Demo apps : receive a string from a client and respond with a different string, TCP/IP client

Dependencies:   CC3000_Hostdriver mbed

Note

Avnet Wi-Go board

For those using Avnet's Wi-Go board, there also is a full IOT demo available at
http://mbed.org/users/frankvnk/code/Wi-Go_IOT_Demo/

New cc3000 HostDriver release

For new projects, use cc3000 mbed socket compatible API driver and examples

Info

Demo application for testing the wireless CC3000 module on the Wi-Go board.

Warning

The on-board Firmware must be updated to mbed enable a Wi-Go system.
Goto the Component page to get the FirmwareUpdate tool (scroll down to the FirmwareUpdate topic).

Setup

Note

It is recommended to run initial tests WITHOUT security settings.

  • Setup a wireless router with a non-secured wireless connection using the wireless settings stored in doTCPIP.h.
  • Alternatively, these settings can be altered to match the wireless router settings (SSID, security and static IP parameters).
    When the unsecure test works, AP_KEY and AP_SECURITY can be enabled and set to your preferred values.
    Valid values for AP_SECURITY are : NONE, WEP, WPA and WPA2
// Modify the following settings as necessary for your Wi-Fi Network setup:
#define IP_ALLOC_METHOD USE_DHCP        // for DHCP assigned IP address   
//#define IP_ALLOC_METHOD USE_STATIC_IP // for static IP address

// Default SSID Settings
//#define AP_KEY         "thisthis" 
//#define AP_SECURITY    WPA2          // WPA2 must be enabled for use with iPhone or Android phone hotspot!

#define SSID           "iot"
#define STATIC_IP_OCT1 192
#define STATIC_IP_OCT2 168
#define STATIC_IP_OCT3 0
#define STATIC_IP_OCT4 10

#define STATIC_GW_OCT4 1       // Static Gateway address  = STATIC_IP_OCT1.STATIC_IP_OCT2.STATIC_IP_OCT3.STATIC_GW_OCT4


  • Download Python 2.7 from http://www.python.org/download/
    Install it on a computer able to make a wireless connection to the router we previously set up.
  • Make a wireless connection between your computer and the router.
  • Download this Python script to the Python2.7 folder (credit : Jim Carver from Avnet).
  • Import the CC3000_Simple_Socket code into your compiler and save it to the Wi-Go board.

Running the application for the first time

  • Open a terminal program (eg: TeraTerm) and connect to the Wi-Go module (serial speed : 115200 baud).
  • Press the reset button on the Wi-Go module.
  • Following startup screen will appear (the dots in the MAC address will show your CC3000's real MAC address):
CC3000 Python demo.


Wi-Go MAC address ..:..:..:..:..:..

FTC        1
PP_version 3.3
SERV_PACK  1.11
DRV_VER    7.13.19
FW_VER     7.12.14

<0> Normal run. SmartConfig will
    start if no valid connection exists.
<1> Connect using fixed SSID : iot
<2> TCP/IP client:
    Discover public IP address.
    Get time and date from a daytime server in Italy.
<9> SmartConfig.


  • For the initial test, select option <1> (Connect using fixed SSID : ...).
  • If all goes well, the following screen is shown (the IP address and mDNS status can be different):
Starting TCP/IP Server
RunSmartConfig= 0
Attempting SSID Connection
waiting
waiting
waiting
mDNS Status= 31be
Connected

*** Wi-Go board DHCP assigned IP Address = 192.168.0.101
mDNS Status= 3dbe
Server waiting for connection to Python


  • On the computer where you installed Python2.7:
    • Make sure the wireless connection between your computer and the router is active.
    • Open a DOS prompt and go to the folder where Python2.7 is installed.
    • Type following command :
python wigo_test.py -a 192.168.0.101 -p 15000


Note

Don't forget to replace the IP address with the real IP address assigned by DHCP to the CC3000 module.

If a connection is established, the DOS window will show

-----------------
run tcp client
-----------------
connected to  remote ip=192.168.0.101 remote port=15000
Press ENTER ....


In return the Wi-Go board will send following info to the serial port:

Connected


When we press Enter in the DOS window, the Wi-Go board will send following info to the serial port:

Input = Hello Wi-Go
status= 13
Done, press any key to repeat


And the DOS window will show:

recv from :  data:  Hello Python


Application option <2> : TCP/IP client

This is a simple demo to discover a public IP address and get the date and time from a daytime server (port 13).

Using the application's options <0> or <9>

Options <0> (Normal run) and <9> (SmartConfig) are very similar.
They both allow us to connect the CC3000 to another wireless network, without changing the pre-configured settings stored in doTCPIP.h.

As mentioned before, option <0> will automatically start SmartConfig if no valid connection exists (First Time Config),
but if the CC3000 was previously configured using SmartConfig, it will automatically connect to the wireless network.

Option <9> can be used to switch to another wireless connection.


See TI's pages on how to use the SmartConfig tool:

The Prefix can be set in cc3000.cpp. Do not change the default value for the prefix (TTT) when you want to use TI's Smartconfig application.

char aucCC3000_prefix[] = {'T', 'T', 'T'};      // Smart Config Prefix

The Device Name mentioned on the SmartConfig page is declared in doTCPIP.cpp

char DevServname[] = "CC3000";
Committer:
frankvnk
Date:
Sun Aug 18 07:06:20 2013 +0000
Revision:
2:13ced2cb5933
Parent:
1:32d1ef95eceb
Child:
6:4fb3776a9b92
improved program output

Who changed what in which revision?

UserRevisionLine numberNew contents of line
frankvnk 0:a8e46e27d041 1 /****************************************************************************
frankvnk 0:a8e46e27d041 2 *
frankvnk 0:a8e46e27d041 3 * doTCPIP.cpp - CC3000 TCP/IP
frankvnk 0:a8e46e27d041 4 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
frankvnk 0:a8e46e27d041 5 *
frankvnk 0:a8e46e27d041 6 * Redistribution and use in source and binary forms, with or without
frankvnk 0:a8e46e27d041 7 * modification, are permitted provided that the following conditions
frankvnk 0:a8e46e27d041 8 * are met:
frankvnk 0:a8e46e27d041 9 *
frankvnk 0:a8e46e27d041 10 * Redistributions of source code must retain the above copyright
frankvnk 0:a8e46e27d041 11 * notice, this list of conditions and the following disclaimer.
frankvnk 0:a8e46e27d041 12 *
frankvnk 0:a8e46e27d041 13 * Redistributions in binary form must reproduce the above copyright
frankvnk 0:a8e46e27d041 14 * notice, this list of conditions and the following disclaimer in the
frankvnk 0:a8e46e27d041 15 * documentation and/or other materials provided with the
frankvnk 0:a8e46e27d041 16 * distribution.
frankvnk 0:a8e46e27d041 17 *
frankvnk 0:a8e46e27d041 18 * Neither the name of Texas Instruments Incorporated nor the names of
frankvnk 0:a8e46e27d041 19 * its contributors may be used to endorse or promote products derived
frankvnk 0:a8e46e27d041 20 * from this software without specific prior written permission.
frankvnk 0:a8e46e27d041 21 *
frankvnk 0:a8e46e27d041 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
frankvnk 0:a8e46e27d041 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
frankvnk 0:a8e46e27d041 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
frankvnk 0:a8e46e27d041 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
frankvnk 0:a8e46e27d041 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
frankvnk 0:a8e46e27d041 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
frankvnk 0:a8e46e27d041 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
frankvnk 0:a8e46e27d041 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
frankvnk 0:a8e46e27d041 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
frankvnk 0:a8e46e27d041 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
frankvnk 0:a8e46e27d041 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
frankvnk 0:a8e46e27d041 33 *
frankvnk 0:a8e46e27d041 34 *****************************************************************************/
frankvnk 0:a8e46e27d041 35
frankvnk 0:a8e46e27d041 36 #include "doTCPIP.h"
frankvnk 0:a8e46e27d041 37
frankvnk 0:a8e46e27d041 38 volatile unsigned char newData;
frankvnk 2:13ced2cb5933 39 //int server_running;
frankvnk 0:a8e46e27d041 40 unsigned char ForceFixedSSID;
frankvnk 0:a8e46e27d041 41 char runSmartConfig; // Flag indicating whether user requested to perform Smart Config
frankvnk 0:a8e46e27d041 42 volatile unsigned long ulCC3000Connected;
frankvnk 0:a8e46e27d041 43 unsigned char ConnectUsingSmartConfig;
frankvnk 0:a8e46e27d041 44 unsigned char myMAC[8];
frankvnk 0:a8e46e27d041 45 userFS_t userFS;
frankvnk 0:a8e46e27d041 46
frankvnk 0:a8e46e27d041 47 // Setup the functions to handle our CGI parameters
frankvnk 0:a8e46e27d041 48 tNetappIpconfigRetArgs ipinfo2;
frankvnk 0:a8e46e27d041 49 char requestBuffer[REQ_BUFFER_SIZE];
frankvnk 0:a8e46e27d041 50 int LAN_Connected = 0;
frankvnk 0:a8e46e27d041 51
frankvnk 0:a8e46e27d041 52 unsigned char SmartConfigProfilestored = 0xff;
frankvnk 0:a8e46e27d041 53
frankvnk 0:a8e46e27d041 54
frankvnk 0:a8e46e27d041 55 /** \brief Flag indicating whether to print CC3000 Connection info */
frankvnk 0:a8e46e27d041 56 static unsigned char obtainIpInfoFlag = FALSE;
frankvnk 0:a8e46e27d041 57 //Device name - used for Smart config in order to stop the Smart phone configuration process
frankvnk 0:a8e46e27d041 58 char DevServname[] = "CC3000";
frankvnk 0:a8e46e27d041 59 volatile unsigned long SendmDNSAdvertisment;
frankvnk 0:a8e46e27d041 60
frankvnk 0:a8e46e27d041 61
frankvnk 0:a8e46e27d041 62
frankvnk 0:a8e46e27d041 63 void sendPython(int port)
frankvnk 0:a8e46e27d041 64 {
frankvnk 0:a8e46e27d041 65 char python_msg[] = "Hello Python\n";
frankvnk 0:a8e46e27d041 66 int stat;
frankvnk 0:a8e46e27d041 67 long sock;
frankvnk 0:a8e46e27d041 68 //new TCP socket descriptor
frankvnk 0:a8e46e27d041 69 long newsock;
frankvnk 0:a8e46e27d041 70 //destination address
frankvnk 0:a8e46e27d041 71 sockaddr destAddr;
frankvnk 0:a8e46e27d041 72 //local address
frankvnk 0:a8e46e27d041 73 sockaddr LocalAddr;
frankvnk 0:a8e46e27d041 74 socklen_t addrlen;
frankvnk 0:a8e46e27d041 75 memset(&LocalAddr, 0, 8);
frankvnk 0:a8e46e27d041 76 LocalAddr.sa_family = AF_INET;
frankvnk 0:a8e46e27d041 77 LocalAddr.sa_data[0] = (port >> 8) & 0xff;
frankvnk 0:a8e46e27d041 78 LocalAddr.sa_data[1] = port & 0xff;
frankvnk 0:a8e46e27d041 79 memset (&LocalAddr.sa_data[2], 0, 4);
frankvnk 0:a8e46e27d041 80 sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
frankvnk 0:a8e46e27d041 81 while(sock == -1) sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_TCP);
frankvnk 0:a8e46e27d041 82 bind(sock,&LocalAddr,sizeof(sockaddr));
frankvnk 0:a8e46e27d041 83 listen(sock, 1);
frankvnk 0:a8e46e27d041 84 addrlen = sizeof(destAddr);
frankvnk 0:a8e46e27d041 85 while(1)
frankvnk 0:a8e46e27d041 86 {
frankvnk 0:a8e46e27d041 87 newsock = -2;
frankvnk 2:13ced2cb5933 88 printf("\nServer waiting for connection to Python\n");
frankvnk 0:a8e46e27d041 89 LED_D2_ON;
frankvnk 0:a8e46e27d041 90 while((newsock == -1) || (newsock == -2))
frankvnk 0:a8e46e27d041 91 {
frankvnk 0:a8e46e27d041 92 newsock = accept(sock,&destAddr, &addrlen);
frankvnk 0:a8e46e27d041 93 }
frankvnk 0:a8e46e27d041 94 printf("Connected\n");
frankvnk 0:a8e46e27d041 95 //receive TCP data
frankvnk 0:a8e46e27d041 96 if(newsock >= 0)
frankvnk 0:a8e46e27d041 97 {
frankvnk 2:13ced2cb5933 98 stat = recv(newsock, requestBuffer,20,0);
frankvnk 2:13ced2cb5933 99 if(stat > 0)
frankvnk 2:13ced2cb5933 100 {
frankvnk 2:13ced2cb5933 101 printf("Receive Status= %d, Input = %s\n", stat, requestBuffer);
frankvnk 2:13ced2cb5933 102 stat = -2;
frankvnk 2:13ced2cb5933 103 stat = send(newsock, python_msg, strlen(python_msg), 0);
frankvnk 2:13ced2cb5933 104 printf("Send status= %d\n", stat);
frankvnk 2:13ced2cb5933 105 LED_D2_OFF;
frankvnk 2:13ced2cb5933 106 }
frankvnk 2:13ced2cb5933 107 else
frankvnk 2:13ced2cb5933 108 {
frankvnk 2:13ced2cb5933 109 printf("ERROR %d", stat);
frankvnk 2:13ced2cb5933 110 switch (stat)
frankvnk 2:13ced2cb5933 111 {
frankvnk 2:13ced2cb5933 112 case -1:
frankvnk 2:13ced2cb5933 113 {
frankvnk 2:13ced2cb5933 114 printf(": remote socket closed.\n");
frankvnk 2:13ced2cb5933 115 break;
frankvnk 2:13ced2cb5933 116 }
frankvnk 2:13ced2cb5933 117 case -2:
frankvnk 2:13ced2cb5933 118 {
frankvnk 2:13ced2cb5933 119 printf(": no buffers available.\n");
frankvnk 2:13ced2cb5933 120 break;
frankvnk 2:13ced2cb5933 121 }
frankvnk 2:13ced2cb5933 122 case -57:
frankvnk 2:13ced2cb5933 123 {
frankvnk 2:13ced2cb5933 124 printf(": timeout - no reply from remote.\n");
frankvnk 2:13ced2cb5933 125 break;
frankvnk 2:13ced2cb5933 126 }
frankvnk 2:13ced2cb5933 127 default:
frankvnk 2:13ced2cb5933 128 printf("\n");
frankvnk 2:13ced2cb5933 129 }
frankvnk 2:13ced2cb5933 130 }
frankvnk 0:a8e46e27d041 131 } else printf("bad socket= %d\n", newsock);
frankvnk 0:a8e46e27d041 132 closesocket(newsock);
frankvnk 0:a8e46e27d041 133 printf("Done, press any key to repeat\n");
frankvnk 0:a8e46e27d041 134 getchar();
frankvnk 1:32d1ef95eceb 135 // printf("\x1B[2J"); //VT100 erase screen
frankvnk 1:32d1ef95eceb 136 // printf("\x1B[H"); //VT100 home
frankvnk 0:a8e46e27d041 137 }
frankvnk 0:a8e46e27d041 138 }
frankvnk 0:a8e46e27d041 139
frankvnk 0:a8e46e27d041 140 void initTCPIP(void)
frankvnk 0:a8e46e27d041 141 {
frankvnk 0:a8e46e27d041 142 int t;
frankvnk 0:a8e46e27d041 143 LAN_Connected = 0;
frankvnk 0:a8e46e27d041 144 // Start CC3000 State Machine
frankvnk 0:a8e46e27d041 145 resetCC3000StateMachine();
frankvnk 0:a8e46e27d041 146 ulCC3000DHCP = 0;
frankvnk 0:a8e46e27d041 147 ulCC3000Connected = 0;
frankvnk 0:a8e46e27d041 148 // Initialize Board and CC3000
frankvnk 0:a8e46e27d041 149 initDriver();
frankvnk 0:a8e46e27d041 150 printf("RunSmartConfig= %d\n", runSmartConfig);
frankvnk 0:a8e46e27d041 151 if(runSmartConfig == 1 )
frankvnk 0:a8e46e27d041 152 {
frankvnk 0:a8e46e27d041 153 // Clear flag
frankvnk 0:a8e46e27d041 154 //ClearFTCflag();
frankvnk 0:a8e46e27d041 155 unsetCC3000MachineState(CC3000_ASSOC);
frankvnk 0:a8e46e27d041 156 // Start the Smart Config Process
frankvnk 0:a8e46e27d041 157 StartSmartConfig();
frankvnk 0:a8e46e27d041 158 runSmartConfig = 0;
frankvnk 0:a8e46e27d041 159 }
frankvnk 0:a8e46e27d041 160 // If connectivity is good, run the primary functionality
frankvnk 0:a8e46e27d041 161 while(1)
frankvnk 0:a8e46e27d041 162 {
frankvnk 0:a8e46e27d041 163 if(checkWiFiConnected()) break;
frankvnk 0:a8e46e27d041 164 wait(1);
frankvnk 0:a8e46e27d041 165 }
frankvnk 0:a8e46e27d041 166 printf("Connected\n");
frankvnk 0:a8e46e27d041 167 if(!(currentCC3000State() & CC3000_SERVER_INIT))
frankvnk 0:a8e46e27d041 168 {
frankvnk 0:a8e46e27d041 169 // If we're not blocked by accept or others, obtain the latest status
frankvnk 0:a8e46e27d041 170 netapp_ipconfig(&ipinfo2); // data is returned in the ipinfo2 structure
frankvnk 0:a8e46e27d041 171 }
frankvnk 0:a8e46e27d041 172 printf("\n*** Wi-Go board DHCP assigned IP Address = %d.%d.%d.%d\n", ipinfo2.aucIP[3], ipinfo2.aucIP[2], ipinfo2.aucIP[1], ipinfo2.aucIP[0]);
frankvnk 0:a8e46e27d041 173 LED_D3_ON;
frankvnk 0:a8e46e27d041 174 LAN_Connected = 1;
frankvnk 0:a8e46e27d041 175 t = mdnsAdvertiser(1, DevServname, sizeof(DevServname));
frankvnk 0:a8e46e27d041 176 printf("mDNS Status= %x\n", t);
frankvnk 0:a8e46e27d041 177 }
frankvnk 0:a8e46e27d041 178
frankvnk 0:a8e46e27d041 179 void runTCPIPserver(void)
frankvnk 0:a8e46e27d041 180 {
frankvnk 0:a8e46e27d041 181 while(1)
frankvnk 0:a8e46e27d041 182 {
frankvnk 0:a8e46e27d041 183 LED_D3_OFF;
frankvnk 0:a8e46e27d041 184 LAN_Connected = 0;
frankvnk 0:a8e46e27d041 185 LED_D2_OFF;
frankvnk 0:a8e46e27d041 186 printf("\n\nStarting TCP/IP Server\n");
frankvnk 0:a8e46e27d041 187 initTCPIP();
frankvnk 0:a8e46e27d041 188 sendPython(TCPIP_PORT);
frankvnk 0:a8e46e27d041 189 }
frankvnk 0:a8e46e27d041 190 }
frankvnk 0:a8e46e27d041 191
frankvnk 0:a8e46e27d041 192 unsigned char checkWiFiConnected(void)
frankvnk 0:a8e46e27d041 193 {
frankvnk 0:a8e46e27d041 194 int t;
frankvnk 0:a8e46e27d041 195 if(!(currentCC3000State() & CC3000_ASSOC)) //try to associate with an Access Point
frankvnk 0:a8e46e27d041 196 {
frankvnk 0:a8e46e27d041 197 // Check whether Smart Config was run previously. If it was, we
frankvnk 0:a8e46e27d041 198 // use it to connect to an access point. Otherwise, we connect to the
frankvnk 0:a8e46e27d041 199 // default.
frankvnk 0:a8e46e27d041 200 if(((ConnectUsingSmartConfig==0)&&(SmartConfigProfilestored != SMART_CONFIG_SET)) || ForceFixedSSID)
frankvnk 0:a8e46e27d041 201 {
frankvnk 0:a8e46e27d041 202 // Smart Config not set, check whether we have an SSID
frankvnk 0:a8e46e27d041 203 // from the assoc terminal command. If not, use fixed SSID.
frankvnk 0:a8e46e27d041 204 printf("Attempting SSID Connection\n");
frankvnk 0:a8e46e27d041 205 ConnectUsingSSID(SSID);
frankvnk 0:a8e46e27d041 206 }
frankvnk 0:a8e46e27d041 207 //unsolicicted_events_timer_init();
frankvnk 0:a8e46e27d041 208 // Wait until connection is finished
frankvnk 0:a8e46e27d041 209 while ((ulCC3000DHCP == 0) || (ulCC3000Connected == 0))
frankvnk 0:a8e46e27d041 210 {
frankvnk 0:a8e46e27d041 211 wait_ms(500);
frankvnk 0:a8e46e27d041 212 printf("waiting\n");
frankvnk 0:a8e46e27d041 213 }
frankvnk 0:a8e46e27d041 214 }
frankvnk 0:a8e46e27d041 215 // Check if we are in a connected state. If so, set flags and LED
frankvnk 0:a8e46e27d041 216 if(ulCC3000Connected == 1)
frankvnk 0:a8e46e27d041 217 {
frankvnk 0:a8e46e27d041 218 if (obtainIpInfoFlag == FALSE)
frankvnk 0:a8e46e27d041 219 {
frankvnk 0:a8e46e27d041 220 obtainIpInfoFlag = TRUE; // Set flag so we don't constantly turn the LED on
frankvnk 0:a8e46e27d041 221 LED_D3_ON;
frankvnk 0:a8e46e27d041 222 }
frankvnk 0:a8e46e27d041 223 if (obtainIpInfoFlag == TRUE)
frankvnk 0:a8e46e27d041 224 {
frankvnk 0:a8e46e27d041 225 //If Smart Config was performed, we need to send complete notification to the configure (Smart Phone App)
frankvnk 0:a8e46e27d041 226 if (ConnectUsingSmartConfig==1)
frankvnk 0:a8e46e27d041 227 {
frankvnk 0:a8e46e27d041 228 ConnectUsingSmartConfig = 0;
frankvnk 0:a8e46e27d041 229 SmartConfigProfilestored = SMART_CONFIG_SET;
frankvnk 0:a8e46e27d041 230 }
frankvnk 0:a8e46e27d041 231
frankvnk 0:a8e46e27d041 232 }
frankvnk 0:a8e46e27d041 233 t = mdnsAdvertiser(1, DevServname, sizeof(DevServname));
frankvnk 0:a8e46e27d041 234 printf("mDNS Status= %x\n", t);
frankvnk 0:a8e46e27d041 235 return TRUE;
frankvnk 0:a8e46e27d041 236 }
frankvnk 0:a8e46e27d041 237 return FALSE;
frankvnk 0:a8e46e27d041 238 }
frankvnk 0:a8e46e27d041 239
frankvnk 0:a8e46e27d041 240 void print_mac(void)
frankvnk 0:a8e46e27d041 241 {
frankvnk 0:a8e46e27d041 242 printf("\n\nWi-Go MAC address %02x:%02x:%02x:%02x:%02x:%02x\n\n", myMAC[0], myMAC[1], myMAC[2], myMAC[3], myMAC[4], myMAC[5]);
frankvnk 0:a8e46e27d041 243 }
frankvnk 0:a8e46e27d041 244
frankvnk 0:a8e46e27d041 245 void do_FTC(void)
frankvnk 0:a8e46e27d041 246 {
frankvnk 0:a8e46e27d041 247 printf("Running First Time Configuration\n");
frankvnk 2:13ced2cb5933 248 // server_running = 1;
frankvnk 0:a8e46e27d041 249 runSmartConfig = 1;
frankvnk 0:a8e46e27d041 250 initTCPIP();
frankvnk 0:a8e46e27d041 251 RED_OFF;
frankvnk 0:a8e46e27d041 252 GREEN_OFF;
frankvnk 0:a8e46e27d041 253 BLUE_OFF;
frankvnk 0:a8e46e27d041 254 userFS.FTC = 1;
frankvnk 0:a8e46e27d041 255 nvmem_write( NVMEM_USER_FILE_1_FILEID, sizeof(userFS), 0, (unsigned char *) &userFS);
frankvnk 0:a8e46e27d041 256 runSmartConfig = 0;
frankvnk 0:a8e46e27d041 257 SmartConfigProfilestored = SMART_CONFIG_SET;
frankvnk 0:a8e46e27d041 258 wlan_stop();
frankvnk 0:a8e46e27d041 259 printf("FTC finished\n");
frankvnk 0:a8e46e27d041 260 }
frankvnk 0:a8e46e27d041 261
frankvnk 0:a8e46e27d041 262
frankvnk 1:32d1ef95eceb 263