mbed os with nrf51 internal bandgap enabled to read battery level
Dependents: BLE_file_test BLE_Blink ExternalEncoder
targets/TARGET_NUVOTON/TARGET_M451/i2c_api.c
- Committer:
- elessair
- Date:
- 2016-10-23
- Revision:
- 0:f269e3021894
File content as of revision 0:f269e3021894:
/* mbed Microcontroller Library * Copyright (c) 2015-2016 Nuvoton * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "i2c_api.h" #if DEVICE_I2C #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" #include "nu_modutil.h" #include "nu_miscutil.h" #include "nu_bitutil.h" #include "critical.h" #define NU_I2C_DEBUG 0 #if NU_I2C_DEBUG struct i2c_s MY_I2C; struct i2c_s MY_I2C_2; char MY_I2C_STATUS[64]; int MY_I2C_STATUS_POS = 0; uint32_t MY_I2C_TIMEOUT; uint32_t MY_I2C_ELAPSED; uint32_t MY_I2C_T1; uint32_t MY_I2C_T2; #endif struct nu_i2c_var { i2c_t * obj; void (*vec)(void); }; static void i2c0_vec(void); static void i2c1_vec(void); static void i2c_irq(i2c_t *obj); static void i2c_fsm_reset(i2c_t *obj, uint32_t i2c_ctl); static struct nu_i2c_var i2c0_var = { .obj = NULL, .vec = i2c0_vec, }; static struct nu_i2c_var i2c1_var = { .obj = NULL, .vec = i2c1_vec, }; static uint32_t i2c_modinit_mask = 0; static const struct nu_modinit_s i2c_modinit_tab[] = { {I2C_0, I2C0_MODULE, 0, 0, I2C0_RST, I2C0_IRQn, &i2c0_var}, {I2C_1, I2C1_MODULE, 0, 0, I2C1_RST, I2C1_IRQn, &i2c1_var}, {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL} }; static int i2c_do_tran(i2c_t *obj, char *buf, int length, int read, int naklastdata); static int i2c_do_write(i2c_t *obj, char data, int naklastdata); static int i2c_do_read(i2c_t *obj, char *data, int naklastdata); static int i2c_do_trsn(i2c_t *obj, uint32_t i2c_ctl, int sync); #define NU_I2C_TIMEOUT_STAT_INT 500000 #define NU_I2C_TIMEOUT_STOP 500000 static int i2c_poll_status_timeout(i2c_t *obj, int (*is_status)(i2c_t *obj), uint32_t timeout); static int i2c_poll_tran_heatbeat_timeout(i2c_t *obj, uint32_t timeout); //static int i2c_is_stat_int(i2c_t *obj); //static int i2c_is_stop_det(i2c_t *obj); static int i2c_is_trsn_done(i2c_t *obj); static int i2c_is_tran_started(i2c_t *obj); static int i2c_addr2data(int address, int read); #if DEVICE_I2CSLAVE // Convert mbed address to BSP address. static int i2c_addr2bspaddr(int address); #endif // #if DEVICE_I2CSLAVE static void i2c_enable_int(i2c_t *obj); static void i2c_disable_int(i2c_t *obj); static int i2c_set_int(i2c_t *obj, int inten); #if DEVICE_I2C_ASYNCH static void i2c_buffer_set(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length); static void i2c_enable_vector_interrupt(i2c_t *obj, uint32_t handler, int enable); static void i2c_rollback_vector_interrupt(i2c_t *obj); #endif #define TRANCTRL_STARTED (1) #define TRANCTRL_NAKLASTDATA (1 << 1) uint32_t us_ticker_read(void); void i2c_init(i2c_t *obj, PinName sda, PinName scl) { uint32_t i2c_sda = pinmap_peripheral(sda, PinMap_I2C_SDA); uint32_t i2c_scl = pinmap_peripheral(scl, PinMap_I2C_SCL); obj->i2c.i2c = (I2CName) pinmap_merge(i2c_sda, i2c_scl); MBED_ASSERT((int)obj->i2c.i2c != NC); const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->i2c.i2c); // Reset this module SYS_ResetModule(modinit->rsetidx); // Enable IP clock CLK_EnableModuleClock(modinit->clkidx); pinmap_pinout(sda, PinMap_I2C_SDA); pinmap_pinout(scl, PinMap_I2C_SCL); #if DEVICE_I2C_ASYNCH obj->i2c.dma_usage = DMA_USAGE_NEVER; obj->i2c.event = 0; obj->i2c.stop = 0; obj->i2c.address = 0; #endif // NOTE: Setting I2C bus clock to 100 KHz is required. See I2C::I2C in common/I2C.cpp. I2C_Open((I2C_T *) NU_MODBASE(obj->i2c.i2c), 100000); // NOTE: INTEN bit and FSM control bits (STA, STO, SI, AA) are packed in one register CTL. We cannot control interrupt through // INTEN bit without impacting FSM control bits. Use NVIC_EnableIRQ/NVIC_DisableIRQ instead for interrupt control. I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); i2c_base->CTL |= (I2C_CTL_INTEN_Msk | I2C_CTL_I2CEN_Msk); // Enable sync-moce vector interrupt. struct nu_i2c_var *var = (struct nu_i2c_var *) modinit->var; var->obj = obj; obj->i2c.tran_ctrl = 0; obj->i2c.stop = 0; i2c_enable_vector_interrupt(obj, (uint32_t) var->vec, 1); // Mark this module to be inited. int i = modinit - i2c_modinit_tab; i2c_modinit_mask |= 1 << i; } int i2c_start(i2c_t *obj) { return i2c_do_trsn(obj, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk, 1); } int i2c_stop(i2c_t *obj) { return i2c_do_trsn(obj, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk, 1); } void i2c_frequency(i2c_t *obj, int hz) { I2C_SetBusClockFreq((I2C_T *) NU_MODBASE(obj->i2c.i2c), hz); } int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) { if (i2c_start(obj)) { i2c_stop(obj); return I2C_ERROR_BUS_BUSY; } if (i2c_do_write(obj, i2c_addr2data(address, 1), 0)) { i2c_stop(obj); return I2C_ERROR_NO_SLAVE; } // Read in bytes length = i2c_do_tran(obj, data, length, 1, 1); // If not repeated start, send stop. if (stop) { i2c_stop(obj); } return length; } int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) { if (i2c_start(obj)) { i2c_stop(obj); return I2C_ERROR_BUS_BUSY; } if (i2c_do_write(obj, i2c_addr2data(address, 0), 0)) { i2c_stop(obj); return I2C_ERROR_NO_SLAVE; } // Write out bytes length = i2c_do_tran(obj, (char *) data, length, 0, 1); if (stop) { i2c_stop(obj); } return length; } void i2c_reset(i2c_t *obj) { i2c_stop(obj); } int i2c_byte_read(i2c_t *obj, int last) { char data = 0; i2c_do_read(obj, &data, last); return data; } int i2c_byte_write(i2c_t *obj, int data) { return i2c_do_write(obj, (data & 0xFF), 0); } #if DEVICE_I2CSLAVE // See I2CSlave.h #define NoData 0 // the slave has not been addressed #define ReadAddressed 1 // the master has requested a read from this slave (slave = transmitter) #define WriteGeneral 2 // the master is writing to all slave #define WriteAddressed 3 // the master is writing to this slave (slave = receiver) void i2c_slave_mode(i2c_t *obj, int enable_slave) { I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); i2c_disable_int(obj); obj->i2c.slaveaddr_state = NoData; // Switch to not addressed mode I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk); i2c_enable_int(obj); } int i2c_slave_receive(i2c_t *obj) { int slaveaddr_state; i2c_disable_int(obj); slaveaddr_state = obj->i2c.slaveaddr_state; i2c_enable_int(obj); return slaveaddr_state; } int i2c_slave_read(i2c_t *obj, char *data, int length) { return i2c_do_tran(obj, data, length, 1, 1); } int i2c_slave_write(i2c_t *obj, const char *data, int length) { return i2c_do_tran(obj, (char *) data, length, 0, 1); } void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) { I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); i2c_disable_int(obj); I2C_SetSlaveAddr(i2c_base, 0, i2c_addr2bspaddr(address), I2C_GCMODE_ENABLE); i2c_enable_int(obj); } static int i2c_addr2bspaddr(int address) { return (address >> 1); } #endif // #if DEVICE_I2CSLAVE static void i2c_enable_int(i2c_t *obj) { const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab); core_util_critical_section_enter(); // Enable I2C interrupt NVIC_EnableIRQ(modinit->irq_n); obj->i2c.inten = 1; core_util_critical_section_exit(); } static void i2c_disable_int(i2c_t *obj) { const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab); core_util_critical_section_enter(); // Disable I2C interrupt NVIC_DisableIRQ(modinit->irq_n); obj->i2c.inten = 0; core_util_critical_section_exit(); } static int i2c_set_int(i2c_t *obj, int inten) { int inten_back; core_util_critical_section_enter(); inten_back = obj->i2c.inten; core_util_critical_section_exit(); if (inten) { i2c_enable_int(obj); } else { i2c_disable_int(obj); } return inten_back; } int i2c_allow_powerdown(void) { uint32_t modinit_mask = i2c_modinit_mask; while (modinit_mask) { int i2c_idx = nu_ctz(modinit_mask); const struct nu_modinit_s *modinit = i2c_modinit_tab + i2c_idx; struct nu_i2c_var *var = (struct nu_i2c_var *) modinit->var; if (var->obj) { // Disallow entering power-down mode if I2C transfer is enabled. if (i2c_active(var->obj)) { return 0; } } modinit_mask &= ~(1 << i2c_idx); } return 1; } static int i2c_do_tran(i2c_t *obj, char *buf, int length, int read, int naklastdata) { int tran_len = 0; i2c_disable_int(obj); obj->i2c.tran_ctrl = naklastdata ? (TRANCTRL_STARTED | TRANCTRL_NAKLASTDATA) : TRANCTRL_STARTED; obj->i2c.tran_beg = buf; obj->i2c.tran_pos = buf; obj->i2c.tran_end = buf + length; i2c_enable_int(obj); if (i2c_poll_tran_heatbeat_timeout(obj, NU_I2C_TIMEOUT_STAT_INT)) { #if NU_I2C_DEBUG MY_I2C_2 = obj->i2c; while (1); #endif } else { i2c_disable_int(obj); obj->i2c.tran_ctrl = 0; tran_len = obj->i2c.tran_pos - obj->i2c.tran_beg; obj->i2c.tran_beg = NULL; obj->i2c.tran_pos = NULL; obj->i2c.tran_end = NULL; i2c_enable_int(obj); } return tran_len; } static int i2c_do_write(i2c_t *obj, char data, int naklastdata) { char data_[1]; data_[0] = data; return i2c_do_tran(obj, data_, 1, 0, naklastdata) == 1 ? 0 : I2C_ERROR_BUS_BUSY; } static int i2c_do_read(i2c_t *obj, char *data, int naklastdata) { return i2c_do_tran(obj, data, 1, 1, naklastdata) == 1 ? 0 : I2C_ERROR_BUS_BUSY; } static int i2c_do_trsn(i2c_t *obj, uint32_t i2c_ctl, int sync) { I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); int err = 0; i2c_disable_int(obj); if (i2c_poll_status_timeout(obj, i2c_is_trsn_done, NU_I2C_TIMEOUT_STAT_INT)) { err = I2C_ERROR_BUS_BUSY; #if NU_I2C_DEBUG MY_I2C_2 = obj->i2c; while (1); #endif } else { #if 1 // NOTE: Avoid duplicate Start/Stop. Otherwise, we may meet strange error. uint32_t status = I2C_GET_STATUS(i2c_base); switch (status) { case 0x08: // Start case 0x10: // Master Repeat Start if (i2c_ctl & I2C_CTL_STA_Msk) { return 0; } else { break; } case 0xF8: // Bus Released if (i2c_ctl & (I2C_CTL_STA_Msk | I2C_CTL_STO_Msk) == I2C_CTL_STO_Msk) { return 0; } else { break; } } #endif I2C_SET_CONTROL_REG(i2c_base, i2c_ctl); if (sync && i2c_poll_status_timeout(obj, i2c_is_trsn_done, NU_I2C_TIMEOUT_STAT_INT)) { err = I2C_ERROR_BUS_BUSY; #if NU_I2C_DEBUG MY_I2C_2 = obj->i2c; while (1); #endif } } i2c_enable_int(obj); return err; } static int i2c_poll_status_timeout(i2c_t *obj, int (*is_status)(i2c_t *obj), uint32_t timeout) { uint32_t t1, t2, elapsed = 0; int status_assert = 0; t1 = us_ticker_read(); while (1) { status_assert = is_status(obj); if (status_assert) { break; } t2 = us_ticker_read(); elapsed = (t2 > t1) ? (t2 - t1) : ((uint64_t) t2 + 0xFFFFFFFF - t1 + 1); if (elapsed >= timeout) { #if NU_I2C_DEBUG MY_I2C_T1 = t1; MY_I2C_T2 = t2; MY_I2C_ELAPSED = elapsed; MY_I2C_TIMEOUT = timeout; MY_I2C_2 = obj->i2c; while (1); #endif break; } } return (elapsed >= timeout); } static int i2c_poll_tran_heatbeat_timeout(i2c_t *obj, uint32_t timeout) { uint32_t t1, t2, elapsed = 0; int tran_started; char *tran_pos = NULL; char *tran_pos2 = NULL; i2c_disable_int(obj); tran_pos = obj->i2c.tran_pos; i2c_enable_int(obj); t1 = us_ticker_read(); while (1) { i2c_disable_int(obj); tran_started = i2c_is_tran_started(obj); i2c_enable_int(obj); if (! tran_started) { // Transfer completed or stopped break; } i2c_disable_int(obj); tran_pos2 = obj->i2c.tran_pos; i2c_enable_int(obj); t2 = us_ticker_read(); if (tran_pos2 != tran_pos) { // Transfer on-going t1 = t2; tran_pos = tran_pos2; continue; } elapsed = (t2 > t1) ? (t2 - t1) : ((uint64_t) t2 + 0xFFFFFFFF - t1 + 1); if (elapsed >= timeout) { // Transfer idle #if NU_I2C_DEBUG MY_I2C = obj->i2c; MY_I2C_T1 = t1; MY_I2C_T2 = t2; MY_I2C_ELAPSED = elapsed; MY_I2C_TIMEOUT = timeout; MY_I2C_2 = obj->i2c; while (1); #endif break; } } return (elapsed >= timeout); } #if 0 static int i2c_is_stat_int(i2c_t *obj) { I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); return !! (i2c_base->CTL & I2C_CTL_SI_Msk); } static int i2c_is_stop_det(i2c_t *obj) { I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); return ! (i2c_base->CTL & I2C_CTL_STO_Msk); } #endif static int i2c_is_trsn_done(i2c_t *obj) { I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); int i2c_int; uint32_t status; int inten_back; inten_back = i2c_set_int(obj, 0); i2c_int = !! (i2c_base->CTL & I2C_CTL_SI_Msk); status = I2C_GET_STATUS(i2c_base); i2c_set_int(obj, inten_back); return (i2c_int || status == 0xF8); } static int i2c_is_tran_started(i2c_t *obj) { int started; int inten_back; inten_back = i2c_set_int(obj, 0); started = !! (obj->i2c.tran_ctrl & TRANCTRL_STARTED); i2c_set_int(obj, inten_back); return started; } static int i2c_addr2data(int address, int read) { return read ? (address | 1) : (address & 0xFE); } static void i2c0_vec(void) { i2c_irq(i2c0_var.obj); } static void i2c1_vec(void) { i2c_irq(i2c1_var.obj); } static void i2c_irq(i2c_t *obj) { I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); uint32_t status; if (I2C_GET_TIMEOUT_FLAG(i2c_base)) { I2C_ClearTimeoutFlag(i2c_base); return; } status = I2C_GET_STATUS(i2c_base); #if NU_I2C_DEBUG if (MY_I2C_STATUS_POS < (sizeof (MY_I2C_STATUS) / sizeof (MY_I2C_STATUS[0]))) { MY_I2C_STATUS[MY_I2C_STATUS_POS ++] = status; } else { memset(MY_I2C_STATUS, 0x00, sizeof (MY_I2C_STATUS)); MY_I2C_STATUS_POS = 0; } #endif switch (status) { // Master Transmit case 0x28: // Master Transmit Data ACK case 0x18: // Master Transmit Address ACK case 0x08: // Start case 0x10: // Master Repeat Start if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) { if (obj->i2c.tran_pos < obj->i2c.tran_end) { I2C_SET_DATA(i2c_base, *obj->i2c.tran_pos ++); I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk); } else { if (status == 0x18) { obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED; i2c_disable_int(obj); break; } // Go Master Repeat Start i2c_fsm_reset(obj, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk); } } else { i2c_disable_int(obj); } break; case 0x30: // Master Transmit Data NACK case 0x20: // Master Transmit Address NACK // Go Master Repeat Start i2c_fsm_reset(obj, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk); break; case 0x38: // Master Arbitration Lost i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk); break; case 0x48: // Master Receive Address NACK // Go Master Repeat Start i2c_fsm_reset(obj, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk); break; case 0x40: // Master Receive Address ACK case 0x50: // Master Receive Data ACK case 0x58: // Master Receive Data NACK if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) { if (obj->i2c.tran_pos < obj->i2c.tran_end) { if (status == 0x50 || status == 0x58) { *obj->i2c.tran_pos ++ = I2C_GET_DATA(i2c_base); } if (status == 0x58) { #if NU_I2C_DEBUG if (obj->i2c.tran_pos != obj->i2c.tran_end) { MY_I2C = obj->i2c; while (1); } #endif // Go Master Repeat Start i2c_fsm_reset(obj, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk); } else { uint32_t i2c_ctl = I2C_CTL_SI_Msk | I2C_CTL_AA_Msk; if ((obj->i2c.tran_end - obj->i2c.tran_pos) == 1 && obj->i2c.tran_ctrl & TRANCTRL_NAKLASTDATA) { // Last data i2c_ctl &= ~I2C_CTL_AA_Msk; } I2C_SET_CONTROL_REG(i2c_base, i2c_ctl); } } else { obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED; i2c_disable_int(obj); break; } } else { i2c_disable_int(obj); } break; //case 0x00: // Bus error // Slave Transmit case 0xB8: // Slave Transmit Data ACK case 0xA8: // Slave Transmit Address ACK case 0xB0: // Slave Transmit Arbitration Lost if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) { if (obj->i2c.tran_pos < obj->i2c.tran_end) { uint32_t i2c_ctl = I2C_CTL_SI_Msk | I2C_CTL_AA_Msk; I2C_SET_DATA(i2c_base, *obj->i2c.tran_pos ++); if (obj->i2c.tran_pos == obj->i2c.tran_end && obj->i2c.tran_ctrl & TRANCTRL_NAKLASTDATA) { // Last data i2c_ctl &= ~I2C_CTL_AA_Msk; } I2C_SET_CONTROL_REG(i2c_base, i2c_ctl); } else { obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED; i2c_disable_int(obj); break; } } else { i2c_disable_int(obj); } obj->i2c.slaveaddr_state = ReadAddressed; break; //case 0xA0: // Slave Transmit Repeat Start or Stop case 0xC0: // Slave Transmit Data NACK case 0xC8: // Slave Transmit Last Data ACK obj->i2c.slaveaddr_state = NoData; i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk); break; // Slave Receive case 0x80: // Slave Receive Data ACK case 0x88: // Slave Receive Data NACK case 0x60: // Slave Receive Address ACK case 0x68: // Slave Receive Arbitration Lost obj->i2c.slaveaddr_state = WriteAddressed; if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) { if (obj->i2c.tran_pos < obj->i2c.tran_end) { if (status == 0x80 || status == 0x88) { *obj->i2c.tran_pos ++ = I2C_GET_DATA(i2c_base); } if (status == 0x88) { #if NU_I2C_DEBUG if (obj->i2c.tran_pos != obj->i2c.tran_end) { MY_I2C = obj->i2c; while (1); } #endif obj->i2c.slaveaddr_state = NoData; i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk); } else { uint32_t i2c_ctl = I2C_CTL_SI_Msk | I2C_CTL_AA_Msk; if ((obj->i2c.tran_end - obj->i2c.tran_pos) == 1 && obj->i2c.tran_ctrl & TRANCTRL_NAKLASTDATA) { // Last data i2c_ctl &= ~I2C_CTL_AA_Msk; } I2C_SET_CONTROL_REG(i2c_base, i2c_ctl); } } else { obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED; i2c_disable_int(obj); break; } } else { i2c_disable_int(obj); } break; //case 0xA0: // Slave Receive Repeat Start or Stop // GC mode //case 0xA0: // GC mode Repeat Start or Stop case 0x90: // GC mode Data ACK case 0x98: // GC mode Data NACK case 0x70: // GC mode Address ACK case 0x78: // GC mode Arbitration Lost obj->i2c.slaveaddr_state = WriteAddressed; if ((obj->i2c.tran_ctrl & TRANCTRL_STARTED) && obj->i2c.tran_pos) { if (obj->i2c.tran_pos < obj->i2c.tran_end) { if (status == 0x90 || status == 0x98) { *obj->i2c.tran_pos ++ = I2C_GET_DATA(i2c_base); } if (status == 0x98) { #if NU_I2C_DEBUG if (obj->i2c.tran_pos != obj->i2c.tran_end) { MY_I2C = obj->i2c; while (1); } #endif obj->i2c.slaveaddr_state = NoData; i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk); } else { uint32_t i2c_ctl = I2C_CTL_SI_Msk | I2C_CTL_AA_Msk; if ((obj->i2c.tran_end - obj->i2c.tran_pos) == 1 && obj->i2c.tran_ctrl & TRANCTRL_NAKLASTDATA) { // Last data i2c_ctl &= ~I2C_CTL_AA_Msk; } I2C_SET_CONTROL_REG(i2c_base, i2c_ctl); } } else { obj->i2c.tran_ctrl &= ~TRANCTRL_STARTED; i2c_disable_int(obj); break; } } else { i2c_disable_int(obj); } break; case 0xF8: // Bus Released break; default: i2c_fsm_reset(obj, I2C_CTL_SI_Msk | I2C_CTL_AA_Msk); } } static void i2c_fsm_reset(i2c_t *obj, uint32_t i2c_ctl) { I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); obj->i2c.stop = 0; obj->i2c.tran_ctrl = 0; I2C_SET_CONTROL_REG(i2c_base, i2c_ctl); obj->i2c.slaveaddr_state = NoData; } #if DEVICE_I2C_ASYNCH void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address, uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint) { // NOTE: M451 I2C only supports 7-bit slave address. The mbed I2C address passed in is shifted left by 1 bit (7-bit addr << 1). MBED_ASSERT((address & 0xFFFFFF00) == 0); // NOTE: First transmit and then receive. (void) hint; obj->i2c.dma_usage = DMA_USAGE_NEVER; obj->i2c.stop = stop; obj->i2c.address = address; obj->i2c.event = event; i2c_buffer_set(obj, tx, tx_length, rx, rx_length); //I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); i2c_enable_vector_interrupt(obj, handler, 1); i2c_start(obj); } uint32_t i2c_irq_handler_asynch(i2c_t *obj) { int event = 0; I2C_T *i2c_base = (I2C_T *) NU_MODBASE(obj->i2c.i2c); uint32_t status = I2C_GET_STATUS(i2c_base); switch (status) { case 0x08: // Start case 0x10: {// Master Repeat Start if (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) { I2C_SET_DATA(i2c_base, (i2c_addr2data(obj->i2c.address, 0))); I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk); } else if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) { I2C_SET_DATA(i2c_base, (i2c_addr2data(obj->i2c.address, 1))); I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk); } else { event = I2C_EVENT_TRANSFER_COMPLETE; if (obj->i2c.stop) { I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk); } } break; } case 0x18: // Master Transmit Address ACK case 0x28: // Master Transmit Data ACK if (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) { uint8_t *tx = (uint8_t *)obj->tx_buff.buffer; I2C_SET_DATA(i2c_base, tx[obj->tx_buff.pos ++]); I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk); } else if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) { I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk); } else { event = I2C_EVENT_TRANSFER_COMPLETE; if (obj->i2c.stop) { I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk); } } break; case 0x20: // Master Transmit Address NACK event = I2C_EVENT_ERROR_NO_SLAVE; if (obj->i2c.stop) { I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk); } break; case 0x30: // Master Transmit Data NACK if (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) { event = I2C_EVENT_TRANSFER_EARLY_NACK; I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk); } else if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) { I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk); } else { event = I2C_EVENT_TRANSFER_COMPLETE; if (obj->i2c.stop) { I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk); } } break; case 0x38: // Master Arbitration Lost I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk); // Enter not addressed SLV mode event = I2C_EVENT_ERROR; break; case 0x50: // Master Receive Data ACK if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) { uint8_t *rx = (uint8_t *) obj->rx_buff.buffer; rx[obj->rx_buff.pos ++] = I2C_GET_DATA(((I2C_T *) NU_MODBASE(obj->i2c.i2c))); } case 0x40: // Master Receive Address ACK I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_SI_Msk | ((obj->rx_buff.pos != obj->rx_buff.length - 1) ? I2C_CTL_AA_Msk : 0)); break; case 0x48: // Master Receive Address NACK event = I2C_EVENT_ERROR_NO_SLAVE; if (obj->i2c.stop) { I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk); } break; case 0x58: // Master Receive Data NACK if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) { uint8_t *rx = (uint8_t *) obj->rx_buff.buffer; rx[obj->rx_buff.pos ++] = I2C_GET_DATA(((I2C_T *) NU_MODBASE(obj->i2c.i2c))); } I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STA_Msk | I2C_CTL_SI_Msk); break; case 0x00: // Bus error event = I2C_EVENT_ERROR; i2c_reset(obj); break; default: event = I2C_EVENT_ERROR; if (obj->i2c.stop) { I2C_SET_CONTROL_REG(i2c_base, I2C_CTL_STO_Msk | I2C_CTL_SI_Msk); } } if (event) { i2c_rollback_vector_interrupt(obj); } return (event & obj->i2c.event); } uint8_t i2c_active(i2c_t *obj) { const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->i2c.i2c); // Vector will be changed for async transfer. Use it to judge if async transfer is on-going. uint32_t vec = NVIC_GetVector(modinit->irq_n); struct nu_i2c_var *var = (struct nu_i2c_var *) modinit->var; return (vec && vec != (uint32_t) var->vec); } void i2c_abort_asynch(i2c_t *obj) { i2c_rollback_vector_interrupt(obj); i2c_stop(obj); } static void i2c_buffer_set(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length) { obj->tx_buff.buffer = (void *) tx; obj->tx_buff.length = tx_length; obj->tx_buff.pos = 0; obj->rx_buff.buffer = rx; obj->rx_buff.length = rx_length; obj->rx_buff.pos = 0; } static void i2c_enable_vector_interrupt(i2c_t *obj, uint32_t handler, int enable) { const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->i2c.i2c); if (enable) { NVIC_SetVector(modinit->irq_n, handler); i2c_enable_int(obj); } else { i2c_disable_int(obj); } } static void i2c_rollback_vector_interrupt(i2c_t *obj) { const struct nu_modinit_s *modinit = get_modinit(obj->i2c.i2c, i2c_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->i2c.i2c); struct nu_i2c_var *var = (struct nu_i2c_var *) modinit->var; i2c_enable_vector_interrupt(obj, (uint32_t) var->vec, 1); } #endif #endif