This library provides a way to easily handle arbitrary large integers.
This library provides the following operations :
- addition, substraction, multiplication, division and modulo
- bits operators (AND, OR, XOR, left and right shifts)
- boolean operators
- modular exponentiation (using montgomery algorithm)
- modular inverse
Example
In this example, we use a 1024 bits long RSA key to encrypt and decrypt a message. We first encrypt the value 0x41 (65 in decimal) and then decrypt it. At the end, m should be equal to 0x41. The encryption is fast (0, 4 second) while the decryption is really slow. This code will take between 30 seconds and 2 minutes to execute depending on the compiler and optimization flags.
main.cpp
#include "mbed.h" #include "BigInt.h" #include <stdlib.h> #include <stdio.h> uint8_t modbits[] = { 0xd9, 0x4d, 0x88, 0x9e, 0x88, 0x85, 0x3d, 0xd8, 0x97, 0x69, 0xa1, 0x80, 0x15, 0xa0, 0xa2, 0xe6, 0xbf, 0x82, 0xbf, 0x35, 0x6f, 0xe1, 0x4f, 0x25, 0x1f, 0xb4, 0xf5, 0xe2, 0xdf, 0x0d, 0x9f, 0x9a, 0x94, 0xa6, 0x8a, 0x30, 0xc4, 0x28, 0xb3, 0x9e, 0x33, 0x62, 0xfb, 0x37, 0x79, 0xa4, 0x97, 0xec, 0xea, 0xea, 0x37, 0x10, 0x0f, 0x26, 0x4d, 0x7f, 0xb9, 0xfb, 0x1a, 0x97, 0xfb, 0xf6, 0x21, 0x13, 0x3d, 0xe5, 0x5f, 0xdc, 0xb9, 0xb1, 0xad, 0x0d, 0x7a, 0x31, 0xb3, 0x79, 0x21, 0x6d, 0x79, 0x25, 0x2f, 0x5c, 0x52, 0x7b, 0x9b, 0xc6, 0x3d, 0x83, 0xd4, 0xec, 0xf4, 0xd1, 0xd4, 0x5c, 0xbf, 0x84, 0x3e, 0x84, 0x74, 0xba, 0xbc, 0x65, 0x5e, 0x9b, 0xb6, 0x79, 0x9c, 0xba, 0x77, 0xa4, 0x7e, 0xaf, 0xa8, 0x38, 0x29, 0x64, 0x74, 0xaf, 0xc2, 0x4b, 0xeb, 0x9c, 0x82, 0x5b, 0x73, 0xeb, 0xf5, 0x49 }; uint8_t dbits[] = { 0x04, 0x7b, 0x9c, 0xfd, 0xe8, 0x43, 0x17, 0x6b, 0x88, 0x74, 0x1d, 0x68, 0xcf, 0x09, 0x69, 0x52, 0xe9, 0x50, 0x81, 0x31, 0x51, 0x05, 0x8c, 0xe4, 0x6f, 0x2b, 0x04, 0x87, 0x91, 0xa2, 0x6e, 0x50, 0x7a, 0x10, 0x95, 0x79, 0x3c, 0x12, 0xba, 0xe1, 0xe0, 0x9d, 0x82, 0x21, 0x3a, 0xd9, 0x32, 0x69, 0x28, 0xcf, 0x7c, 0x23, 0x50, 0xac, 0xb1, 0x9c, 0x98, 0xf1, 0x9d, 0x32, 0xd5, 0x77, 0xd6, 0x66, 0xcd, 0x7b, 0xb8, 0xb2, 0xb5, 0xba, 0x62, 0x9d, 0x25, 0xcc, 0xf7, 0x2a, 0x5c, 0xeb, 0x8a, 0x8d, 0xa0, 0x38, 0x90, 0x6c, 0x84, 0xdc, 0xdb, 0x1f, 0xe6, 0x77, 0xdf, 0xfb, 0x2c, 0x02, 0x9f, 0xd8, 0x92, 0x63, 0x18, 0xee, 0xde, 0x1b, 0x58, 0x27, 0x2a, 0xf2, 0x2b, 0xda, 0x5c, 0x52, 0x32, 0xbe, 0x06, 0x68, 0x39, 0x39, 0x8e, 0x42, 0xf5, 0x35, 0x2d, 0xf5, 0x88, 0x48, 0xad, 0xad, 0x11, 0xa1 }; int main() { BigInt e = 65537, mod, d; mod.importData(modbits, sizeof(modbits)); d.importData(dbits, sizeof(dbits)); BigInt c = modPow(0x41,e,mod); c.print(); BigInt m = modPow(c,d,mod); m.print(); printf("done\n"); return 0; }
Diff: BigInt.cpp
- Revision:
- 11:2f16a220ebbb
- Parent:
- 10:116e201f7d89
- Child:
- 12:a436f15b58b6
--- a/BigInt.cpp Wed Mar 05 19:36:22 2014 +0000 +++ b/BigInt.cpp Thu Mar 06 09:44:32 2014 +0000 @@ -227,24 +227,21 @@ // if b == 1, then result = a if(b == 1) return (result = a); - - + result.size = a.size + b.size; result.bits = new uint32_t[num(result.size)]; - memset(result.bits, 0, sizeof(uint32_t)*num(result.size)); - uint32_t carry = 0; - for(int i = 0; i < num(result.size); ++i) + memset(result.bits, 0, result.size); + for(int i = 0; i < num(a.size); ++i) { - uint32_t tmpA = 0, tmpB = 0; - if(i < num(a.size)) - tmpA = a.bits[i]; - - if(i < num(b.size)) - tmpB = b.bits[i]; - - uint64_t tmp = (uint64_t)tmpA * (uint64_t)tmpB + (uint64_t)carry; - result.bits[i] = tmp; - carry = tmp >> 32; + uint64_t carry = 0; + for(int j = 0; j < num(b.size); ++j) + { + uint64_t tmp = (uint64_t)a.bits[i] * (uint64_t)b.bits[j] + carry; + result.bits[i+j] += tmp; + carry = tmp >> 32; + } + if(carry != 0) + result.bits[i+num(b.size)] += carry; } result.trim(); @@ -258,32 +255,35 @@ } -BigInt operator/(const BigInt &a, const BigInt& b) +BigInt operator/(const BigInt &a, const BigInt &b) { assert(a.isValid() && b.isValid() && b != 0); - if(b == 1) return a; if(a < b) return 0; if(a == b) return 1; - BigInt u = a, v = b; - int m = u.numBits() - v.numBits(); + BigInt u = a; + printf("a.bits = %d\n", a.numBits()); + int m = a.numBits() - b.numBits(); printf("m=%d\n", m); BigInt q = 0; - BigInt tmp = 1; - tmp <<= m; + BigInt tmp = b << m; + for(int j = m; j >= 0; --j) { - if(v*tmp <= u) + if(tmp <= u) { - u -= v*tmp; - q += tmp; + u -= tmp; + BigInt tmp2 = 1; + tmp2 <<= j; + q += tmp2; } tmp >>= 1; } - return q; + q.trim(); + return q; } BigInt& BigInt::operator/=(const BigInt &b) @@ -540,22 +540,6 @@ return (*this = *this ^ a); } -BigInt montgomeryStep2(const BigInt &a, const BigInt &m, uint32_t r) -{ - BigInt result = a; - uint32_t tmpR = r; - while(r > 0) - { - if(r == 1) - result += (2 << tmpR); - - if(result.bits[0] & 0x01) - result += m; - --r; - } - return result; -} - BigInt montgomeryStep(const BigInt &a, const BigInt &b, const BigInt &m, uint32_t r) { BigInt result = 0; @@ -584,7 +568,10 @@ uint32_t r = 8*modulus.size; // convert a in montgomery world - BigInt montA = montgomeryStep2(a,modulus,r); + BigInt tmp2 = 1; + tmp2 = 1 << r; + tmp2 *= a; + BigInt montA = tmp2 - tmp2/modulus; montA.print(); BigInt tmp = montA; BigInt tmpE = expn; @@ -603,8 +590,10 @@ return size != 0 && bits != 0; } -void BigInt::print() +void BigInt::print() const { + assert(isValid()); + printf("size: %d bytes\n", size); uint32_t n = num(size); for(int i = n-1; i >= 0; --i) @@ -629,17 +618,18 @@ size = newSize; } -uint32_t BigInt::numBits() +uint32_t BigInt::numBits() const { assert(isValid()); + print(); + uint32_t n = (size-1)*8; - uint8_t a = bits[size/4] >> ((size-1)%4)*8; - uint8_t tmp = 0x80; + uint8_t a = bits[num(size)-1] >> ((size-1)%4)*8; uint8_t tmp2 = 8; - while(!(a & tmp)) + while(!(a & 0x80)) { - tmp >>= 1; + a <<= 1; --tmp2; } n += tmp2;