ROS Serial library for Mbed platforms for ROS Kinetic Kame. Check http://wiki.ros.org/rosserial_mbed/ for more information.

Dependencies:   BufferedSerial

Dependents:   rosserial_mbed_hello_world_publisher_kinetic s-rov-firmware ROS_HCSR04 DISCO-F469NI_LCDTS_demo ... more

ROSSerial_mbed for Kinetic Distribution

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.

Hello World (example publisher)

Import programrosserial_mbed_hello_world_publisher_kinetic

rosserial_mbed Hello World example for Kinetic Kame distribution

Running the Code

Now, launch the roscore in a new terminal window:

Quote:

$ roscore

Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:

Quote:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :

Quote:

$ rostopic echo chatter

See Also

More examples

Blink

/*
 * rosserial Subscriber Example
 * Blinks an LED on callback
 */
#include "mbed.h"
#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
DigitalOut myled(LED1);

void messageCb(const std_msgs::Empty& toggle_msg){
    myled = !myled;   // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

int main() {
    nh.initNode();
    nh.subscribe(sub);

    while (1) {
        nh.spinOnce();
        wait_ms(1);
    }
}

Push

/*
 * Button Example for Rosserial
 */

#include "mbed.h"
#include <ros.h>
#include <std_msgs/Bool.h>

PinName button = p20;

ros::NodeHandle nh;

std_msgs::Bool pushed_msg;
ros::Publisher pub_button("pushed", &pushed_msg);

DigitalIn button_pin(button);
DigitalOut led_pin(LED1);

bool last_reading;
long last_debounce_time=0;
long debounce_delay=50;
bool published = true;

Timer t;
int main() {
    t.start();
    nh.initNode();
    nh.advertise(pub_button);

    //Enable the pullup resistor on the button
    button_pin.mode(PullUp);

    //The button is a normally button
    last_reading = ! button_pin;

    while (1) {
        bool reading = ! button_pin;

        if (last_reading!= reading) {
            last_debounce_time = t.read_ms();
            published = false;
        }

        //if the button value has not changed for the debounce delay, we know its stable
        if ( !published && (t.read_ms() - last_debounce_time)  > debounce_delay) {
            led_pin = reading;
            pushed_msg.data = reading;
            pub_button.publish(&pushed_msg);
            published = true;
        }

        last_reading = reading;

        nh.spinOnce();
    }
}

control_msgs/FollowJointTrajectoryGoal.h

Committer:
garyservin
Date:
2016-12-31
Revision:
1:a849bf78d77f
Parent:
0:9e9b7db60fd5

File content as of revision 1:a849bf78d77f:

#ifndef _ROS_control_msgs_FollowJointTrajectoryGoal_h
#define _ROS_control_msgs_FollowJointTrajectoryGoal_h

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "ros/msg.h"
#include "trajectory_msgs/JointTrajectory.h"
#include "control_msgs/JointTolerance.h"
#include "ros/duration.h"

namespace control_msgs
{

  class FollowJointTrajectoryGoal : public ros::Msg
  {
    public:
      typedef trajectory_msgs::JointTrajectory _trajectory_type;
      _trajectory_type trajectory;
      uint32_t path_tolerance_length;
      typedef control_msgs::JointTolerance _path_tolerance_type;
      _path_tolerance_type st_path_tolerance;
      _path_tolerance_type * path_tolerance;
      uint32_t goal_tolerance_length;
      typedef control_msgs::JointTolerance _goal_tolerance_type;
      _goal_tolerance_type st_goal_tolerance;
      _goal_tolerance_type * goal_tolerance;
      typedef ros::Duration _goal_time_tolerance_type;
      _goal_time_tolerance_type goal_time_tolerance;

    FollowJointTrajectoryGoal():
      trajectory(),
      path_tolerance_length(0), path_tolerance(NULL),
      goal_tolerance_length(0), goal_tolerance(NULL),
      goal_time_tolerance()
    {
    }

    virtual int serialize(unsigned char *outbuffer) const
    {
      int offset = 0;
      offset += this->trajectory.serialize(outbuffer + offset);
      *(outbuffer + offset + 0) = (this->path_tolerance_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->path_tolerance_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->path_tolerance_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->path_tolerance_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->path_tolerance_length);
      for( uint32_t i = 0; i < path_tolerance_length; i++){
      offset += this->path_tolerance[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset + 0) = (this->goal_tolerance_length >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->goal_tolerance_length >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->goal_tolerance_length >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->goal_tolerance_length >> (8 * 3)) & 0xFF;
      offset += sizeof(this->goal_tolerance_length);
      for( uint32_t i = 0; i < goal_tolerance_length; i++){
      offset += this->goal_tolerance[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset + 0) = (this->goal_time_tolerance.sec >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->goal_time_tolerance.sec >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->goal_time_tolerance.sec >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->goal_time_tolerance.sec >> (8 * 3)) & 0xFF;
      offset += sizeof(this->goal_time_tolerance.sec);
      *(outbuffer + offset + 0) = (this->goal_time_tolerance.nsec >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->goal_time_tolerance.nsec >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->goal_time_tolerance.nsec >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->goal_time_tolerance.nsec >> (8 * 3)) & 0xFF;
      offset += sizeof(this->goal_time_tolerance.nsec);
      return offset;
    }

    virtual int deserialize(unsigned char *inbuffer)
    {
      int offset = 0;
      offset += this->trajectory.deserialize(inbuffer + offset);
      uint32_t path_tolerance_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      path_tolerance_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      path_tolerance_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      path_tolerance_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->path_tolerance_length);
      if(path_tolerance_lengthT > path_tolerance_length)
        this->path_tolerance = (control_msgs::JointTolerance*)realloc(this->path_tolerance, path_tolerance_lengthT * sizeof(control_msgs::JointTolerance));
      path_tolerance_length = path_tolerance_lengthT;
      for( uint32_t i = 0; i < path_tolerance_length; i++){
      offset += this->st_path_tolerance.deserialize(inbuffer + offset);
        memcpy( &(this->path_tolerance[i]), &(this->st_path_tolerance), sizeof(control_msgs::JointTolerance));
      }
      uint32_t goal_tolerance_lengthT = ((uint32_t) (*(inbuffer + offset))); 
      goal_tolerance_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); 
      goal_tolerance_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); 
      goal_tolerance_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); 
      offset += sizeof(this->goal_tolerance_length);
      if(goal_tolerance_lengthT > goal_tolerance_length)
        this->goal_tolerance = (control_msgs::JointTolerance*)realloc(this->goal_tolerance, goal_tolerance_lengthT * sizeof(control_msgs::JointTolerance));
      goal_tolerance_length = goal_tolerance_lengthT;
      for( uint32_t i = 0; i < goal_tolerance_length; i++){
      offset += this->st_goal_tolerance.deserialize(inbuffer + offset);
        memcpy( &(this->goal_tolerance[i]), &(this->st_goal_tolerance), sizeof(control_msgs::JointTolerance));
      }
      this->goal_time_tolerance.sec =  ((uint32_t) (*(inbuffer + offset)));
      this->goal_time_tolerance.sec |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      this->goal_time_tolerance.sec |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      this->goal_time_tolerance.sec |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      offset += sizeof(this->goal_time_tolerance.sec);
      this->goal_time_tolerance.nsec =  ((uint32_t) (*(inbuffer + offset)));
      this->goal_time_tolerance.nsec |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      this->goal_time_tolerance.nsec |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      this->goal_time_tolerance.nsec |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      offset += sizeof(this->goal_time_tolerance.nsec);
     return offset;
    }

    const char * getType(){ return "control_msgs/FollowJointTrajectoryGoal"; };
    const char * getMD5(){ return "69636787b6ecbde4d61d711979bc7ecb"; };

  };

}
#endif