ROS Serial library for Mbed platforms for ROS Melodic Morenia. Check http://wiki.ros.org/rosserial_mbed/ for more information.
Dependents: rosserial_mbed_hello_world_publisher_melodic Motortest Nucleo_vr_servo_project NucleoFM ... more
ROSSerial_mbed for Melodic Distribution
The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.
The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.
Hello World (example publisher)
Import programrosserial_mbed_hello_world_publisher_melodic
rosserial_mbed Hello World example for Melodic Morenia distribution
Running the Code
Now, launch the roscore in a new terminal window:
Quote:
$ roscore
Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:
Quote:
$ rosrun rosserial_python serial_node.py /dev/ttyACM0
Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :
Quote:
$ rostopic echo chatter
See Also
More examples
Blink
/* * rosserial Subscriber Example * Blinks an LED on callback */ #include "mbed.h" #include <ros.h> #include <std_msgs/Empty.h> ros::NodeHandle nh; DigitalOut myled(LED1); void messageCb(const std_msgs::Empty& toggle_msg){ myled = !myled; // blink the led } ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb); int main() { nh.initNode(); nh.subscribe(sub); while (1) { nh.spinOnce(); wait_ms(1); } }
Push
/* * Button Example for Rosserial */ #include "mbed.h" #include <ros.h> #include <std_msgs/Bool.h> PinName button = p20; ros::NodeHandle nh; std_msgs::Bool pushed_msg; ros::Publisher pub_button("pushed", &pushed_msg); DigitalIn button_pin(button); DigitalOut led_pin(LED1); bool last_reading; long last_debounce_time=0; long debounce_delay=50; bool published = true; Timer t; int main() { t.start(); nh.initNode(); nh.advertise(pub_button); //Enable the pullup resistor on the button button_pin.mode(PullUp); //The button is a normally button last_reading = ! button_pin; while (1) { bool reading = ! button_pin; if (last_reading!= reading) { last_debounce_time = t.read_ms(); published = false; } //if the button value has not changed for the debounce delay, we know its stable if ( !published && (t.read_ms() - last_debounce_time) > debounce_delay) { led_pin = reading; pushed_msg.data = reading; pub_button.publish(&pushed_msg); published = true; } last_reading = reading; nh.spinOnce(); } }
Diff: sensor_msgs/BatteryState.h
- Revision:
- 0:04ac6be8229a
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/sensor_msgs/BatteryState.h Fri Nov 08 14:38:09 2019 -0300 @@ -0,0 +1,326 @@ +#ifndef _ROS_sensor_msgs_BatteryState_h +#define _ROS_sensor_msgs_BatteryState_h + +#include <stdint.h> +#include <string.h> +#include <stdlib.h> +#include "ros/msg.h" +#include "std_msgs/Header.h" + +namespace sensor_msgs +{ + + class BatteryState : public ros::Msg + { + public: + typedef std_msgs::Header _header_type; + _header_type header; + typedef float _voltage_type; + _voltage_type voltage; + typedef float _current_type; + _current_type current; + typedef float _charge_type; + _charge_type charge; + typedef float _capacity_type; + _capacity_type capacity; + typedef float _design_capacity_type; + _design_capacity_type design_capacity; + typedef float _percentage_type; + _percentage_type percentage; + typedef uint8_t _power_supply_status_type; + _power_supply_status_type power_supply_status; + typedef uint8_t _power_supply_health_type; + _power_supply_health_type power_supply_health; + typedef uint8_t _power_supply_technology_type; + _power_supply_technology_type power_supply_technology; + typedef bool _present_type; + _present_type present; + uint32_t cell_voltage_length; + typedef float _cell_voltage_type; + _cell_voltage_type st_cell_voltage; + _cell_voltage_type * cell_voltage; + typedef const char* _location_type; + _location_type location; + typedef const char* _serial_number_type; + _serial_number_type serial_number; + enum { POWER_SUPPLY_STATUS_UNKNOWN = 0 }; + enum { POWER_SUPPLY_STATUS_CHARGING = 1 }; + enum { POWER_SUPPLY_STATUS_DISCHARGING = 2 }; + enum { POWER_SUPPLY_STATUS_NOT_CHARGING = 3 }; + enum { POWER_SUPPLY_STATUS_FULL = 4 }; + enum { POWER_SUPPLY_HEALTH_UNKNOWN = 0 }; + enum { POWER_SUPPLY_HEALTH_GOOD = 1 }; + enum { POWER_SUPPLY_HEALTH_OVERHEAT = 2 }; + enum { POWER_SUPPLY_HEALTH_DEAD = 3 }; + enum { POWER_SUPPLY_HEALTH_OVERVOLTAGE = 4 }; + enum { POWER_SUPPLY_HEALTH_UNSPEC_FAILURE = 5 }; + enum { POWER_SUPPLY_HEALTH_COLD = 6 }; + enum { POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE = 7 }; + enum { POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE = 8 }; + enum { POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0 }; + enum { POWER_SUPPLY_TECHNOLOGY_NIMH = 1 }; + enum { POWER_SUPPLY_TECHNOLOGY_LION = 2 }; + enum { POWER_SUPPLY_TECHNOLOGY_LIPO = 3 }; + enum { POWER_SUPPLY_TECHNOLOGY_LIFE = 4 }; + enum { POWER_SUPPLY_TECHNOLOGY_NICD = 5 }; + enum { POWER_SUPPLY_TECHNOLOGY_LIMN = 6 }; + + BatteryState(): + header(), + voltage(0), + current(0), + charge(0), + capacity(0), + design_capacity(0), + percentage(0), + power_supply_status(0), + power_supply_health(0), + power_supply_technology(0), + present(0), + cell_voltage_length(0), cell_voltage(NULL), + location(""), + serial_number("") + { + } + + virtual int serialize(unsigned char *outbuffer) const + { + int offset = 0; + offset += this->header.serialize(outbuffer + offset); + union { + float real; + uint32_t base; + } u_voltage; + u_voltage.real = this->voltage; + *(outbuffer + offset + 0) = (u_voltage.base >> (8 * 0)) & 0xFF; + *(outbuffer + offset + 1) = (u_voltage.base >> (8 * 1)) & 0xFF; + *(outbuffer + offset + 2) = (u_voltage.base >> (8 * 2)) & 0xFF; + *(outbuffer + offset + 3) = (u_voltage.base >> (8 * 3)) & 0xFF; + offset += sizeof(this->voltage); + union { + float real; + uint32_t base; + } u_current; + u_current.real = this->current; + *(outbuffer + offset + 0) = (u_current.base >> (8 * 0)) & 0xFF; + *(outbuffer + offset + 1) = (u_current.base >> (8 * 1)) & 0xFF; + *(outbuffer + offset + 2) = (u_current.base >> (8 * 2)) & 0xFF; + *(outbuffer + offset + 3) = (u_current.base >> (8 * 3)) & 0xFF; + offset += sizeof(this->current); + union { + float real; + uint32_t base; + } u_charge; + u_charge.real = this->charge; + *(outbuffer + offset + 0) = (u_charge.base >> (8 * 0)) & 0xFF; + *(outbuffer + offset + 1) = (u_charge.base >> (8 * 1)) & 0xFF; + *(outbuffer + offset + 2) = (u_charge.base >> (8 * 2)) & 0xFF; + *(outbuffer + offset + 3) = (u_charge.base >> (8 * 3)) & 0xFF; + offset += sizeof(this->charge); + union { + float real; + uint32_t base; + } u_capacity; + u_capacity.real = this->capacity; + *(outbuffer + offset + 0) = (u_capacity.base >> (8 * 0)) & 0xFF; + *(outbuffer + offset + 1) = (u_capacity.base >> (8 * 1)) & 0xFF; + *(outbuffer + offset + 2) = (u_capacity.base >> (8 * 2)) & 0xFF; + *(outbuffer + offset + 3) = (u_capacity.base >> (8 * 3)) & 0xFF; + offset += sizeof(this->capacity); + union { + float real; + uint32_t base; + } u_design_capacity; + u_design_capacity.real = this->design_capacity; + *(outbuffer + offset + 0) = (u_design_capacity.base >> (8 * 0)) & 0xFF; + *(outbuffer + offset + 1) = (u_design_capacity.base >> (8 * 1)) & 0xFF; + *(outbuffer + offset + 2) = (u_design_capacity.base >> (8 * 2)) & 0xFF; + *(outbuffer + offset + 3) = (u_design_capacity.base >> (8 * 3)) & 0xFF; + offset += sizeof(this->design_capacity); + union { + float real; + uint32_t base; + } u_percentage; + u_percentage.real = this->percentage; + *(outbuffer + offset + 0) = (u_percentage.base >> (8 * 0)) & 0xFF; + *(outbuffer + offset + 1) = (u_percentage.base >> (8 * 1)) & 0xFF; + *(outbuffer + offset + 2) = (u_percentage.base >> (8 * 2)) & 0xFF; + *(outbuffer + offset + 3) = (u_percentage.base >> (8 * 3)) & 0xFF; + offset += sizeof(this->percentage); + *(outbuffer + offset + 0) = (this->power_supply_status >> (8 * 0)) & 0xFF; + offset += sizeof(this->power_supply_status); + *(outbuffer + offset + 0) = (this->power_supply_health >> (8 * 0)) & 0xFF; + offset += sizeof(this->power_supply_health); + *(outbuffer + offset + 0) = (this->power_supply_technology >> (8 * 0)) & 0xFF; + offset += sizeof(this->power_supply_technology); + union { + bool real; + uint8_t base; + } u_present; + u_present.real = this->present; + *(outbuffer + offset + 0) = (u_present.base >> (8 * 0)) & 0xFF; + offset += sizeof(this->present); + *(outbuffer + offset + 0) = (this->cell_voltage_length >> (8 * 0)) & 0xFF; + *(outbuffer + offset + 1) = (this->cell_voltage_length >> (8 * 1)) & 0xFF; + *(outbuffer + offset + 2) = (this->cell_voltage_length >> (8 * 2)) & 0xFF; + *(outbuffer + offset + 3) = (this->cell_voltage_length >> (8 * 3)) & 0xFF; + offset += sizeof(this->cell_voltage_length); + for( uint32_t i = 0; i < cell_voltage_length; i++){ + union { + float real; + uint32_t base; + } u_cell_voltagei; + u_cell_voltagei.real = this->cell_voltage[i]; + *(outbuffer + offset + 0) = (u_cell_voltagei.base >> (8 * 0)) & 0xFF; + *(outbuffer + offset + 1) = (u_cell_voltagei.base >> (8 * 1)) & 0xFF; + *(outbuffer + offset + 2) = (u_cell_voltagei.base >> (8 * 2)) & 0xFF; + *(outbuffer + offset + 3) = (u_cell_voltagei.base >> (8 * 3)) & 0xFF; + offset += sizeof(this->cell_voltage[i]); + } + uint32_t length_location = strlen(this->location); + varToArr(outbuffer + offset, length_location); + offset += 4; + memcpy(outbuffer + offset, this->location, length_location); + offset += length_location; + uint32_t length_serial_number = strlen(this->serial_number); + varToArr(outbuffer + offset, length_serial_number); + offset += 4; + memcpy(outbuffer + offset, this->serial_number, length_serial_number); + offset += length_serial_number; + return offset; + } + + virtual int deserialize(unsigned char *inbuffer) + { + int offset = 0; + offset += this->header.deserialize(inbuffer + offset); + union { + float real; + uint32_t base; + } u_voltage; + u_voltage.base = 0; + u_voltage.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); + u_voltage.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); + u_voltage.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); + u_voltage.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); + this->voltage = u_voltage.real; + offset += sizeof(this->voltage); + union { + float real; + uint32_t base; + } u_current; + u_current.base = 0; + u_current.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); + u_current.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); + u_current.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); + u_current.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); + this->current = u_current.real; + offset += sizeof(this->current); + union { + float real; + uint32_t base; + } u_charge; + u_charge.base = 0; + u_charge.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); + u_charge.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); + u_charge.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); + u_charge.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); + this->charge = u_charge.real; + offset += sizeof(this->charge); + union { + float real; + uint32_t base; + } u_capacity; + u_capacity.base = 0; + u_capacity.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); + u_capacity.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); + u_capacity.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); + u_capacity.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); + this->capacity = u_capacity.real; + offset += sizeof(this->capacity); + union { + float real; + uint32_t base; + } u_design_capacity; + u_design_capacity.base = 0; + u_design_capacity.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); + u_design_capacity.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); + u_design_capacity.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); + u_design_capacity.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); + this->design_capacity = u_design_capacity.real; + offset += sizeof(this->design_capacity); + union { + float real; + uint32_t base; + } u_percentage; + u_percentage.base = 0; + u_percentage.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); + u_percentage.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); + u_percentage.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); + u_percentage.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); + this->percentage = u_percentage.real; + offset += sizeof(this->percentage); + this->power_supply_status = ((uint8_t) (*(inbuffer + offset))); + offset += sizeof(this->power_supply_status); + this->power_supply_health = ((uint8_t) (*(inbuffer + offset))); + offset += sizeof(this->power_supply_health); + this->power_supply_technology = ((uint8_t) (*(inbuffer + offset))); + offset += sizeof(this->power_supply_technology); + union { + bool real; + uint8_t base; + } u_present; + u_present.base = 0; + u_present.base |= ((uint8_t) (*(inbuffer + offset + 0))) << (8 * 0); + this->present = u_present.real; + offset += sizeof(this->present); + uint32_t cell_voltage_lengthT = ((uint32_t) (*(inbuffer + offset))); + cell_voltage_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); + cell_voltage_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); + cell_voltage_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); + offset += sizeof(this->cell_voltage_length); + if(cell_voltage_lengthT > cell_voltage_length) + this->cell_voltage = (float*)realloc(this->cell_voltage, cell_voltage_lengthT * sizeof(float)); + cell_voltage_length = cell_voltage_lengthT; + for( uint32_t i = 0; i < cell_voltage_length; i++){ + union { + float real; + uint32_t base; + } u_st_cell_voltage; + u_st_cell_voltage.base = 0; + u_st_cell_voltage.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); + u_st_cell_voltage.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); + u_st_cell_voltage.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); + u_st_cell_voltage.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); + this->st_cell_voltage = u_st_cell_voltage.real; + offset += sizeof(this->st_cell_voltage); + memcpy( &(this->cell_voltage[i]), &(this->st_cell_voltage), sizeof(float)); + } + uint32_t length_location; + arrToVar(length_location, (inbuffer + offset)); + offset += 4; + for(unsigned int k= offset; k< offset+length_location; ++k){ + inbuffer[k-1]=inbuffer[k]; + } + inbuffer[offset+length_location-1]=0; + this->location = (char *)(inbuffer + offset-1); + offset += length_location; + uint32_t length_serial_number; + arrToVar(length_serial_number, (inbuffer + offset)); + offset += 4; + for(unsigned int k= offset; k< offset+length_serial_number; ++k){ + inbuffer[k-1]=inbuffer[k]; + } + inbuffer[offset+length_serial_number-1]=0; + this->serial_number = (char *)(inbuffer + offset-1); + offset += length_serial_number; + return offset; + } + + const char * getType(){ return "sensor_msgs/BatteryState"; }; + const char * getMD5(){ return "476f837fa6771f6e16e3bf4ef96f8770"; }; + + }; + +} +#endif