d6ff68967 361 * equal to the previous size)
hexley 0:281d6ff68967 362 * @return for compatibility reasons: is always == rmem, at the moment
hexley 0:281d6ff68967 363 * or NULL if newsize is > old size, in which case rmem is NOT touched
hexley 0:281d6ff68967 364 * or freed!
hexley 0:281d6ff68967 365 */
hexley 0:281d6ff68967 366 void *
hexley 0:281d6ff68967 367 mem_trim(void *rmem, mem_size_t newsize)
hexley 0:281d6ff68967 368 {
hexley 0:281d6ff68967 369 mem_size_t size;
hexley 0:281d6ff68967 370 mem_size_t ptr, ptr2;
hexley 0:281d6ff68967 371 struct mem *mem, *mem2;
hexley 0:281d6ff68967 372 /* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */
hexley 0:281d6ff68967 373 LWIP_MEM_FREE_DECL_PROTECT();
hexley 0:281d6ff68967 374
hexley 0:281d6ff68967 375 /* Expand the size of the allocated memory region so that we can
hexley 0:281d6ff68967 376 adjust for alignment. */
hexley 0:281d6ff68967 377 newsize = LWIP_MEM_ALIGN_SIZE(newsize);
hexley 0:281d6ff68967 378
hexley 0:281d6ff68967 379 if(newsize < MIN_SIZE_ALIGNED) {
hexley 0:281d6ff68967 380 /* every data block must be at least MIN_SIZE_ALIGNED long */
hexley 0:281d6ff68967 381 newsize = MIN_SIZE_ALIGNED;
hexley 0:281d6ff68967 382 }
hexley 0:281d6ff68967 383
hexley 0:281d6ff68967 384 if (newsize > MEM_SIZE_ALIGNED) {
hexley 0:281d6ff68967 385 return NULL;
hexley 0:281d6ff68967 386 }
hexley 0:281d6ff68967 387
hexley 0:281d6ff68967 388 LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
hexley 0:281d6ff68967 389 (u8_t *)rmem < (u8_t *)ram_end);
hexley 0:281d6ff68967 390
hexley 0:281d6ff68967 391 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
hexley 0:281d6ff68967 392 SYS_ARCH_DECL_PROTECT(lev);
hexley 0:281d6ff68967 393 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n"));
hexley 0:281d6ff68967 394 /* protect mem stats from concurrent access */
hexley 0:281d6ff68967 395 SYS_ARCH_PROTECT(lev);
hexley 0:281d6ff68967 396 MEM_STATS_INC(illegal);
hexley 0:281d6ff68967 397 SYS_ARCH_UNPROTECT(lev);
hexley 0:281d6ff68967 398 return rmem;
hexley 0:281d6ff68967 399 }
hexley 0:281d6ff68967 400 /* Get the corresponding struct mem ... */
hexley 0:281d6ff68967 401 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
hexley 0:281d6ff68967 402 /* ... and its offset pointer */
hexley 0:281d6ff68967 403 ptr = (mem_size_t)((u8_t *)mem - ram);
hexley 0:281d6ff68967 404
hexley 0:281d6ff68967 405 size = mem->next - ptr - SIZEOF_STRUCT_MEM;
hexley 0:281d6ff68967 406 LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size);
hexley 0:281d6ff68967 407 if (newsize > size) {
hexley 0:281d6ff68967 408 /* not supported */
hexley 0:281d6ff68967 409 return NULL;
hexley 0:281d6ff68967 410 }
hexley 0:281d6ff68967 411 if (newsize == size) {
hexley 0:281d6ff68967 412 /* No change in size, simply return */
hexley 0:281d6ff68967 413 return rmem;
hexley 0:281d6ff68967 414 }
hexley 0:281d6ff68967 415
hexley 0:281d6ff68967 416 /* protect the heap from concurrent access */
hexley 0:281d6ff68967 417 LWIP_MEM_FREE_PROTECT();
hexley 0:281d6ff68967 418
hexley 0:281d6ff68967 419 mem2 = (struct mem *)(void *)&ram[mem->next];
hexley 0:281d6ff68967 420 if(mem2->used == 0) {
hexley 0:281d6ff68967 421 /* The next struct is unused, we can simply move it at little */
hexley 0:281d6ff68967 422 mem_size_t next;
hexley 0:281d6ff68967 423 /* remember the old next pointer */
hexley 0:281d6ff68967 424 next = mem2->next;
hexley 0:281d6ff68967 425 /* create new struct mem which is moved directly after the shrinked mem */
hexley 0:281d6ff68967 426 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
hexley 0:281d6ff68967 427 if (lfree == mem2) {
hexley 0:281d6ff68967 428 lfree = (struct mem *)(void *)&ram[ptr2];
hexley 0:281d6ff68967 429 }
hexley 0:281d6ff68967 430 mem2 = (struct mem *)(void *)&ram[ptr2];
hexley 0:281d6ff68967 431 mem2->used = 0;
hexley 0:281d6ff68967 432 /* restore the next pointer */
hexley 0:281d6ff68967 433 mem2->next = next;
hexley 0:281d6ff68967 434 /* link it back to mem */
hexley 0:281d6ff68967 435 mem2->prev = ptr;
hexley 0:281d6ff68967 436 /* link mem to it */
hexley 0:281d6ff68967 437 mem->next = ptr2;
hexley 0:281d6ff68967 438 /* last thing to restore linked list: as we have moved mem2,
hexley 0:281d6ff68967 439 * let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not
hexley 0:281d6ff68967 440 * the end of the heap */
hexley 0:281d6ff68967 441 if (mem2->next != MEM_SIZE_ALIGNED) {
hexley 0:281d6ff68967 442 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
hexley 0:281d6ff68967 443 }
hexley 0:281d6ff68967 444 MEM_STATS_DEC_USED(used, (size - newsize));
hexley 0:281d6ff68967 445 /* no need to plug holes, we've already done that */
hexley 0:281d6ff68967 446 } else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) {
hexley 0:281d6ff68967 447 /* Next struct is used but there's room for another struct mem with
hexley 0:281d6ff68967 448 * at least MIN_SIZE_ALIGNED of data.
hexley 0:281d6ff68967 449 * Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem
hexley 0:281d6ff68967 450 * ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED').
hexley 0:281d6ff68967 451 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
hexley 0:281d6ff68967 452 * region that couldn't hold data, but when mem->next gets freed,
hexley 0:281d6ff68967 453 * the 2 regions would be combined, resulting in more free memory */
hexley 0:281d6ff68967 454 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
hexley 0:281d6ff68967 455 mem2 = (struct mem *)(void *)&ram[ptr2];
hexley 0:281d6ff68967 456 if (mem2 < lfree) {
hexley 0:281d6ff68967 457 lfree = mem2;
hexley 0:281d6ff68967 458 }
hexley 0:281d6ff68967 459 mem2->used = 0;
hexley 0:281d6ff68967 460 mem2->next = mem->next;
hexley 0:281d6ff68967 461 mem2->prev = ptr;
hexley 0:281d6ff68967 462 mem->next = ptr2;
hexley 0:281d6ff68967 463 if (mem2->next != MEM_SIZE_ALIGNED) {
hexley 0:281d6ff68967 464 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
hexley 0:281d6ff68967 465 }
hexley 0:281d6ff68967 466 MEM_STATS_DEC_USED(used, (size - newsize));
hexley 0:281d6ff68967 467 /* the original mem->next is used, so no need to plug holes! */
hexley 0:281d6ff68967 468 }
hexley 0:281d6ff68967 469 /* else {
hexley 0:281d6ff68967 470 next struct mem is used but size between mem and mem2 is not big enough
hexley 0:281d6ff68967 471 to create another struct mem
hexley 0:281d6ff68967 472 -> don't do anyhting.
hexley 0:281d6ff68967 473 -> the remaining space stays unused since it is too small
hexley 0:281d6ff68967 474 } */
hexley 0:281d6ff68967 475 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
hexley 0:281d6ff68967 476 mem_free_count = 1;
hexley 0:281d6ff68967 477 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
hexley 0:281d6ff68967 478 LWIP_MEM_FREE_UNPROTECT();
hexley 0:281d6ff68967 479 return rmem;
hexley 0:281d6ff68967 480 }
hexley 0:281d6ff68967 481
hexley 0:281d6ff68967 482 /**
hexley 0:281d6ff68967 483 * Adam's mem_malloc() plus solution for bug #17922
hexley 0:281d6ff68967 484 * Allocate a block of memory with a minimum of 'size' bytes.
hexley 0:281d6ff68967 485 *
hexley 0:281d6ff68967 486 * @param size is the minimum size of the requested block in bytes.
hexley 0:281d6ff68967 487 * @return pointer to allocated memory or NULL if no free memory was found.
hexley 0:281d6ff68967 488 *
hexley 0:281d6ff68967 489 * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
hexley 0:281d6ff68967 490 */
hexley 0:281d6ff68967 491 void *
hexley 0:281d6ff68967 492 mem_malloc(mem_size_t size)
hexley 0:281d6ff68967 493 {
hexley 0:281d6ff68967 494 mem_size_t ptr, ptr2;
hexley 0:281d6ff68967 495 struct mem *mem, *mem2;
hexley 0:281d6ff68967 496 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
hexley 0:281d6ff68967 497 u8_t local_mem_free_count = 0;
hexley 0:281d6ff68967 498 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
hexley 0:281d6ff68967 499 LWIP_MEM_ALLOC_DECL_PROTECT();
hexley 0:281d6ff68967 500
hexley 0:281d6ff68967 501 if (size == 0) {
hexley 0:281d6ff68967 502 return NULL;
hexley 0:281d6ff68967 503 }
hexley 0:281d6ff68967 504
hexley 0:281d6ff68967 505 /* Expand the size of the allocated memory region so that we can
hexley 0:281d6ff68967 506 adjust for alignment. */
hexley 0:281d6ff68967 507 size = LWIP_MEM_ALIGN_SIZE(size);
hexley 0:281d6ff68967 508
hexley 0:281d6ff68967 509 if(size < MIN_SIZE_ALIGNED) {
hexley 0:281d6ff68967 510 /* every data block must be at least MIN_SIZE_ALIGNED long */
hexley 0:281d6ff68967 511 size = MIN_SIZE_ALIGNED;
hexley 0:281d6ff68967 512 }
hexley 0:281d6ff68967 513
hexley 0:281d6ff68967 514 if (size > MEM_SIZE_ALIGNED) {
hexley 0:281d6ff68967 515 return NULL;
hexley 0:281d6ff68967 516 }
hexley 0:281d6ff68967 517
hexley 0:281d6ff68967 518 /* protect the heap from concurrent access */
hexley 0:281d6ff68967 519 sys_mutex_lock(&mem_mutex);
hexley 0:281d6ff68967 520 LWIP_MEM_ALLOC_PROTECT();
hexley 0:281d6ff68967 521 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
hexley 0:281d6ff68967 522 /* run as long as a mem_free disturbed mem_malloc */
hexley 0:281d6ff68967 523 do {
hexley 0:281d6ff68967 524 local_mem_free_count = 0;
hexley 0:281d6ff68967 525 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
hexley 0:281d6ff68967 526
hexley 0:281d6ff68967 527 /* Scan through the heap searching for a free block that is big enough,
hexley 0:281d6ff68967 528 * beginning with the lowest free block.
hexley 0:281d6ff68967 529 */
hexley 0:281d6ff68967 530 for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size;
hexley 0:281d6ff68967 531 ptr = ((struct mem *)(void *)&ram[ptr])->next) {
hexley 0:281d6ff68967 532 mem = (struct mem *)(void *)&ram[ptr];
hexley 0:281d6ff68967 533 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
hexley 0:281d6ff68967 534 mem_free_count = 0;
hexley 0:281d6ff68967 535 LWIP_MEM_ALLOC_UNPROTECT();
hexley 0:281d6ff68967 536 /* allow mem_free to run */
hexley 0:281d6ff68967 537 LWIP_MEM_ALLOC_PROTECT();
hexley 0:281d6ff68967 538 if (mem_free_count != 0) {
hexley 0:281d6ff68967 539 local_mem_free_count = mem_free_count;
hexley 0:281d6ff68967 540 }
hexley 0:281d6ff68967 541 mem_free_count = 0;
hexley 0:281d6ff68967 542 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
hexley 0:281d6ff68967 543
hexley 0:281d6ff68967 544 if ((!mem->used) &&
hexley 0:281d6ff68967 545 (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
hexley 0:281d6ff68967 546 /* mem is not used and at least perfect fit is possible:
hexley 0:281d6ff68967 547 * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
hexley 0:281d6ff68967 548
hexley 0:281d6ff68967 549 if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
hexley 0:281d6ff68967 550 /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
hexley 0:281d6ff68967 551 * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
hexley 0:281d6ff68967 552 * -> split large block, create empty remainder,
hexley 0:281d6ff68967 553 * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
hexley 0:281d6ff68967 554 * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
hexley 0:281d6ff68967 555 * struct mem would fit in but no data between mem2 and mem2->next
hexley 0:281d6ff68967 556 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
hexley 0:281d6ff68967 557 * region that couldn't hold data, but when mem->next gets freed,
hexley 0:281d6ff68967 558 * the 2 regions would be combined, resulting in more free memory
hexley 0:281d6ff68967 559 */
hexley 0:281d6ff68967 560 ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
hexley 0:281d6ff68967 561 /* create mem2 struct */
hexley 0:281d6ff68967 562 mem2 = (struct mem *)(void *)&ram[ptr2];
hexley 0:281d6ff68967 563 mem2->used = 0;
hexley 0:281d6ff68967 564 mem2->next = mem->next;
hexley 0:281d6ff68967 565 mem2->prev = ptr;
hexley 0:281d6ff68967 566 /* and insert it between mem and mem->next */
hexley 0:281d6ff68967 567 mem->next = ptr2;
hexley 0:281d6ff68967 568 mem->used = 1;
hexley 0:281d6ff68967 569
hexley 0:281d6ff68967 570 if (mem2->next != MEM_SIZE_ALIGNED) {
hexley 0:281d6ff68967 571 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
hexley 0:281d6ff68967 572 }
hexley 0:281d6ff68967 573 MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM));
hexley 0:281d6ff68967 574 } else {
hexley 0:281d6ff68967 575 /* (a mem2 struct does no fit into the user data space of mem and mem->next will always
hexley 0:281d6ff68967 576 * be used at this point: if not we have 2 unused structs in a row, plug_holes should have
hexley 0:281d6ff68967 577 * take care of this).
hexley 0:281d6ff68967 578 * -> near fit or excact fit: do not split, no mem2 creation
hexley 0:281d6ff68967 579 * also can't move mem->next directly behind mem, since mem->next
hexley 0:281d6ff68967 580 * will always be used at this point!
hexley 0:281d6ff68967 581 */
hexley 0:281d6ff68967 582 mem->used = 1;
hexley 0:281d6ff68967 583 MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram));
hexley 0:281d6ff68967 584 }
hexley 0:281d6ff68967 585
hexley 0:281d6ff68967 586 if (mem == lfree) {
hexley 0:281d6ff68967 587 /* Find next free block after mem and update lowest free pointer */
hexley 0:281d6ff68967 588 while (lfree->used && lfree != ram_end) {
hexley 0:281d6ff68967 589 LWIP_MEM_ALLOC_UNPROTECT();
hexley 0:281d6ff68967 590 /* prevent high interrupt latency... */
hexley 0:281d6ff68967 591 LWIP_MEM_ALLOC_PROTECT();
hexley 0:281d6ff68967 592 lfree = (struct mem *)(void *)&ram[lfree->next];
hexley 0:281d6ff68967 593 }
hexley 0:281d6ff68967 594 LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
hexley 0:281d6ff68967 595 }
hexley 0:281d6ff68967 596 LWIP_MEM_ALLOC_UNPROTECT();
hexley 0:281d6ff68967 597 sys_mutex_unlock(&mem_mutex);
hexley 0:281d6ff68967 598 LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
hexley 0:281d6ff68967 599 (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
hexley 0:281d6ff68967 600 LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
hexley 0:281d6ff68967 601 ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
hexley 0:281d6ff68967 602 LWIP_ASSERT("mem_malloc: sanity check alignment",
hexley 0:281d6ff68967 603 (((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0);
hexley 0:281d6ff68967 604
hexley 0:281d6ff68967 605 return (u8_t *)mem + SIZEOF_STRUCT_MEM;
hexley 0:281d6ff68967 606 }
hexley 0:281d6ff68967 607 }
hexley 0:281d6ff68967 608 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
hexley 0:281d6ff68967 609 /* if we got interrupted by a mem_free, try again */
hexley 0:281d6ff68967 610 } while(local_mem_free_count != 0);
hexley 0:281d6ff68967 611 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
hexley 0:281d6ff68967 612 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
hexley 0:281d6ff68967 613 MEM_STATS_INC(err);
hexley 0:281d6ff68967 614 LWIP_MEM_ALLOC_UNPROTECT();
hexley 0:281d6ff68967 615 sys_mutex_unlock(&mem_mutex);
hexley 0:281d6ff68967 616 return NULL;
hexley 0:281d6ff68967 617 }
hexley 0:281d6ff68967 618
hexley 0:281d6ff68967 619 #endif /* MEM_USE_POOLS */
hexley 0:281d6ff68967 620 /**
hexley 0:281d6ff68967 621 * Contiguously allocates enough space for count objects that are size bytes
hexley 0:281d6ff68967 622 * of memory each and returns a pointer to the allocated memory.
hexley 0:281d6ff68967 623 *
hexley 0:281d6ff68967 624 * The allocated memory is filled with bytes of value zero.
hexley 0:281d6ff68967 625 *
hexley 0:281d6ff68967 626 * @param count number of objects to allocate
hexley 0:281d6ff68967 627 * @param size size of the objects to allocate
hexley 0:281d6ff68967 628 * @return pointer to allocated memory / NULL pointer if there is an error
hexley 0:281d6ff68967 629 */
hexley 0:281d6ff68967 630 void *mem_calloc(mem_size_t count, mem_size_t size)
hexley 0:281d6ff68967 631 {
hexley 0:281d6ff68967 632 void *p;
hexley 0:281d6ff68967 633
hexley 0:281d6ff68967 634 /* allocate 'count' objects of size 'size' */
hexley 0:281d6ff68967 635 p = mem_malloc(count * size);
hexley 0:281d6ff68967 636 if (p) {
hexley 0:281d6ff68967 637 /* zero the memory */
hexley 0:281d6ff68967 638 memset(p, 0, count * size);
hexley 0:281d6ff68967 639 }
hexley 0:281d6ff68967 640 return p;
hexley 0:281d6ff68967 641 }
hexley 0:281d6ff68967 642
hexley 0:281d6ff68967 643 #endif /* !MEM_LIBC_MALLOC */