ROS Serial library for Mbed platforms for ROS Kinetic Kame. Check http://wiki.ros.org/rosserial_mbed/ for more information.
Dependents: rosserial_mbed_hello_world_publisher_kinetic s-rov-firmware ROS_HCSR04 DISCO-F469NI_LCDTS_demo ... more
ROSSerial_mbed for Kinetic Distribution
The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.
The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.
Hello World (example publisher)
Import programrosserial_mbed_hello_world_publisher_kinetic
rosserial_mbed Hello World example for Kinetic Kame distribution
Running the Code
Now, launch the roscore in a new terminal window:
Quote:
$ roscore
Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:
Quote:
$ rosrun rosserial_python serial_node.py /dev/ttyACM0
Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :
Quote:
$ rostopic echo chatter
See Also
More examples
Blink
/* * rosserial Subscriber Example * Blinks an LED on callback */ #include "mbed.h" #include <ros.h> #include <std_msgs/Empty.h> ros::NodeHandle nh; DigitalOut myled(LED1); void messageCb(const std_msgs::Empty& toggle_msg){ myled = !myled; // blink the led } ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb); int main() { nh.initNode(); nh.subscribe(sub); while (1) { nh.spinOnce(); wait_ms(1); } }
Push
/* * Button Example for Rosserial */ #include "mbed.h" #include <ros.h> #include <std_msgs/Bool.h> PinName button = p20; ros::NodeHandle nh; std_msgs::Bool pushed_msg; ros::Publisher pub_button("pushed", &pushed_msg); DigitalIn button_pin(button); DigitalOut led_pin(LED1); bool last_reading; long last_debounce_time=0; long debounce_delay=50; bool published = true; Timer t; int main() { t.start(); nh.initNode(); nh.advertise(pub_button); //Enable the pullup resistor on the button button_pin.mode(PullUp); //The button is a normally button last_reading = ! button_pin; while (1) { bool reading = ! button_pin; if (last_reading!= reading) { last_debounce_time = t.read_ms(); published = false; } //if the button value has not changed for the debounce delay, we know its stable if ( !published && (t.read_ms() - last_debounce_time) > debounce_delay) { led_pin = reading; pushed_msg.data = reading; pub_button.publish(&pushed_msg); published = true; } last_reading = reading; nh.spinOnce(); } }
gazebo_msgs/GetWorldProperties.h
- Committer:
- garyservin
- Date:
- 2016-12-31
- Revision:
- 0:9e9b7db60fd5
File content as of revision 0:9e9b7db60fd5:
#ifndef _ROS_SERVICE_GetWorldProperties_h #define _ROS_SERVICE_GetWorldProperties_h #include <stdint.h> #include <string.h> #include <stdlib.h> #include "ros/msg.h" namespace gazebo_msgs { static const char GETWORLDPROPERTIES[] = "gazebo_msgs/GetWorldProperties"; class GetWorldPropertiesRequest : public ros::Msg { public: GetWorldPropertiesRequest() { } virtual int serialize(unsigned char *outbuffer) const { int offset = 0; return offset; } virtual int deserialize(unsigned char *inbuffer) { int offset = 0; return offset; } const char * getType(){ return GETWORLDPROPERTIES; }; const char * getMD5(){ return "d41d8cd98f00b204e9800998ecf8427e"; }; }; class GetWorldPropertiesResponse : public ros::Msg { public: typedef double _sim_time_type; _sim_time_type sim_time; uint32_t model_names_length; typedef char* _model_names_type; _model_names_type st_model_names; _model_names_type * model_names; typedef bool _rendering_enabled_type; _rendering_enabled_type rendering_enabled; typedef bool _success_type; _success_type success; typedef const char* _status_message_type; _status_message_type status_message; GetWorldPropertiesResponse(): sim_time(0), model_names_length(0), model_names(NULL), rendering_enabled(0), success(0), status_message("") { } virtual int serialize(unsigned char *outbuffer) const { int offset = 0; union { double real; uint64_t base; } u_sim_time; u_sim_time.real = this->sim_time; *(outbuffer + offset + 0) = (u_sim_time.base >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (u_sim_time.base >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (u_sim_time.base >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (u_sim_time.base >> (8 * 3)) & 0xFF; *(outbuffer + offset + 4) = (u_sim_time.base >> (8 * 4)) & 0xFF; *(outbuffer + offset + 5) = (u_sim_time.base >> (8 * 5)) & 0xFF; *(outbuffer + offset + 6) = (u_sim_time.base >> (8 * 6)) & 0xFF; *(outbuffer + offset + 7) = (u_sim_time.base >> (8 * 7)) & 0xFF; offset += sizeof(this->sim_time); *(outbuffer + offset + 0) = (this->model_names_length >> (8 * 0)) & 0xFF; *(outbuffer + offset + 1) = (this->model_names_length >> (8 * 1)) & 0xFF; *(outbuffer + offset + 2) = (this->model_names_length >> (8 * 2)) & 0xFF; *(outbuffer + offset + 3) = (this->model_names_length >> (8 * 3)) & 0xFF; offset += sizeof(this->model_names_length); for( uint32_t i = 0; i < model_names_length; i++){ uint32_t length_model_namesi = strlen(this->model_names[i]); varToArr(outbuffer + offset, length_model_namesi); offset += 4; memcpy(outbuffer + offset, this->model_names[i], length_model_namesi); offset += length_model_namesi; } union { bool real; uint8_t base; } u_rendering_enabled; u_rendering_enabled.real = this->rendering_enabled; *(outbuffer + offset + 0) = (u_rendering_enabled.base >> (8 * 0)) & 0xFF; offset += sizeof(this->rendering_enabled); union { bool real; uint8_t base; } u_success; u_success.real = this->success; *(outbuffer + offset + 0) = (u_success.base >> (8 * 0)) & 0xFF; offset += sizeof(this->success); uint32_t length_status_message = strlen(this->status_message); varToArr(outbuffer + offset, length_status_message); offset += 4; memcpy(outbuffer + offset, this->status_message, length_status_message); offset += length_status_message; return offset; } virtual int deserialize(unsigned char *inbuffer) { int offset = 0; union { double real; uint64_t base; } u_sim_time; u_sim_time.base = 0; u_sim_time.base |= ((uint64_t) (*(inbuffer + offset + 0))) << (8 * 0); u_sim_time.base |= ((uint64_t) (*(inbuffer + offset + 1))) << (8 * 1); u_sim_time.base |= ((uint64_t) (*(inbuffer + offset + 2))) << (8 * 2); u_sim_time.base |= ((uint64_t) (*(inbuffer + offset + 3))) << (8 * 3); u_sim_time.base |= ((uint64_t) (*(inbuffer + offset + 4))) << (8 * 4); u_sim_time.base |= ((uint64_t) (*(inbuffer + offset + 5))) << (8 * 5); u_sim_time.base |= ((uint64_t) (*(inbuffer + offset + 6))) << (8 * 6); u_sim_time.base |= ((uint64_t) (*(inbuffer + offset + 7))) << (8 * 7); this->sim_time = u_sim_time.real; offset += sizeof(this->sim_time); uint32_t model_names_lengthT = ((uint32_t) (*(inbuffer + offset))); model_names_lengthT |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1); model_names_lengthT |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2); model_names_lengthT |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3); offset += sizeof(this->model_names_length); if(model_names_lengthT > model_names_length) this->model_names = (char**)realloc(this->model_names, model_names_lengthT * sizeof(char*)); model_names_length = model_names_lengthT; for( uint32_t i = 0; i < model_names_length; i++){ uint32_t length_st_model_names; arrToVar(length_st_model_names, (inbuffer + offset)); offset += 4; for(unsigned int k= offset; k< offset+length_st_model_names; ++k){ inbuffer[k-1]=inbuffer[k]; } inbuffer[offset+length_st_model_names-1]=0; this->st_model_names = (char *)(inbuffer + offset-1); offset += length_st_model_names; memcpy( &(this->model_names[i]), &(this->st_model_names), sizeof(char*)); } union { bool real; uint8_t base; } u_rendering_enabled; u_rendering_enabled.base = 0; u_rendering_enabled.base |= ((uint8_t) (*(inbuffer + offset + 0))) << (8 * 0); this->rendering_enabled = u_rendering_enabled.real; offset += sizeof(this->rendering_enabled); union { bool real; uint8_t base; } u_success; u_success.base = 0; u_success.base |= ((uint8_t) (*(inbuffer + offset + 0))) << (8 * 0); this->success = u_success.real; offset += sizeof(this->success); uint32_t length_status_message; arrToVar(length_status_message, (inbuffer + offset)); offset += 4; for(unsigned int k= offset; k< offset+length_status_message; ++k){ inbuffer[k-1]=inbuffer[k]; } inbuffer[offset+length_status_message-1]=0; this->status_message = (char *)(inbuffer + offset-1); offset += length_status_message; return offset; } const char * getType(){ return GETWORLDPROPERTIES; }; const char * getMD5(){ return "36bb0f2eccf4d8be971410c22818ba3f"; }; }; class GetWorldProperties { public: typedef GetWorldPropertiesRequest Request; typedef GetWorldPropertiesResponse Response; }; } #endif