A rouge-like rpg, heavily inspired on the binding of isaac. Running on a FRDM-K64F Mbed board. C++.
Dependencies: mbed MotionSensor
N5110/N5110.cpp
- Committer:
- el17sm
- Date:
- 2019-04-11
- Revision:
- 0:8e92b66a0755
- Child:
- 4:d1aeb131e533
File content as of revision 0:8e92b66a0755:
#include "mbed.h" #include "N5110.h" // overloaded constructor includes power pin - LCD Vcc connected to GPIO pin // this constructor works fine with LPC1768 - enough current sourced from GPIO // to power LCD. Doesn't work well with K64F. N5110::N5110(PinName const pwrPin, PinName const scePin, PinName const rstPin, PinName const dcPin, PinName const mosiPin, PinName const sclkPin, PinName const ledPin) : _spi(new SPI(mosiPin,NC,sclkPin)), // create new SPI instance and initialise _led(new PwmOut(ledPin)), _pwr(new DigitalOut(pwrPin)), _sce(new DigitalOut(scePin)), _rst(new DigitalOut(rstPin)), _dc(new DigitalOut(dcPin)) {} // overloaded constructor does not include power pin - LCD Vcc must be tied to +3V3 // Best to use this with K64F as the GPIO hasn't sufficient output current to reliably // drive the LCD. N5110::N5110(PinName const scePin, PinName const rstPin, PinName const dcPin, PinName const mosiPin, PinName const sclkPin, PinName const ledPin) : _spi(new SPI(mosiPin,NC,sclkPin)), // create new SPI instance and initialise _led(new PwmOut(ledPin)), _pwr(NULL), // pwr not needed so null it to be safe _sce(new DigitalOut(scePin)), _rst(new DigitalOut(rstPin)), _dc(new DigitalOut(dcPin)) {} N5110::~N5110() { delete _spi; if(_pwr) { delete _pwr; } delete _led; delete _sce; delete _rst; delete _dc; } // initialise function - powers up and sends the initialisation commands void N5110::init() { turnOn(); // power up reset(); // reset LCD - must be done within 100 ms initSPI(); setContrast(0.55); // this may need tuning (say 0.4 to 0.6) setBias(3); // datasheet - 48:1 mux - don't mess with if you don't know what you're doing! (0 to 7) setTempCoefficient(0); // datasheet - may need increasing (range 0 to 3) at very low temperatures normalMode(); // normal video mode by default clearRAM(); // RAM is undefined at power-up so clear to be sure clear(); // clear buffer setBrightness(0.5); } // sets normal video mode (black on white) void N5110::normalMode() { sendCommand(0b00100000); // basic instruction sendCommand(0b00001100); // normal video mode- datasheet } // sets normal video mode (white on black) void N5110::inverseMode() { sendCommand(0b00100000); // basic instruction sendCommand(0b00001101); // inverse video mode - datasheet } // function to power up the LCD and backlight - only works when using GPIO to power void N5110::turnOn() { if (_pwr != NULL) { _pwr->write(1); // apply power } } // function to power down LCD void N5110::turnOff() { clear(); // clear buffer refresh(); setBrightness(0.0); // turn backlight off clearRAM(); // clear RAM to ensure specified current consumption // send command to ensure we are in basic mode sendCommand(0b00100000); // basic mode sendCommand(0b00001000); // clear display sendCommand(0b00100001); // extended mode sendCommand(0b00100100); // power down // if we are powering the LCD using the GPIO then make it low to turn off if (_pwr != NULL) { wait_ms(10); // small delay and then turn off the power pin _pwr->write(0); // turn off power } } // function to change LED backlight brightness void N5110::setBrightness(float brightness) { // check whether brightness is within range if (brightness < 0.0f) brightness = 0.0f; if (brightness > 1.0f) brightness = 1.0f; // set PWM duty cycle _led->write(brightness); } void N5110::setContrast(float contrast) { // enforce limits if (contrast > 1.0f) contrast = 1.0f; else if (contrast < 0.0f) contrast = 0.0; // convert to char in range 0 to 127 (i.e. 6 bits) char ic = char(contrast*127.0f); sendCommand(0b00100001); // extended instruction set sendCommand(0b10000000 | ic); // set Vop (which controls contrast) sendCommand(0b00100000); // back to basic instruction set } void N5110::setTempCoefficient(char tc) { // enforce limits if (tc>3) { tc=3; } // temperature coefficient may need increasing at low temperatures sendCommand(0b00100001); // extended instruction set sendCommand(0b00000100 | tc); sendCommand(0b00100000); // back to basic instruction set } void N5110::setBias(char bias) { // from data sheet // bias mux rate // 0 1:100 // 1 1:80 // 2 1:65 // 3 1:48 (default) // 4 1:40/1:34 // 5 1:24 // 6 1:18/1:16 // 7 1:10/1:9/1:8 // enforce limits if (bias>7) { bias=7; } sendCommand(0b00100001); // extended mode instruction sendCommand(0b00010000 | bias); sendCommand(0b00100000); // end of extended mode instruction } // pulse the active low reset line void N5110::reset() { _rst->write(0); // reset the LCD _rst->write(1); } // function to initialise SPI peripheral void N5110::initSPI() { _spi->format(8,1); // 8 bits, Mode 1 - polarity 0, phase 1 - base value of clock is 0, data captured on falling edge/propagated on rising edge _spi->frequency(4000000); // maximum of screen is 4 MHz } // send a command to the display void N5110::sendCommand(unsigned char command) { _dc->write(0); // set DC low for command _sce->write(0); // set CE low to begin frame _spi->write(command); // send command _dc->write(1); // turn back to data by default _sce->write(1); // set CE high to end frame (expected for transmission of single byte) } // send data to the display at the current XY address // dc is set to 1 (i.e. data) after sending a command and so should // be the default mode. void N5110::sendData(unsigned char data) { _sce->write(0); // set CE low to begin frame _spi->write(data); _sce->write(1); // set CE high to end frame (expected for transmission of single byte) } // this function writes 0 to the 504 bytes to clear the RAM void N5110::clearRAM() { _sce->write(0); //set CE low to begin frame for(int i = 0; i < WIDTH * HEIGHT; i++) { // 48 x 84 bits = 504 bytes _spi->write(0x00); // send 0's } _sce->write(1); // set CE high to end frame } // function to set the XY address in RAM for subsequenct data write void N5110::setXYAddress(unsigned int const x, unsigned int const y) { if (x<WIDTH && y<HEIGHT) { // check within range sendCommand(0b00100000); // basic instruction sendCommand(0b10000000 | x); // send addresses to display with relevant mask sendCommand(0b01000000 | y); } } // These functions are used to set, clear and get the value of pixels in the display // Pixels are addressed in the range of 0 to 47 (y) and 0 to 83 (x). The refresh() // function must be called after set and clear in order to update the display void N5110::setPixel(unsigned int const x, unsigned int const y, bool const state) { if (x<WIDTH && y<HEIGHT) { // check within range // calculate bank and shift 1 to required position in the data byte if(state) buffer[x][y/8] |= (1 << y%8); else buffer[x][y/8] &= ~(1 << y%8); } } void N5110::clearPixel(unsigned int const x, unsigned int const y) { if (x<WIDTH && y<HEIGHT) { // check within range // calculate bank and shift 1 to required position (using bit clear) buffer[x][y/8] &= ~(1 << y%8); } } int N5110::getPixel(unsigned int const x, unsigned int const y) const { if (x<WIDTH && y<HEIGHT) { // check within range // return relevant bank and mask required bit int pixel = (int) buffer[x][y/8] & (1 << y%8); if (pixel) return 1; else return 0; } return 0; } // function to refresh the display void N5110::refresh() { setXYAddress(0,0); // important to set address back to 0,0 before refreshing display // address auto increments after printing string, so buffer[0][0] will not coincide // with top-left pixel after priting string _sce->write(0); //set CE low to begin frame for(int j = 0; j < BANKS; j++) { // be careful to use correct order (j,i) for horizontal addressing for(int i = 0; i < WIDTH; i++) { _spi->write(buffer[i][j]); // send buffer } } _sce->write(1); // set CE high to end frame } // fills the buffer with random bytes. Can be used to test the display. // The rand() function isn't seeded so it probably creates the same pattern everytime void N5110::randomiseBuffer() { int i,j; for(j = 0; j < BANKS; j++) { // be careful to use correct order (j,i) for horizontal addressing for(i = 0; i < WIDTH; i++) { buffer[i][j] = rand()%256; // generate random byte } } } // function to print 5x7 font void N5110::printChar(char const c, unsigned int const x, unsigned int const y) { if (y<BANKS) { // check if printing in range of y banks for (int i = 0; i < 5 ; i++ ) { int pixel_x = x+i; if (pixel_x > WIDTH-1) // ensure pixel isn't outside the buffer size (0 - 83) break; buffer[pixel_x][y] = font5x7[(c - 32)*5 + i]; // array is offset by 32 relative to ASCII, each character is 5 pixels wide } } } // function to print string at specified position void N5110::printString(const char *str, unsigned int const x, unsigned int const y) { if (y<BANKS) { // check if printing in range of y banks int n = 0 ; // counter for number of characters in string // loop through string and print character while(*str) { // writes the character bitmap data to the buffer, so that // text and pixels can be displayed at the same time for (int i = 0; i < 5 ; i++ ) { int pixel_x = x+i+n*6; if (pixel_x > WIDTH-1) // ensure pixel isn't outside the buffer size (0 - 83) break; buffer[pixel_x][y] = font5x7[(*str - 32)*5 + i]; } str++; // go to next character in string n++; // increment index } } } // function to clear the screen buffer void N5110::clear() { memset(buffer,0,sizeof(buffer)); } // function to plot array on display void N5110::plotArray(float const array[]) { for (int i=0; i<WIDTH; i++) { // loop through array // elements are normalised from 0.0 to 1.0, so multiply // by 47 to convert to pixel range, and subtract from 47 // since top-left is 0,0 in the display geometry setPixel(i,47 - int(array[i]*47.0f),true); } } // function to draw circle void N5110:: drawCircle(unsigned int const x0, unsigned int const y0, unsigned int const radius, FillType const fill) { // from http://en.wikipedia.org/wiki/Midpoint_circle_algorithm int x = radius; int y = 0; int radiusError = 1-x; while(x >= y) { // if transparent, just draw outline if (fill == FILL_TRANSPARENT) { setPixel( x + x0, y + y0,true); setPixel(-x + x0, y + y0,true); setPixel( y + x0, x + y0,true); setPixel(-y + x0, x + y0,true); setPixel(-y + x0, -x + y0,true); setPixel( y + x0, -x + y0,true); setPixel( x + x0, -y + y0,true); setPixel(-x + x0, -y + y0,true); } else { // drawing filled circle, so draw lines between points at same y value int type = (fill==FILL_BLACK) ? 1:0; // black or white fill drawLine(x+x0,y+y0,-x+x0,y+y0,type); drawLine(y+x0,x+y0,-y+x0,x+y0,type); drawLine(y+x0,-x+y0,-y+x0,-x+y0,type); drawLine(x+x0,-y+y0,-x+x0,-y+y0,type); } y++; if (radiusError<0) { radiusError += 2 * y + 1; } else { x--; radiusError += 2 * (y - x) + 1; } } } void N5110::drawLine(unsigned int const x0, unsigned int const y0, unsigned int const x1, unsigned int const y1, unsigned int const type) { // Note that the ranges can be negative so we have to turn the input values // into signed integers first int const y_range = static_cast<int>(y1) - static_cast<int>(y0); int const x_range = static_cast<int>(x1) - static_cast<int>(x0); // if dotted line, set step to 2, else step is 1 unsigned int const step = (type==2) ? 2:1; // make sure we loop over the largest range to get the most pixels on the display // for instance, if drawing a vertical line (x_range = 0), we need to loop down the y pixels // or else we'll only end up with 1 pixel in the x column if ( abs(x_range) > abs(y_range) ) { // ensure we loop from smallest to largest or else for-loop won't run as expected unsigned int const start = x_range > 0 ? x0:x1; unsigned int const stop = x_range > 0 ? x1:x0; // loop between x pixels for (unsigned int x = start; x<= stop ; x+=step) { // do linear interpolation int const dx = static_cast<int>(x)-static_cast<int>(x0); unsigned int const y = y0 + y_range * dx / x_range; // If the line type is '0', this will clear the pixel // If it is '1' or '2', the pixel will be set setPixel(x,y, type); } } else { // ensure we loop from smallest to largest or else for-loop won't run as expected unsigned int const start = y_range > 0 ? y0:y1; unsigned int const stop = y_range > 0 ? y1:y0; for (unsigned int y = start; y<= stop ; y+=step) { // do linear interpolation int const dy = static_cast<int>(y)-static_cast<int>(y0); unsigned int const x = x0 + x_range * dy / y_range; // If the line type is '0', this will clear the pixel // If it is '1' or '2', the pixel will be set setPixel(x,y, type); } } } void N5110::drawRect(unsigned int const x0, unsigned int const y0, unsigned int const width, unsigned int const height, FillType const fill) { if (fill == FILL_TRANSPARENT) { // transparent, just outline drawLine(x0,y0,x0+(width-1),y0,1); // top drawLine(x0,y0+(height-1),x0+(width-1),y0+(height-1),1); // bottom drawLine(x0,y0,x0,y0+(height-1),1); // left drawLine(x0+(width-1),y0,x0+(width-1),y0+(height-1),1); // right } else { // filled rectangle int type = (fill==FILL_BLACK) ? 1:0; // black or white fill for (int y = y0; y<y0+height; y++) { // loop through rows of rectangle drawLine(x0,y,x0+(width-1),y,type); // draw line across screen } } } void N5110::drawSprite(int x0, int y0, int nrows, int ncols, int *sprite) { for (int i = 0; i < nrows; i++) { for (int j = 0 ; j < ncols ; j++) { int pixel = *((sprite+i*ncols)+j); setPixel(x0+j,y0+i, pixel); } } }