
Minor BioRobotics BMT Hierbij publish ik mijn code public ter inspiratie voor komende jaarlagen. Het gaat om een serial robot met twee links en een haak als end-effector. Veel plezier ermee!
Dependencies: mbed QEI HIDScope biquadFilter MODSERIAL FastPWM
main.cpp
- Committer:
- fb07
- Date:
- 2019-10-29
- Revision:
- 10:a60b369c1711
- Parent:
- 9:c4fa72ffa1c2
- Child:
- 11:a3fd9d5144bb
File content as of revision 10:a60b369c1711:
// Project BioRobotics - Opening a Door - Group 13 2019/2020 // Dion ten Berge - s1864734 // Bas Rutteman - s1854305 // Nick in het Veld - s1915584 // Marleen van der Weij - s1800078 // Mevlid Yildirim - s2005735 /* To-Do 1. Kd, Ki, Kp waardes bepalen 2. Filter cutoff frequentie bepalen, zie https://github.com/tomlankhorst/biquad 3. Grenswaarde EMG signaal na het filteren */ //***************************************************************************** // 1. Libraries ****************************************************************** //***************************************************************************** #include "mbed.h" #include "HIDScope.h" #include "QEI.h" #include "MODSERIAL.h" #include "BiQuad.h" #include "FastPWM.h" //***************************************************************************** // 2. States ****************************************************************** //***************************************************************************** enum States {StartWait, MotorCalibration, EMGCalibration, Homing, Operating, Emergency, Demo}; //All robot states States state; //***************************************************************************** // 3. (Global) Variables *********************************************************** //***************************************************************************** // 3.1 Tickers ***************************************************************** Ticker ticker_mainloop; // The ticker which runs the mainloop Ticker ticker_hidscope; // The ticker which sends data to the HIDScope server // 3.2 General variables ******************************************************* MODSERIAL pc(USBTX, USBRX); // Serial communication with the board QEI encoder_motor1(D12,D13,NC,64); // Defines encoder for motor 1 QEI encoder_motor2(D10,D11,NC,64); // Defines encoder for motor 1 double f=1/100; // Frequency const double Ts = f/10; // Sampletime HIDScope scope(2); // Amount of HIDScope servers // 3.3 BiQuad Filters ********************************************************** static BiQuad notchfilter(9.97761e-01, -1.97095e+00, 9.97761e-01, -1.97095e+00, 9.95522e-01); static BiQuad highfilter(9.56543e-01, -1.91309e+00, 9.56543e-01, -1.91120e+00, 9.14976e-01); static BiQuad LowPassFilter( 4.12535e-02, 8.25071e-02, 4.12535e-02, -1.34897e+00, 5.13982e-01 ); // 3.4 Hardware *************************************************************** //3.4a Leds DigitalOut led_red(LED_RED); // Defines the red led on the K64 board (0=on, 1 = off) DigitalOut led_green(LED_GREEN); // Defines the green led on the K64 board (0=on, 1 = off) DigitalOut led_blue(LED_BLUE); // Defines the blue led on the K64 board (0=on, 1 = off) // FastPWM led1(D8); //CODE DOES NOT WORK WITH D8 PIN DEFINED //Defines Led1 on the BioRobotics Shield FastPWM led2(D9); //Defines Led2 on the BioRobotics Shield //3.4b Potmeters and buttons AnalogIn pot1_links(A5); //Defines potmeter1 on the BioRobotics Shield AnalogIn pot2_rechts(A4); //Defines potmeter2 on the BioRobotics Shield DigitalIn button1(D2); //Defines button1 on the BioRobotics Shield DigitalIn button2(D3); //Defines button2 on the BioRobotics Shield DigitalIn sw2(SW2); //Defines button SW2 on the K64 board DigitalIn sw3(SW3); //Defines button SW3 on the K64 board //3.4c Motors DigitalOut motor1DirectionPin(D7); // motor 1 direction control (1=cw, 0=ccw) FastPWM motor1(D6); // motor 1 velocity control (between 0-1) FastPWM motor2(D5); // motor 2 velocity control (between 0-1) DigitalOut motor2DirectionPin(D4); // motor 2 direction control (1=cw, 0=ccw) bool motor1_calibration_status=true; bool motor2_calibration_status=true; // 3.5 Motor 1 variables *************************************************************** //3.5a PID-controller motor 1 double counts_per_rad_motor1 = (131.25*32)/(2*3.14159265359); // (gear ratio * counts per revolution) / (2* pi) = ~668.45 counts per rad static double error_integral_motor1 = 0; double Yref_motor1; double kp_motor1; double Ki_motor1; double Kd_motor1; double positie_motor1; //counts encoder double error1_motor1; double error1_prev_motor1; double error1_derivative_motor1; double error1_derivative_filtered_motor1; double P_motor1; double positie_verschil_motor1; double positie_prev_motor1; // 3.5 Motor 2 variables *************************************************************** //3.5b PID-controller motor 2 double counts_per_rad_motor2 = (131.25*32)/(2*3.14159265359); // (gear ratio * counts per revolution) / (2* pi) = ~668.45 counts per rad static double error_integral_motor2 = 0; double Yref_motor2; double kp_motor2; double Ki_motor2; double Kd_motor2; double positie_motor2; //counts encoder double error1_motor2; double error1_prev_motor2; double error1_derivative_motor2; double error1_derivative_filtered_motor2; double P_motor2; double positie_verschil_motor2; double positie_prev_motor2; //****************************************************************************** // 4. Functions **************************************************************** //****************************************************************************** // 4.1 Hidscope **************************************************************** void HIDScope() //voor HIDscope { scope.set(0, positie_motor1); scope.set(1, positie_prev_motor1); //nog te definieren wat we willen weergeven scope.set(2, positie_verschil_motor1); //nog te definieren wat we willen weergeven scope.send(); } // 4.x Encoder motor1 **************************************************************** double fencoder_motor1() // bepaalt de positie van de motor { positie_motor1 = encoder_motor1.getPulses(); // haalt encoder waardes op positie_verschil_motor1 = (positie_motor1-positie_prev_motor1)/Ts; positie_prev_motor1 = positie_motor1; return positie_motor1; //geeft positie van motor } // 4.x Encoder motor2 **************************************************************** double fencoder_motor2() // bepaalt de positie van de motor { positie_motor2 = encoder_motor2.getPulses(); // haalt encoder waardes op positie_verschil_motor2 = (positie_motor2-positie_prev_motor2)/Ts; positie_prev_motor2 = positie_motor2; return positie_motor2; //geeft positie van motor } // 4.xa Calibration motor 1 void motor1_calibration() { motor1DirectionPin=0; //direction of the motor motor1=1.0; wait(0.05); while (abs(positie_verschil_motor1)>5) { motor1=0.2 ; pc.printf("\r\n Motor1 kalibratie = %s", motor1_calibration_status ? "true" : "false"); } motor1=0.0; motor1_calibration_status=false; pc.printf("\r\n Motor1 kalibratie = %s", motor1_calibration_status ? "true" : "false"); } // 4.xa Calibration motor 2 void motor2_calibration() { motor2DirectionPin=0; //direction of the motor motor2=1.0; wait(1); while (abs(positie_verschil_motor2)>5) { motor2=0.2 ; pc.printf("\r\n Motor2 kalibratie = %s", motor2_calibration_status ? "true" : "false"); } motor2=0.0; motor2_calibration_status=false; pc.printf("\r\n Motor2 kalibratie = %s", motor2_calibration_status ? "true" : "false"); } // 4.2a PID-Controller motor 1************************************************** double PID_controller_motor1() { //Proportional part kp_motor1 = 0.01 ; // moet nog getweaked worden double Up_motor1 = kp_motor1 * error1_motor1; //Integral part Ki_motor1 = 0.0001; // moet nog getweaked worden error_integral_motor1 = error_integral_motor1 + (Ts*error1_motor1); // integrale fout + (de sample tijd * fout) double Ui_motor1 = Ki_motor1 * error_integral_motor1; // (fout * integrale fout) //Derivative part Kd_motor1 = 0.01 ;// moet nog getweaked worden error1_derivative_motor1 = (error1_motor1 - error1_prev_motor1)/Ts; // (Fout - de vorige fout) / tijdstap = afgeleide error1_derivative_filtered_motor1 = LowPassFilter.step(error1_derivative_motor1); //derivative wordt gefiltered double Ud_motor1 = Kd_motor1 * error1_derivative_filtered_motor1; // (afgeleide gain) * (afgeleide gefilterde fout) error1_prev_motor1 = error1_motor1; double P_motor1 = Up_motor1 + Ui_motor1 + Ud_motor1; //sommatie van de u's return P_motor1; } // 4.2b PID-Controller motor 2************************************************** double PID_controller_motor2() { //Proportional part kp_motor2 = 0.01 ; // moet nog getweaked worden double Up_motor2 = kp_motor2 * error1_motor2; //Integral part Ki_motor2 = 0.0001; // moet nog getweaked worden error_integral_motor2 = error_integral_motor2 + (Ts*error1_motor2); // integrale fout + (de sample tijd * fout) double Ui_motor2 = Ki_motor2 * error_integral_motor2; //de fout keer de integrale fout //Derivative part Kd_motor2 = 0.01 ;// moet nog getweaked worden error1_derivative_motor2 = (error1_motor2 - error1_prev_motor2)/Ts; error1_derivative_filtered_motor2 = LowPassFilter.step(error1_derivative_motor2); //derivative wordt gefiltered, dit later aanpassen double Ud_motor2 = Kd_motor2 * error1_derivative_filtered_motor2; error1_prev_motor2 = error1_motor2; double P_motor2 = Up_motor2 + Ui_motor2 + Ud_motor2; //sommatie van de u's return P_motor2; } // 4.3 State-Machine ******************************************************* //****************************************************************************** // 5. Main Loop **************************************************************** //****************************************************************************** void main_loop() { //Beginning of main_loop() // pc.printf("main_loop is running succesfully \r\n"); //confirmation that main_loop is running (als je dit erin zet krijg je elke duizendste dit bericht. Dit is niet gewenst) fencoder_motor1() ; fencoder_motor2() ; // 5.1 Measure Analog and Digital input signals ******************************** // 5.2 Run state-machine(s) **************************************************** // 5.3 Run controller(s) ******************************************************* // 5.4 Send output signals to digital and PWM output pins ********************** } //Ending of main_loop() //****************************************************************************** // 6. Main function ************************************************************ //****************************************************************************** int main() { //Beginning of Main() Function //All the things we do only once, some relevant things are now missing here: set pwmperiod to 60 microsec. Set Serial comm. Etc. Etc. // 6.1 Initialization ********************************************************** pc.baud(115200); pc.printf("\r\nStarting Project BioRobotics - Opening a Door " //print Project information "- Group 13 2019/2020 \r\n" "Dion ten Berge - s1864734 \r\n" "Bas Rutteman - s1854305 \r\n" "Nick in het Veld - s1915584 \r\n" "Marleen van der Weij - s1800078 \r\n" "Mevlid Yildirim - s2005735 \r\n"); led_green.write(1); led_red.write(1); led_blue.write(0); ticker_mainloop.attach(&main_loop,0.001); // change back to 0.001f //Run the function main_loop 1000 times per second ticker_hidscope.attach(&HIDScope, 0.001); //Ticker for Hidscope, different frequency compared to motors motor1_calibration(); motor2_calibration(); // 6.2 While loop in main function********************************************** while (true) { } //Is not used but has to remain in the code!! } //Ending of Main() Function