ROS Serial library for Mbed platforms for ROS Kinetic Kame. Check http://wiki.ros.org/rosserial_mbed/ for more information.

Dependencies:   BufferedSerial

Dependents:   rosserial_mbed_hello_world_publisher_kinetic s-rov-firmware ROS_HCSR04 DISCO-F469NI_LCDTS_demo ... more

ROSSerial_mbed for Kinetic Distribution

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.

Hello World (example publisher)

Import programrosserial_mbed_hello_world_publisher_kinetic

rosserial_mbed Hello World example for Kinetic Kame distribution

Running the Code

Now, launch the roscore in a new terminal window:

Quote:

$ roscore

Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:

Quote:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :

Quote:

$ rostopic echo chatter

See Also

More examples

Blink

/*
 * rosserial Subscriber Example
 * Blinks an LED on callback
 */
#include "mbed.h"
#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
DigitalOut myled(LED1);

void messageCb(const std_msgs::Empty& toggle_msg){
    myled = !myled;   // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

int main() {
    nh.initNode();
    nh.subscribe(sub);

    while (1) {
        nh.spinOnce();
        wait_ms(1);
    }
}

Push

/*
 * Button Example for Rosserial
 */

#include "mbed.h"
#include <ros.h>
#include <std_msgs/Bool.h>

PinName button = p20;

ros::NodeHandle nh;

std_msgs::Bool pushed_msg;
ros::Publisher pub_button("pushed", &pushed_msg);

DigitalIn button_pin(button);
DigitalOut led_pin(LED1);

bool last_reading;
long last_debounce_time=0;
long debounce_delay=50;
bool published = true;

Timer t;
int main() {
    t.start();
    nh.initNode();
    nh.advertise(pub_button);

    //Enable the pullup resistor on the button
    button_pin.mode(PullUp);

    //The button is a normally button
    last_reading = ! button_pin;

    while (1) {
        bool reading = ! button_pin;

        if (last_reading!= reading) {
            last_debounce_time = t.read_ms();
            published = false;
        }

        //if the button value has not changed for the debounce delay, we know its stable
        if ( !published && (t.read_ms() - last_debounce_time)  > debounce_delay) {
            led_pin = reading;
            pushed_msg.data = reading;
            pub_button.publish(&pushed_msg);
            published = true;
        }

        last_reading = reading;

        nh.spinOnce();
    }
}

gazebo_msgs/ApplyJointEffort.h

Committer:
garyservin
Date:
2016-12-31
Revision:
0:9e9b7db60fd5

File content as of revision 0:9e9b7db60fd5:

#ifndef _ROS_SERVICE_ApplyJointEffort_h
#define _ROS_SERVICE_ApplyJointEffort_h
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "ros/msg.h"
#include "ros/duration.h"
#include "ros/time.h"

namespace gazebo_msgs
{

static const char APPLYJOINTEFFORT[] = "gazebo_msgs/ApplyJointEffort";

  class ApplyJointEffortRequest : public ros::Msg
  {
    public:
      typedef const char* _joint_name_type;
      _joint_name_type joint_name;
      typedef double _effort_type;
      _effort_type effort;
      typedef ros::Time _start_time_type;
      _start_time_type start_time;
      typedef ros::Duration _duration_type;
      _duration_type duration;

    ApplyJointEffortRequest():
      joint_name(""),
      effort(0),
      start_time(),
      duration()
    {
    }

    virtual int serialize(unsigned char *outbuffer) const
    {
      int offset = 0;
      uint32_t length_joint_name = strlen(this->joint_name);
      varToArr(outbuffer + offset, length_joint_name);
      offset += 4;
      memcpy(outbuffer + offset, this->joint_name, length_joint_name);
      offset += length_joint_name;
      union {
        double real;
        uint64_t base;
      } u_effort;
      u_effort.real = this->effort;
      *(outbuffer + offset + 0) = (u_effort.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_effort.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_effort.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_effort.base >> (8 * 3)) & 0xFF;
      *(outbuffer + offset + 4) = (u_effort.base >> (8 * 4)) & 0xFF;
      *(outbuffer + offset + 5) = (u_effort.base >> (8 * 5)) & 0xFF;
      *(outbuffer + offset + 6) = (u_effort.base >> (8 * 6)) & 0xFF;
      *(outbuffer + offset + 7) = (u_effort.base >> (8 * 7)) & 0xFF;
      offset += sizeof(this->effort);
      *(outbuffer + offset + 0) = (this->start_time.sec >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->start_time.sec >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->start_time.sec >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->start_time.sec >> (8 * 3)) & 0xFF;
      offset += sizeof(this->start_time.sec);
      *(outbuffer + offset + 0) = (this->start_time.nsec >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->start_time.nsec >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->start_time.nsec >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->start_time.nsec >> (8 * 3)) & 0xFF;
      offset += sizeof(this->start_time.nsec);
      *(outbuffer + offset + 0) = (this->duration.sec >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->duration.sec >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->duration.sec >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->duration.sec >> (8 * 3)) & 0xFF;
      offset += sizeof(this->duration.sec);
      *(outbuffer + offset + 0) = (this->duration.nsec >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (this->duration.nsec >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (this->duration.nsec >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (this->duration.nsec >> (8 * 3)) & 0xFF;
      offset += sizeof(this->duration.nsec);
      return offset;
    }

    virtual int deserialize(unsigned char *inbuffer)
    {
      int offset = 0;
      uint32_t length_joint_name;
      arrToVar(length_joint_name, (inbuffer + offset));
      offset += 4;
      for(unsigned int k= offset; k< offset+length_joint_name; ++k){
          inbuffer[k-1]=inbuffer[k];
      }
      inbuffer[offset+length_joint_name-1]=0;
      this->joint_name = (char *)(inbuffer + offset-1);
      offset += length_joint_name;
      union {
        double real;
        uint64_t base;
      } u_effort;
      u_effort.base = 0;
      u_effort.base |= ((uint64_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_effort.base |= ((uint64_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_effort.base |= ((uint64_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_effort.base |= ((uint64_t) (*(inbuffer + offset + 3))) << (8 * 3);
      u_effort.base |= ((uint64_t) (*(inbuffer + offset + 4))) << (8 * 4);
      u_effort.base |= ((uint64_t) (*(inbuffer + offset + 5))) << (8 * 5);
      u_effort.base |= ((uint64_t) (*(inbuffer + offset + 6))) << (8 * 6);
      u_effort.base |= ((uint64_t) (*(inbuffer + offset + 7))) << (8 * 7);
      this->effort = u_effort.real;
      offset += sizeof(this->effort);
      this->start_time.sec =  ((uint32_t) (*(inbuffer + offset)));
      this->start_time.sec |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      this->start_time.sec |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      this->start_time.sec |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      offset += sizeof(this->start_time.sec);
      this->start_time.nsec =  ((uint32_t) (*(inbuffer + offset)));
      this->start_time.nsec |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      this->start_time.nsec |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      this->start_time.nsec |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      offset += sizeof(this->start_time.nsec);
      this->duration.sec =  ((uint32_t) (*(inbuffer + offset)));
      this->duration.sec |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      this->duration.sec |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      this->duration.sec |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      offset += sizeof(this->duration.sec);
      this->duration.nsec =  ((uint32_t) (*(inbuffer + offset)));
      this->duration.nsec |= ((uint32_t) (*(inbuffer + offset + 1))) << (8 * 1);
      this->duration.nsec |= ((uint32_t) (*(inbuffer + offset + 2))) << (8 * 2);
      this->duration.nsec |= ((uint32_t) (*(inbuffer + offset + 3))) << (8 * 3);
      offset += sizeof(this->duration.nsec);
     return offset;
    }

    const char * getType(){ return APPLYJOINTEFFORT; };
    const char * getMD5(){ return "2c3396ab9af67a509ecd2167a8fe41a2"; };

  };

  class ApplyJointEffortResponse : public ros::Msg
  {
    public:
      typedef bool _success_type;
      _success_type success;
      typedef const char* _status_message_type;
      _status_message_type status_message;

    ApplyJointEffortResponse():
      success(0),
      status_message("")
    {
    }

    virtual int serialize(unsigned char *outbuffer) const
    {
      int offset = 0;
      union {
        bool real;
        uint8_t base;
      } u_success;
      u_success.real = this->success;
      *(outbuffer + offset + 0) = (u_success.base >> (8 * 0)) & 0xFF;
      offset += sizeof(this->success);
      uint32_t length_status_message = strlen(this->status_message);
      varToArr(outbuffer + offset, length_status_message);
      offset += 4;
      memcpy(outbuffer + offset, this->status_message, length_status_message);
      offset += length_status_message;
      return offset;
    }

    virtual int deserialize(unsigned char *inbuffer)
    {
      int offset = 0;
      union {
        bool real;
        uint8_t base;
      } u_success;
      u_success.base = 0;
      u_success.base |= ((uint8_t) (*(inbuffer + offset + 0))) << (8 * 0);
      this->success = u_success.real;
      offset += sizeof(this->success);
      uint32_t length_status_message;
      arrToVar(length_status_message, (inbuffer + offset));
      offset += 4;
      for(unsigned int k= offset; k< offset+length_status_message; ++k){
          inbuffer[k-1]=inbuffer[k];
      }
      inbuffer[offset+length_status_message-1]=0;
      this->status_message = (char *)(inbuffer + offset-1);
      offset += length_status_message;
     return offset;
    }

    const char * getType(){ return APPLYJOINTEFFORT; };
    const char * getMD5(){ return "2ec6f3eff0161f4257b808b12bc830c2"; };

  };

  class ApplyJointEffort {
    public:
    typedef ApplyJointEffortRequest Request;
    typedef ApplyJointEffortResponse Response;
  };

}
#endif