This library provides a way to easily handle arbitrary large integers.

This library provides the following operations :

  • addition, substraction, multiplication, division and modulo
  • bits operators (AND, OR, XOR, left and right shifts)
  • boolean operators
  • modular exponentiation (using montgomery algorithm)
  • modular inverse

Example

In this example, we use a 1024 bits long RSA key to encrypt and decrypt a message. We first encrypt the value 0x41 (65 in decimal) and then decrypt it. At the end, m should be equal to 0x41. The encryption is fast (0, 4 second) while the decryption is really slow. This code will take between 30 seconds and 2 minutes to execute depending on the compiler and optimization flags.

main.cpp

#include "mbed.h"
#include "BigInt.h"
#include <stdlib.h>
#include <stdio.h>

uint8_t modbits[] = {
0xd9, 0x4d, 0x88, 0x9e, 0x88, 0x85, 0x3d, 0xd8, 0x97, 0x69, 0xa1, 0x80, 0x15, 0xa0, 0xa2, 0xe6,
0xbf, 0x82, 0xbf, 0x35, 0x6f, 0xe1, 0x4f, 0x25, 0x1f, 0xb4, 0xf5, 0xe2, 0xdf, 0x0d, 0x9f, 0x9a,
0x94, 0xa6, 0x8a, 0x30, 0xc4, 0x28, 0xb3, 0x9e, 0x33, 0x62, 0xfb, 0x37, 0x79, 0xa4, 0x97, 0xec,
0xea, 0xea, 0x37, 0x10, 0x0f, 0x26, 0x4d, 0x7f, 0xb9, 0xfb, 0x1a, 0x97, 0xfb, 0xf6, 0x21, 0x13,
0x3d, 0xe5, 0x5f, 0xdc, 0xb9, 0xb1, 0xad, 0x0d, 0x7a, 0x31, 0xb3, 0x79, 0x21, 0x6d, 0x79, 0x25,
0x2f, 0x5c, 0x52, 0x7b, 0x9b, 0xc6, 0x3d, 0x83, 0xd4, 0xec, 0xf4, 0xd1, 0xd4, 0x5c, 0xbf, 0x84,
0x3e, 0x84, 0x74, 0xba, 0xbc, 0x65, 0x5e, 0x9b, 0xb6, 0x79, 0x9c, 0xba, 0x77, 0xa4, 0x7e, 0xaf,
0xa8, 0x38, 0x29, 0x64, 0x74, 0xaf, 0xc2, 0x4b, 0xeb, 0x9c, 0x82, 0x5b, 0x73, 0xeb, 0xf5, 0x49
};

uint8_t dbits[] = {
0x04, 0x7b, 0x9c, 0xfd, 0xe8, 0x43, 0x17, 0x6b, 0x88, 0x74, 0x1d, 0x68, 0xcf, 0x09, 0x69, 0x52,
0xe9, 0x50, 0x81, 0x31, 0x51, 0x05, 0x8c, 0xe4, 0x6f, 0x2b, 0x04, 0x87, 0x91, 0xa2, 0x6e, 0x50,
0x7a, 0x10, 0x95, 0x79, 0x3c, 0x12, 0xba, 0xe1, 0xe0, 0x9d, 0x82, 0x21, 0x3a, 0xd9, 0x32, 0x69,
0x28, 0xcf, 0x7c, 0x23, 0x50, 0xac, 0xb1, 0x9c, 0x98, 0xf1, 0x9d, 0x32, 0xd5, 0x77, 0xd6, 0x66,
0xcd, 0x7b, 0xb8, 0xb2, 0xb5, 0xba, 0x62, 0x9d, 0x25, 0xcc, 0xf7, 0x2a, 0x5c, 0xeb, 0x8a, 0x8d,
0xa0, 0x38, 0x90, 0x6c, 0x84, 0xdc, 0xdb, 0x1f, 0xe6, 0x77, 0xdf, 0xfb, 0x2c, 0x02, 0x9f, 0xd8,
0x92, 0x63, 0x18, 0xee, 0xde, 0x1b, 0x58, 0x27, 0x2a, 0xf2, 0x2b, 0xda, 0x5c, 0x52, 0x32, 0xbe,
0x06, 0x68, 0x39, 0x39, 0x8e, 0x42, 0xf5, 0x35, 0x2d, 0xf5, 0x88, 0x48, 0xad, 0xad, 0x11, 0xa1
};

int main() 
{
    BigInt e = 65537, mod, d;
    mod.importData(modbits, sizeof(modbits));
    d.importData(dbits, sizeof(dbits));

    BigInt c = modPow(0x41,e,mod);
    c.print();
    BigInt m = modPow(c,d,mod);
    m.print();
    printf("done\n");
    
    return 0;
}

Revision:
11:2f16a220ebbb
Parent:
10:116e201f7d89
Child:
12:a436f15b58b6
--- a/BigInt.cpp	Wed Mar 05 19:36:22 2014 +0000
+++ b/BigInt.cpp	Thu Mar 06 09:44:32 2014 +0000
@@ -227,24 +227,21 @@
     // if b == 1, then result = a
     if(b == 1)
         return (result = a);
-        
-    
+           
     result.size = a.size + b.size;
     result.bits = new uint32_t[num(result.size)];
-    memset(result.bits, 0, sizeof(uint32_t)*num(result.size));
-    uint32_t carry = 0;
-    for(int i = 0; i < num(result.size); ++i)
+    memset(result.bits, 0, result.size);
+    for(int i = 0; i < num(a.size); ++i)
     {
-        uint32_t tmpA = 0, tmpB = 0;
-        if(i < num(a.size))
-            tmpA = a.bits[i];
-
-        if(i < num(b.size))
-            tmpB = b.bits[i];
- 
-        uint64_t tmp = (uint64_t)tmpA * (uint64_t)tmpB + (uint64_t)carry;        
-        result.bits[i] = tmp;
-        carry = tmp >> 32;
+        uint64_t carry = 0;
+        for(int j = 0; j < num(b.size); ++j)
+        {
+            uint64_t tmp = (uint64_t)a.bits[i] * (uint64_t)b.bits[j] + carry;        
+            result.bits[i+j] += tmp;
+            carry = tmp >> 32;                         
+        }
+        if(carry != 0)
+            result.bits[i+num(b.size)] += carry;
     }
     
     result.trim();
@@ -258,32 +255,35 @@
 }
 
 
-BigInt operator/(const BigInt &a, const BigInt& b)
+BigInt operator/(const BigInt &a, const BigInt &b)
 {
     assert(a.isValid() && b.isValid() && b != 0);
-
     if(b == 1)
         return a;
     if(a < b)
         return 0;
     if(a == b)
         return 1;
-    BigInt u = a, v = b;   
-    int m = u.numBits() - v.numBits();
+    BigInt u = a; 
+    printf("a.bits = %d\n", a.numBits());
+    int m = a.numBits() - b.numBits();
     printf("m=%d\n", m);
     BigInt q = 0;
-    BigInt tmp = 1;
-    tmp <<= m;
+    BigInt tmp = b << m;
+
     for(int j = m; j >= 0; --j)
     {
-        if(v*tmp <= u)
+        if(tmp <= u)
         {
-            u -= v*tmp;
-            q += tmp;    
+            u -= tmp;
+            BigInt tmp2 = 1;
+            tmp2 <<= j;
+            q += tmp2;    
         }   
         tmp >>= 1;
     }
-    return q;    
+    q.trim();
+    return q;
 }
 
 BigInt& BigInt::operator/=(const BigInt &b)
@@ -540,22 +540,6 @@
     return (*this = *this ^ a);
 }
 
-BigInt montgomeryStep2(const BigInt &a, const BigInt &m, uint32_t r)
-{
-    BigInt result = a;
-    uint32_t tmpR = r;
-    while(r > 0)
-    {
-        if(r == 1)
-            result += (2 << tmpR);   
-        
-        if(result.bits[0] & 0x01)
-            result += m;
-        --r;
-    }
-    return result;
-}
-
 BigInt montgomeryStep(const BigInt &a, const BigInt &b, const BigInt &m, uint32_t r)
 {
     BigInt result = 0;
@@ -584,7 +568,10 @@
     uint32_t r = 8*modulus.size;
 
     // convert a in montgomery world
-    BigInt montA = montgomeryStep2(a,modulus,r);
+    BigInt tmp2 = 1;
+    tmp2 = 1 << r;
+    tmp2 *= a;
+    BigInt montA = tmp2 - tmp2/modulus;
     montA.print();
     BigInt tmp = montA;
     BigInt tmpE = expn;
@@ -603,8 +590,10 @@
     return size != 0 && bits != 0;
 }
 
-void BigInt::print()
+void BigInt::print() const
 {
+    assert(isValid());
+    
     printf("size: %d bytes\n", size);
     uint32_t n = num(size);
     for(int i = n-1; i >= 0; --i)
@@ -629,17 +618,18 @@
     size = newSize; 
 }
 
-uint32_t BigInt::numBits()
+uint32_t BigInt::numBits() const
 {
     assert(isValid());
     
+    print();
+    
     uint32_t n = (size-1)*8;
-    uint8_t a = bits[size/4] >> ((size-1)%4)*8;
-    uint8_t tmp = 0x80;
+    uint8_t a = bits[num(size)-1] >> ((size-1)%4)*8;
     uint8_t tmp2 = 8;
-    while(!(a & tmp)) 
+    while(!(a & 0x80)) 
     {
-        tmp >>= 1;
+        a <<= 1;
         --tmp2;
     }
     n += tmp2;