V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Revision:
0:3d9c67d97d6f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MatrixFunctions/arm_mat_cmplx_mult_q31.c	Mon Jul 28 15:03:15 2014 +0000
@@ -0,0 +1,293 @@
+/* ----------------------------------------------------------------------      
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved. 
+*      
+* $Date:        12. March 2014
+* $Revision: 	V1.4.3
+*      
+* Project:      CMSIS DSP Library 
+* Title:	    arm_mat_cmplx_mult_q31.c      
+*      
+* Description:  Floating-point matrix multiplication.      
+*      
+* Target Processor:          Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without 
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the 
+*     distribution.
+*   - Neither the name of ARM LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.     
+* -------------------------------------------------------------------- */
+#include "arm_math.h"
+
+/**     
+ * @ingroup groupMatrix     
+ */
+
+/**      
+ * @addtogroup CmplxMatrixMult      
+ * @{      
+ */
+
+/**      
+ * @brief Q31 Complex matrix multiplication      
+ * @param[in]       *pSrcA points to the first input complex matrix structure      
+ * @param[in]       *pSrcB points to the second input complex matrix structure      
+ * @param[out]      *pDst points to output complex matrix structure      
+ * @return     		The function returns either      
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.      
+ *      
+ * @details      
+ * <b>Scaling and Overflow Behavior:</b>      
+ *      
+ * \par      
+ * The function is implemented using an internal 64-bit accumulator.      
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate      
+ * multiplication results but provides only a single guard bit. There is no saturation      
+ * on intermediate additions. Thus, if the accumulator overflows it wraps around and      
+ * distorts the result. The input signals should be scaled down to avoid intermediate      
+ * overflows. The input is thus scaled down by log2(numColsA) bits      
+ * to avoid overflows, as a total of numColsA additions are performed internally.      
+ * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.      
+ *      
+ *      
+ */
+
+arm_status arm_mat_cmplx_mult_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst)
+{
+  q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
+  q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
+  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A  */
+  q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
+  q31_t *px;                                     /* Temporary output data matrix pointer */
+  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A */
+  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
+  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
+  q63_t sumReal1, sumImag1;                      /* accumulator */
+  q31_t a0, b0, c0, d0;
+  q31_t a1, b1, c1, d1;
+
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
+  arm_status status;                             /* status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+
+  /* Check for matrix mismatch condition */
+  if((pSrcA->numCols != pSrcB->numRows) ||
+     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+  {
+
+    /* Set status as ARM_MATH_SIZE_MISMATCH */
+    status = ARM_MATH_SIZE_MISMATCH;
+  }
+  else
+#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
+
+  {
+    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+    /* row loop */
+    do
+    {
+      /* Output pointer is set to starting address of the row being processed */
+      px = pOut + 2 * i;
+
+      /* For every row wise process, the column loop counter is to be initiated */
+      col = numColsB;
+
+      /* For every row wise process, the pIn2 pointer is set     
+       ** to the starting address of the pSrcB data */
+      pIn2 = pSrcB->pData;
+
+      j = 0u;
+
+      /* column loop */
+      do
+      {
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sumReal1 = 0.0;
+        sumImag1 = 0.0;
+
+        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+        pIn1 = pInA;
+
+        /* Apply loop unrolling and compute 4 MACs simultaneously. */
+        colCnt = numColsA >> 2;
+
+        /* matrix multiplication        */
+        while(colCnt > 0u)
+        {
+
+          /* Reading real part of complex matrix A */
+          a0 = *pIn1;
+
+          /* Reading real part of complex matrix B */
+          c0 = *pIn2;
+
+          /* Reading imaginary part of complex matrix A */
+          b0 = *(pIn1 + 1u);
+
+          /* Reading imaginary part of complex matrix B */
+          d0 = *(pIn2 + 1u);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a0 *c0;
+          sumImag1 += (q63_t) b0 *c0;
+
+          /* update pointers */
+          pIn1 += 2u;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b0 *d0;
+          sumImag1 += (q63_t) a0 *d0;
+
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+
+          /* read real and imag values from pSrcA and pSrcB buffer */
+          a1 = *pIn1;
+          c1 = *pIn2;
+          b1 = *(pIn1 + 1u);
+          d1 = *(pIn2 + 1u);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a1 *c1;
+          sumImag1 += (q63_t) b1 *c1;
+
+          /* update pointers */
+          pIn1 += 2u;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b1 *d1;
+          sumImag1 += (q63_t) a1 *d1;
+
+          a0 = *pIn1;
+          c0 = *pIn2;
+
+          b0 = *(pIn1 + 1u);
+          d0 = *(pIn2 + 1u);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a0 *c0;
+          sumImag1 += (q63_t) b0 *c0;
+
+          /* update pointers */
+          pIn1 += 2u;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b0 *d0;
+          sumImag1 += (q63_t) a0 *d0;
+
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+
+          a1 = *pIn1;
+          c1 = *pIn2;
+
+          b1 = *(pIn1 + 1u);
+          d1 = *(pIn2 + 1u);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a1 *c1;
+          sumImag1 += (q63_t) b1 *c1;
+
+          /* update pointers */
+          pIn1 += 2u;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b1 *d1;
+          sumImag1 += (q63_t) a1 *d1;
+
+          /* Decrement the loop count */
+          colCnt--;
+        }
+
+        /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.     
+         ** No loop unrolling is used. */
+        colCnt = numColsA % 0x4u;
+
+        while(colCnt > 0u)
+        {
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+          a1 = *pIn1;
+          c1 = *pIn2;
+
+          b1 = *(pIn1 + 1u);
+          d1 = *(pIn2 + 1u);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a1 *c1;
+          sumImag1 += (q63_t) b1 *c1;
+
+          /* update pointers */
+          pIn1 += 2u;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b1 *d1;
+          sumImag1 += (q63_t) a1 *d1;
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        /* Store the result in the destination buffer */
+        *px++ = (q31_t) clip_q63_to_q31(sumReal1 >> 31);
+        *px++ = (q31_t) clip_q63_to_q31(sumImag1 >> 31);
+        
+        /* Update the pointer pIn2 to point to the  starting address of the next column */
+        j++;
+        pIn2 = pSrcB->pData + 2u * j;
+
+        /* Decrement the column loop counter */
+        col--;
+
+      } while(col > 0u);
+
+      /* Update the pointer pInA to point to the  starting address of the next row */
+      i = i + numColsB;
+      pInA = pInA + 2 * numColsA;
+
+      /* Decrement the row loop counter */
+      row--;
+
+    } while(row > 0u);
+
+    /* Set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+  }
+
+  /* Return to application */
+  return (status);
+}
+
+/**     
+ * @} end of MatrixMult group     
+ */