Craig Evans
/
2645_FSM_UpDown_Counter
Sample code from ELEC2645 Week 16 Lab Demonstrates how to implement a simple FSM up/down counter
main.cpp
- Committer:
- eencae
- Date:
- 2016-01-07
- Revision:
- 0:c5278b91719f
- Child:
- 1:fb324de02b7f
File content as of revision 0:c5278b91719f:
/* 2645_FSM_UpDown_Counter Sample code from ELEC2645 Week 16 Lab Demonstrates how to implement a simple FSM up/down counter (c) Craig A. Evans, University of Leeds, Jan 2016 */ #include "mbed.h" // pre-processor directives // defines directions as 0/1. Note UPPERCASE #define UP 0 #define DOWN 1 // K64F on-board LEDs DigitalOut r_led(LED_RED); DigitalOut g_led(LED_GREEN); DigitalOut b_led(LED_BLUE); // K64F on-board switches InterruptIn sw2(SW2); InterruptIn sw3(SW3); // LEDs to display counter output // connect up external LEDs to these pins with appropriate current-limiting resistor BusOut output(PTB2,PTB3,PTB10,PTB11); // array of states in the FSM, each element is the output of the counter int fsm[4] = {1,2,4,8}; // flag - must be volatile as changes within ISR // g_ prefix makes it easier to distinguish it as global volatile int g_sw2_flag = 0; // function prototypes // error function hangs flashing an LED void error(); // set-up the on-board LEDs and switches void init_K64F(); // SW2 interrupt service routine void sw2_isr(); int main() { // initialise on-board LED and switches init_K64F(); // SW2 has a pull-up resistor, so the pin will be at 3.3 V by default // and fall to 0 V when pressed. We therefore need to look for a falling edge // on the pin to fire the interrupt sw2.fall(&sw2_isr); // set inital state int state = 0; // set initial direction int direction = UP; while(1) { // loop forever // check if flag i.e. interrupt has occured if (g_sw2_flag) { g_sw2_flag = 0; // if it has, clear the flag // swap direction when button has been pressed // (could just use ! but want this to be explicit to aid understanding) if (direction == UP) { direction = DOWN; } else { direction = UP; } } output = fsm[state]; // output current state // check which state we are in and see which the next state should be next depending on direction switch(state) { case 0: switch(direction) { case UP: state = 1; break; case DOWN: state = 3; break; } break; case 1: switch(direction) { case UP: state = 2; break; case DOWN: state = 0; break; } break; case 2: switch(direction) { case UP: state = 3; break; case DOWN: state = 1; break; } break; case 3: switch(direction) { case UP: state = 0; break; case DOWN: state = 2; break; } break; default: // default case error(); //invalid state - call error routine // or could jump to starting state i.e. state = 0 break; } wait(0.2); // small delay } } void init_K64F() { // on-board LEDs are active-low, so set pin high to turn them off. r_led = 1; g_led = 1; b_led = 1; // since the on-board switches have external pull-ups, we should disable the internal pull-down // resistors that are enabled by default using InterruptIn sw2.mode(PullNone); sw3.mode(PullNone); } void error() { while(1) { // if error, hang while flashing error message r_led = 0; wait(0.2); r_led = 1; wait(0.2); } } // SW2 event-triggered interrupt void sw2_isr() { g_sw2_flag = 1; // set flag in ISR }