V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.
Dependents: MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more
ControllerFunctions/arm_pid_init_f32.c
- Committer:
- emh203
- Date:
- 2014-07-28
- Revision:
- 0:3d9c67d97d6f
File content as of revision 0:3d9c67d97d6f:
/* ---------------------------------------------------------------------- * Copyright (C) 2010-2014 ARM Limited. All rights reserved. * * $Date: 12. March 2014 * $Revision: V1.4.3 * * Project: CMSIS DSP Library * Title: arm_pid_init_f32.c * * Description: Floating-point PID Control initialization function * * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ------------------------------------------------------------------- */ #include "arm_math.h" /** * @addtogroup PID * @{ */ /** * @brief Initialization function for the floating-point PID Control. * @param[in,out] *S points to an instance of the PID structure. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state & 1 = reset the state. * @return none. * \par Description: * \par * The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n * The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code> * using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd) * also sets the state variables to all zeros. */ void arm_pid_init_f32( arm_pid_instance_f32 * S, int32_t resetStateFlag) { /* Derived coefficient A0 */ S->A0 = S->Kp + S->Ki + S->Kd; /* Derived coefficient A1 */ S->A1 = (-S->Kp) - ((float32_t) 2.0 * S->Kd); /* Derived coefficient A2 */ S->A2 = S->Kd; /* Check whether state needs reset or not */ if(resetStateFlag) { /* Clear the state buffer. The size will be always 3 samples */ memset(S->state, 0, 3u * sizeof(float32_t)); } } /** * @} end of PID group */