This library provides a way to easily handle arbitrary large integers.
This library provides the following operations :
- addition, substraction, multiplication, division and modulo
- bits operators (AND, OR, XOR, left and right shifts)
- boolean operators
- modular exponentiation (using montgomery algorithm)
- modular inverse
Example
In this example, we use a 1024 bits long RSA key to encrypt and decrypt a message. We first encrypt the value 0x41 (65 in decimal) and then decrypt it. At the end, m should be equal to 0x41. The encryption is fast (0, 4 second) while the decryption is really slow. This code will take between 30 seconds and 2 minutes to execute depending on the compiler and optimization flags.
main.cpp
#include "mbed.h" #include "BigInt.h" #include <stdlib.h> #include <stdio.h> uint8_t modbits[] = { 0xd9, 0x4d, 0x88, 0x9e, 0x88, 0x85, 0x3d, 0xd8, 0x97, 0x69, 0xa1, 0x80, 0x15, 0xa0, 0xa2, 0xe6, 0xbf, 0x82, 0xbf, 0x35, 0x6f, 0xe1, 0x4f, 0x25, 0x1f, 0xb4, 0xf5, 0xe2, 0xdf, 0x0d, 0x9f, 0x9a, 0x94, 0xa6, 0x8a, 0x30, 0xc4, 0x28, 0xb3, 0x9e, 0x33, 0x62, 0xfb, 0x37, 0x79, 0xa4, 0x97, 0xec, 0xea, 0xea, 0x37, 0x10, 0x0f, 0x26, 0x4d, 0x7f, 0xb9, 0xfb, 0x1a, 0x97, 0xfb, 0xf6, 0x21, 0x13, 0x3d, 0xe5, 0x5f, 0xdc, 0xb9, 0xb1, 0xad, 0x0d, 0x7a, 0x31, 0xb3, 0x79, 0x21, 0x6d, 0x79, 0x25, 0x2f, 0x5c, 0x52, 0x7b, 0x9b, 0xc6, 0x3d, 0x83, 0xd4, 0xec, 0xf4, 0xd1, 0xd4, 0x5c, 0xbf, 0x84, 0x3e, 0x84, 0x74, 0xba, 0xbc, 0x65, 0x5e, 0x9b, 0xb6, 0x79, 0x9c, 0xba, 0x77, 0xa4, 0x7e, 0xaf, 0xa8, 0x38, 0x29, 0x64, 0x74, 0xaf, 0xc2, 0x4b, 0xeb, 0x9c, 0x82, 0x5b, 0x73, 0xeb, 0xf5, 0x49 }; uint8_t dbits[] = { 0x04, 0x7b, 0x9c, 0xfd, 0xe8, 0x43, 0x17, 0x6b, 0x88, 0x74, 0x1d, 0x68, 0xcf, 0x09, 0x69, 0x52, 0xe9, 0x50, 0x81, 0x31, 0x51, 0x05, 0x8c, 0xe4, 0x6f, 0x2b, 0x04, 0x87, 0x91, 0xa2, 0x6e, 0x50, 0x7a, 0x10, 0x95, 0x79, 0x3c, 0x12, 0xba, 0xe1, 0xe0, 0x9d, 0x82, 0x21, 0x3a, 0xd9, 0x32, 0x69, 0x28, 0xcf, 0x7c, 0x23, 0x50, 0xac, 0xb1, 0x9c, 0x98, 0xf1, 0x9d, 0x32, 0xd5, 0x77, 0xd6, 0x66, 0xcd, 0x7b, 0xb8, 0xb2, 0xb5, 0xba, 0x62, 0x9d, 0x25, 0xcc, 0xf7, 0x2a, 0x5c, 0xeb, 0x8a, 0x8d, 0xa0, 0x38, 0x90, 0x6c, 0x84, 0xdc, 0xdb, 0x1f, 0xe6, 0x77, 0xdf, 0xfb, 0x2c, 0x02, 0x9f, 0xd8, 0x92, 0x63, 0x18, 0xee, 0xde, 0x1b, 0x58, 0x27, 0x2a, 0xf2, 0x2b, 0xda, 0x5c, 0x52, 0x32, 0xbe, 0x06, 0x68, 0x39, 0x39, 0x8e, 0x42, 0xf5, 0x35, 0x2d, 0xf5, 0x88, 0x48, 0xad, 0xad, 0x11, 0xa1 }; int main() { BigInt e = 65537, mod, d; mod.importData(modbits, sizeof(modbits)); d.importData(dbits, sizeof(dbits)); BigInt c = modPow(0x41,e,mod); c.print(); BigInt m = modPow(c,d,mod); m.print(); printf("done\n"); return 0; }
Diff: BigInt.cpp
- Revision:
- 10:116e201f7d89
- Parent:
- 9:3c191fa04f6e
- Child:
- 11:2f16a220ebbb
--- a/BigInt.cpp Sat Oct 05 15:26:03 2013 +0000 +++ b/BigInt.cpp Wed Mar 05 19:36:22 2014 +0000 @@ -5,17 +5,14 @@ #include <iostream> #include <climits> #include <cassert> - -static uint32_t max(const uint32_t a, const uint32_t b) -{ - return a < b ? b : a; -} +#include <algorithm> static uint32_t num(const uint32_t a) { return a/4 + (a%4 ? 1:0); } - + + BigInt::BigInt(): size(0), bits(0) @@ -48,12 +45,10 @@ BigInt::~BigInt() { - if(bits) + if(size) { - printf("deleting %d bytes\n", size); delete[] bits; } - bits = 0; } BigInt& BigInt::operator=(const BigInt& a) @@ -105,7 +100,7 @@ if(i < bl) tmpB = b.bits[i]; result.bits[i] = tmpA + tmpB + carry; - carry = result.bits[i] < max(tmpA, tmpB); + carry = result.bits[i] < std::max(tmpA, tmpB); } if(carry) { @@ -262,6 +257,40 @@ return (*this = (*this) * b); } + +BigInt operator/(const BigInt &a, const BigInt& b) +{ + assert(a.isValid() && b.isValid() && b != 0); + + if(b == 1) + return a; + if(a < b) + return 0; + if(a == b) + return 1; + BigInt u = a, v = b; + int m = u.numBits() - v.numBits(); + printf("m=%d\n", m); + BigInt q = 0; + BigInt tmp = 1; + tmp <<= m; + for(int j = m; j >= 0; --j) + { + if(v*tmp <= u) + { + u -= v*tmp; + q += tmp; + } + tmp >>= 1; + } + return q; +} + +BigInt& BigInt::operator/=(const BigInt &b) +{ + return (*this = (*this) / b); +} + BigInt operator>>(const BigInt &a, const uint32_t m) { assert(a.isValid()); @@ -284,7 +313,8 @@ result.bits[i] = (a.bits[m/32+i] >> s); } - + result.trim(); + return result; } @@ -331,14 +361,17 @@ BigInt operator%(const BigInt &a, const BigInt &b) { - assert(a.isValid() && b.isValid()); + assert(a.isValid() && b.isValid() && b > 0); - BigInt result = a; + BigInt i = 1, result; + + while(a >= b*i && a < b*(i+1)) + { + ++i; + } + --i; + result = a - b*i; - - while(result > b) - result -= b; - result.trim(); return result; @@ -450,8 +483,8 @@ uint32_t na = num(a.size); uint32_t nb = num(b.size); - uint32_t l = max(na,nb); - result.size = max(a.size, b.size); + uint32_t l = std::max(na,nb); + result.size = std::max(a.size, b.size); result.bits = new uint32_t[l]; memset(result.bits, 0, l); @@ -482,8 +515,8 @@ uint32_t na = num(a.size); uint32_t nb = num(b.size); - uint32_t l = max(na,nb); - result.size = max(a.size, b.size); + uint32_t l = std::max(na,nb); + result.size = std::max(a.size, b.size); result.bits = new uint32_t[l]; memset(result.bits, 0, l); @@ -507,22 +540,62 @@ return (*this = *this ^ a); } +BigInt montgomeryStep2(const BigInt &a, const BigInt &m, uint32_t r) +{ + BigInt result = a; + uint32_t tmpR = r; + while(r > 0) + { + if(r == 1) + result += (2 << tmpR); + + if(result.bits[0] & 0x01) + result += m; + --r; + } + return result; +} + +BigInt montgomeryStep(const BigInt &a, const BigInt &b, const BigInt &m, uint32_t r) +{ + BigInt result = 0; + BigInt tmp = a; + while(r > 0) + { + if(tmp.bits[0] & 0x01) + result += b; + + if(result.bits[0] & 0x01) + result += m; + + --r; + result >>= 1; + tmp >>= 1; + } + return result; +} + +// Implementation using Montgomery algorithm BigInt modPow(const BigInt &a, const BigInt &expn, const BigInt &modulus) { assert(a.isValid() && expn.isValid() && modulus.isValid()); - BigInt result = 1; + // precompute R and R^2 + uint32_t r = 8*modulus.size; + + // convert a in montgomery world + BigInt montA = montgomeryStep2(a,modulus,r); + montA.print(); + BigInt tmp = montA; BigInt tmpE = expn; - BigInt base = a; - while(tmpE > 0) + while(tmpE > 1) { - if(tmpE % 2 == 1) - result = (result * base) % modulus; - tmpE >>= 1; - base = (base * base) % modulus; + tmp = montgomeryStep(montA, tmp, modulus, r); + --tmpE; } - return result; + // convert a to normal world + return montgomeryStep(tmp, 1, modulus, r); } bool BigInt::isValid() const @@ -547,8 +620,29 @@ uint32_t newSize = size; while(tmp[newSize-1] == 0 && newSize > 0) newSize--; + if(newSize == 0) + newSize = 1; if(num(newSize) < num(size)) + { bits = (uint32_t*)realloc(bits, sizeof(uint32_t)*num(newSize)); + } size = newSize; } +uint32_t BigInt::numBits() +{ + assert(isValid()); + + uint32_t n = (size-1)*8; + uint8_t a = bits[size/4] >> ((size-1)%4)*8; + uint8_t tmp = 0x80; + uint8_t tmp2 = 8; + while(!(a & tmp)) + { + tmp >>= 1; + --tmp2; + } + n += tmp2; + + return n; +}