ROS Serial library for Mbed platforms for ROS Melodic Morenia. Check http://wiki.ros.org/rosserial_mbed/ for more information.
Dependents: rosserial_mbed_hello_world_publisher_melodic Motortest Nucleo_vr_servo_project NucleoFM ... more
ROSSerial_mbed for Melodic Distribution
The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.
The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.
Hello World (example publisher)
Import programrosserial_mbed_hello_world_publisher_melodic
rosserial_mbed Hello World example for Melodic Morenia distribution
Running the Code
Now, launch the roscore in a new terminal window:
Quote:
$ roscore
Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:
Quote:
$ rosrun rosserial_python serial_node.py /dev/ttyACM0
Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :
Quote:
$ rostopic echo chatter
See Also
More examples
Blink
/* * rosserial Subscriber Example * Blinks an LED on callback */ #include "mbed.h" #include <ros.h> #include <std_msgs/Empty.h> ros::NodeHandle nh; DigitalOut myled(LED1); void messageCb(const std_msgs::Empty& toggle_msg){ myled = !myled; // blink the led } ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb); int main() { nh.initNode(); nh.subscribe(sub); while (1) { nh.spinOnce(); wait_ms(1); } }
Push
/* * Button Example for Rosserial */ #include "mbed.h" #include <ros.h> #include <std_msgs/Bool.h> PinName button = p20; ros::NodeHandle nh; std_msgs::Bool pushed_msg; ros::Publisher pub_button("pushed", &pushed_msg); DigitalIn button_pin(button); DigitalOut led_pin(LED1); bool last_reading; long last_debounce_time=0; long debounce_delay=50; bool published = true; Timer t; int main() { t.start(); nh.initNode(); nh.advertise(pub_button); //Enable the pullup resistor on the button button_pin.mode(PullUp); //The button is a normally button last_reading = ! button_pin; while (1) { bool reading = ! button_pin; if (last_reading!= reading) { last_debounce_time = t.read_ms(); published = false; } //if the button value has not changed for the debounce delay, we know its stable if ( !published && (t.read_ms() - last_debounce_time) > debounce_delay) { led_pin = reading; pushed_msg.data = reading; pub_button.publish(&pushed_msg); published = true; } last_reading = reading; nh.spinOnce(); } }
sensor_msgs/BatteryState.h
- Committer:
- Gary Servin
- Date:
- 2019-11-08
- Revision:
- 0:04ac6be8229a
File content as of revision 0:04ac6be8229a:
#ifndef _ROS_sensor_msgs_BatteryState_h #define _ROS_sensor_msgs_BatteryState_h #include <stdint.h> #include <string.h> #include <stdlib.h> #include "ros/msg.h" #include "std_msgs/Header.h" namespace sensor_msgs { class BatteryState : public ros::Msg { public: typedef std_msgs::Header _header_type; _header_type header; typedef float _voltage_type; _voltage_type voltage; typedef float _current_type; _current_type current; typedef float _charge_type; _charge_type charge; typedef float _capacity_type; _capacity_type capacity; typedef float _design_capacity_type; _design_capacity_type design_capacity; typedef float _percentage_type; _percentage_type percentage; typedef uint8_t _power_supply_status_type; _power_supply_status_type power_supply_status; typedef uint8_t _power_supply_health_type; _power_supply_health_type power_supply_health; typedef uint8_t _power_supply_technology_type; _power_supply_technology_type power_supply_technology; typedef bool _present_type; _present_type present; uint32_t cell_voltage_length; typedef float _cell_voltage_type; _cell_voltage_type st_cell_voltage; _cell_voltage_type * cell_voltage; typedef const char* _location_type; _location_type location; typedef const char* _serial_number_type; _serial_number_type serial_number; enum { POWER_SUPPLY_STATUS_UNKNOWN = 0 }; enum { POWER_SUPPLY_STATUS_CHARGING = 1 }; enum { POWER_SUPPLY_STATUS_DISCHARGING = 2 }; enum { POWER_SUPPLY_STATUS_NOT_CHARGING = 3 }; enum { POWER_SUPPLY_STATUS_FULL = 4 }; enum { POWER_SUPPLY_HEALTH_UNKNOWN = 0 }; enum { POWER_SUPPLY_HEALTH_GOOD = 1 }; enum { POWER_SUPPLY_HEALTH_OVERHEAT = 2 }; enum { POWER_SUPPLY_HEALTH_DEAD = 3 }; enum { POWER_SUPPLY_HEALTH_OVERVOLTAGE = 4 }; enum { POWER_SUPPLY_HEALTH_UNSPEC_FAILURE = 5 }; enum { POWER_SUPPLY_HEALTH_COLD = 6 }; enum { POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE = 7 }; enum { POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE = 8 }; enum { POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0 }; enum { POWER_SUPPLY_TECHNOLOGY_NIMH = 1 }; enum { POWER_SUPPLY_TECHNOLOGY_LION = 2 }; enum { POWER_SUPPLY_TECHNOLOGY_LIPO = 3 }; enum { POWER_SUPPLY_TECHNOLOGY_LIFE = 4 }; enum { POWER_SUPPLY_TECHNOLOGY_NICD = 5 }; enum { POWER_SUPPLY_TECHNOLOGY_LIMN = 6 }; BatteryState(): header(), voltage(0), current(0), charge(0), capacity(0), design_capacity(0), percentage(0), power_supply_status(0), power_supply_health(0), power_supply_technology(0), present(0), cell_voltage_length(0), cell_voltage(NULL), location(""), serial_number("") { } virtual int serialize(unsigned char *outbuffer) const { int offset = 0; offset += this->header.serialize(outbuffer + offset); union { float real; uint32_t base; } u_voltage; u_voltage.real = this->voltage; *(outbuffer + offset + 0) = (u_voltage.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_voltage.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_voltage.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_voltage.base >> (8 * 3)) & 0xFF; offset += sizeof(this->voltage); union { float real; uint32_t base; } u_current; u_current.real = this->current; *(outbuffer + offset + 0) = (u_current.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_current.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_current.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_current.base >> (8 * 3)) & 0xFF; offset += sizeof(this->current); union { float real; uint32_t base; } u_charge; u_charge.real = this->charge; *(outbuffer + offset + 0) = (u_charge.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_charge.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_charge.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_charge.base >> (8 * 3)) & 0xFF; offset += sizeof(this->charge); union { float real; uint32_t base; } u_capacity; u_capacity.real = this->capacity; *(outbuffer + offset + 0) = (u_capacity.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_capacity.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_capacity.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_capacity.base >> (8 * 3)) & 0xFF; offset += sizeof(this->capacity); union { float real; uint32_t base; } u_design_capacity; u_design_capacity.real = this->design_capacity; *(outbuffer + offset + 0) = (u_design_capacity.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_design_capacity.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_design_capacity.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_design_capacity.base >> (8 * 3)) & 0xFF; offset += sizeof(this->design_capacity); union { float real; uint32_t base; } u_percentage; u_percentage.real = this->percentage; *(outbuffer + offset + 0) = (u_percentage.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_percentage.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_percentage.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_percentage.base >> (8 * 3)) & 0xFF; offset += sizeof(this->percentage); *(outbuffer + offset + 0) = (this->power_supply_status >> (8 * 0)) & 0xFF; offset += sizeof(this->power_supply_status); *(outbuffer + offset + 0) = (this->power_supply_health >> (8 * 0)) & 0xFF; offset += sizeof(this->power_supply_health); *(outbuffer + offset + 0) = (this->power_supply_technology >> (8 * 0)) & 0xFF; offset += sizeof(this->power_supply_technology); union { bool real; uint8_t base; } u_present; u_present.real = this->present; *(outbuffer + offset + 0) = (u_present.base >> (8 * 0)) & 0xFF; offset += sizeof(this->present); *(outbuffer + offset + 0) = (this->cell_voltage_length >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (this->cell_voltage_length >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (this->cell_voltage_length >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (this->cell_voltage_length >> (8 * 3)) & 0xFF; offset += sizeof(this->cell_voltage_length); for( uint32_t i = 0; i < cell_voltage_length; i++){ union { float real; uint32_t base; } u_cell_voltagei; u_cell_voltagei.real = this->cell_voltage[i]; *(outbuffer + offset + 0) = (u_cell_voltagei.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_cell_voltagei.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_cell_voltagei.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_cell_voltagei.base >> (8 * 3)) & 0xFF; offset += sizeof(this->cell_voltage[i]); } uint32_t length_location = strlen(this->location); varToArr(outbuffer + offset, length_location); offset += 4; memcpy(outbuffer + offset, this->location, length_location); offset += length_location; uint32_t length_serial_number = strlen(this->serial_number); varToArr(outbuffer + offset, length_serial_number); offset += 4; memcpy(outbuffer + offset, this->serial_number, length_serial_number); offset += length_serial_number; return offset; } virtual int deserialize(unsigned char *inbuffer) { int offset = 0; offset += this->header.deserialize(inbuffer + offset); union { float real; uint32_t base; } u_voltage; u_voltage.base = 0; u_voltage.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); u_voltage.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); u_voltage.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); u_voltage.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); this->voltage = u_voltage.real; offset += sizeof(this->voltage); union { float real; uint32_t base; } u_current; u_current.base = 0; u_current.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); u_current.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); u_current.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); u_current.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); this->current = u_current.real; offset += sizeof(this->current); union { float real; uint32_t base; } u_charge; u_charge.base = 0; u_charge.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); u_charge.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); u_charge.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); u_charge.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); this->charge = u_charge.real; offset += sizeof(this->charge); union { float real; uint32_t base; } u_capacity; u_capacity.base = 0; u_capacity.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); u_capacity.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); u_capacity.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); u_capacity.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); this->capacity = u_capacity.real; offset += sizeof(this->capacity); union { float real; uint32_t base; } u_design_capacity; u_design_capacity.base = 0; u_design_capacity.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); u_design_capacity.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); u_design_capacity.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); u_design_capacity.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); this->design_capacity = u_design_capacity.real; offset += sizeof(this->design_capacity); union { float real; uint32_t base; } u_percentage; u_percentage.base = 0; u_percentage.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); u_percentage.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); u_percentage.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); u_percentage.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); this->percentage = u_percentage.real; offset += sizeof(this->percentage); this->power_supply_status = ((uint8_t) (*(inbuffer + offset))); offset += sizeof(this->power_supply_status); this->power_supply_health = ((uint8_t) (*(inbuffer + offset))); offset += sizeof(this->power_supply_health); this->power_supply_technology = ((uint8_t) (*(inbuffer + offset))); offset += sizeof(this->power_supply_technology); union { bool real; uint8_t base; } u_present; u_present.base = 0; u_present.base |= ((uint8_t) (*(inbuffer + offset + 0))) << (8 * 0); this->present = u_present.real; offset += sizeof(this->present); uint32_t cell_voltage_lengthT = ((uint32_t) (*(inbuffer + offset))); cell_voltage_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); cell_voltage_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); cell_voltage_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); offset += sizeof(this->cell_voltage_length); if(cell_voltage_lengthT > cell_voltage_length) this->cell_voltage = (float*)realloc(this->cell_voltage, cell_voltage_lengthT * sizeof(float)); cell_voltage_length = cell_voltage_lengthT; for( uint32_t i = 0; i < cell_voltage_length; i++){ union { float real; uint32_t base; } u_st_cell_voltage; u_st_cell_voltage.base = 0; u_st_cell_voltage.base |= ((uint32_t) (*(inbuffer + offset + 0))) << (8 * 0); u_st_cell_voltage.base |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); u_st_cell_voltage.base |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); u_st_cell_voltage.base |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); this->st_cell_voltage = u_st_cell_voltage.real; offset += sizeof(this->st_cell_voltage); memcpy( &(this->cell_voltage[i]), &(this->st_cell_voltage), sizeof(float)); } uint32_t length_location; arrToVar(length_location, (inbuffer + offset)); offset += 4; for(unsigned int k= offset; k< offset+length_location; ++k){ inbuffer[k-1]=inbuffer[k]; } inbuffer[offset+length_location-1]=0; this->location = (char *)(inbuffer + offset-1); offset += length_location; uint32_t length_serial_number; arrToVar(length_serial_number, (inbuffer + offset)); offset += 4; for(unsigned int k= offset; k< offset+length_serial_number; ++k){ inbuffer[k-1]=inbuffer[k]; } inbuffer[offset+length_serial_number-1]=0; this->serial_number = (char *)(inbuffer + offset-1); offset += length_serial_number; return offset; } const char * getType(){ return "sensor_msgs/BatteryState"; }; const char * getMD5(){ return "476f837fa6771f6e16e3bf4ef96f8770"; }; }; } #endif