Demo apps : receive a string from a client and respond with a different string, TCP/IP client

Dependencies:   CC3000_Hostdriver mbed

You are viewing an older revision! See the latest version

Homepage

Info

Demo application for testing the wireless CC3000 module on the Wi-Go board.

Warning

This application will only work when TI's Service Pack 1.11 is installed on the CC3000.
Run the PatchProgrammer before proceeding.

Setup

Note

It is recommended to run initial tests WITHOUT security settings.

  • Setup a wireless router with a non-secured wireless connection using the wireless settings stored in doTCPIP.h.
  • Alternatively, these settings can be altered to match the wireless router settings (SSID, security and non-DHCP parameters).
#define SSID           "iot"
#define AP_SECURITY    NONE    // no security but will connect quicker!  
#define STATIC_IP_OCT1 192
#define STATIC_IP_OCT2 168
#define STATIC_IP_OCT3 0
#define STATIC_IP_OCT4 10

#define STATIC_GW_OCT4 1       // Static Gateway address  = STATIC_IP_OCT1.STATIC_IP_OCT2.STATIC_IP_OCT3.STATIC_GW_OCT4


  • Download Python 2.7 from http://www.python.org/download/
    Install it on a computer able to make a wireless connection to the router we previously set up.
  • Make a wireless connection between your computer and the router.
  • Download this Python script to the Python2.7 folder (credit : Jim Carver from Avnet).
  • Import the CC3000_Simple_Socket code into your compiler and save it to the Wi-Go board.

Running the application for the first time

  • Open a terminal program (eg: TeraTerm) and connect to the Wi-Go module (serial speed : 115200 baud).
  • Press the reset button on the Wi-Go module.
  • Following startup screen will appear (the dots in the MAC address will show your CC3000's real MAC address):
CC3000 Python demo.


Wi-Go MAC address ..:..:..:..:..:..

FTC        0
PP_version 3.2
SERV_PACK  1.11
DRV_VER    7.13.19
FW_VER     7.12.14

<0> Normal run. SmartConfig will
    start if no valid connection exists.
<1> Connect using fixed SSID : iot
<2> SmartConfig.


  • For the initial test, select option <1> (Connect using fixed SSID : ...).
  • If all goes well, the following screen is shown (the IP address and mDNS status can be different):
Starting TCP/IP Server
RunSmartConfig= 0
Attempting SSID Connection
waiting
waiting
waiting
mDNS Status= 31be
Connected

*** Wi-Go board DHCP assigned IP Address = 192.168.0.101
mDNS Status= 3dbe
Server waiting for connection to Python


  • On the computer where you installed Python2.7:
    • Make sure the wireless connection between your computer and the router is active.
    • Open a DOS prompt and go to the folder where Python2.7 is installed.
    • Type following command :
python wigo_test.py -a 192.168.0.101 -p 15000


Note

Don't forget to replace the IP address with the real IP address assigned by DHCP to the CC3000 module.

If a connection is established, the DOS window will show

-----------------
run tcp client
-----------------
connected to  remote ip=192.168.0.101 remote port=15000
Press ENTER ....


In return the Wi-Go board will send following info to the serial port:

Connected


When we press Enter in the DOS window, the Wi-Go board will send following info to the serial port:

Input = Hello Wi-Go
status= 13
Done, press any key to repeat


And the DOS window will show:

recv from :  data:  Hello Python


Using the application's options <0> or <2>

Options <0> (Normal run) and <2> (SmartConfig) are very similar.
They both allow us to connect the CC3000 to another wireless network, without changing the pre-configured settings stored in doTCPIP.h.

As mentioned before, option <0> will automatically start SmartConfig if no valid connection exists (First Time Config),
but if the CC3000 was previously configured using SmartConfig, it will automatically connect to the wireless network.

Option <2> can be used to switch to another wireless connection.


See TI's pages on how to use the SmartConfig tool:

Ti Download page: Smart Config and Home Automation


All wikipages