Hardware Abstraction Layer, permitting any LoRa application to use any LoRa radio chip
Dependents: alarm_slave alarm_master lora_p2p lorawan1v1 ... more
radio chip selection
Radio chip driver is not included, allowing choice of radio device.
If you're using SX1272 or SX1276, then import sx127x driver into your program.
if you're using SX1261 or SX1262, then import sx126x driver into your program.
if you're using SX1280, then import sx1280 driver into your program.
if you're using LR1110, then import LR1110 driver into your program.
If you're using NAmote72 or Murata discovery, then you must import only sx127x driver.
If you're using Type1SJ select target DISCO_L072CZ_LRWAN1
and import sx126x driver into your program.
Pin assigned to arduino LoRa radio shield form-factor
- SX1272 shield.
- SX1276 shield.
- SX126x kit with color touch screen, or sx126x radio-only shield.
- Exceptions with their own pin assignments: NAMote-72 and Murata discovery board.
- TODO: pin assign XDOT.
radio_sx126x.cpp
- Committer:
- Wayne Roberts
- Date:
- 2018-08-20
- Revision:
- 4:57080d572494
- Parent:
- 3:122af639cf0b
- Child:
- 5:ab124d3842a8
File content as of revision 4:57080d572494:
#include "radio.h" #ifdef SX126x_H #include "SPIu.h" LowPowerTimer Radio::lpt; volatile us_timestamp_t Radio::irqAt; #ifdef TARGET_FF_ARDUINO SPIu spi(D11, D12, D13); // mosi, miso, sclk //spi, nss, busy, dio1 SX126x Radio::radio(spi, D7, D3, D5); DigitalOut antswPower(D8); AnalogIn xtalSel(A3); DigitalIn Radio::chipType(A2); #define PINNAME_NRST A0 #define LED_ON 1 #define LED_OFF 0 DigitalOut tx_led(A4); DigitalOut rx_led(A5); void Radio::chipModeChange() { if (radio.chipMode == CHIPMODE_NONE) { tx_led = LED_OFF; rx_led = LED_OFF; } else if (radio.chipMode == CHIPMODE_TX) { tx_led = LED_ON; rx_led = LED_OFF; } else if (radio.chipMode == CHIPMODE_RX) { tx_led = LED_OFF; rx_led = LED_ON; } } #endif /* TARGET_FF_ARDUINO */ const RadioEvents_t* RadioEvents; PacketParams_t Radio::pp; RadioModems_t Radio::_m_; #if defined(TARGET_FF_MORPHO) && !defined(TARGET_DISCO_L072CZ_LRWAN1) DigitalOut pc3(PC_3); // debug RX indication, for nucleo boards #define RX_INDICATION pc3 #endif /* TARGET_FF_MORPHO */ void Radio::Rx(unsigned timeout) { antswPower = 1; { uint8_t buf[8]; IrqFlags_t irqEnable; irqEnable.word = 0; irqEnable.bits.RxDone = 1; irqEnable.bits.Timeout = 1; buf[0] = irqEnable.word >> 8; // enable bits buf[1] = irqEnable.word; // enable bits buf[2] = irqEnable.word >> 8; // dio1 buf[3] = irqEnable.word; // dio1 buf[4] = 0; // dio2 buf[5] = 0; // dio2 buf[6] = 0; // dio3 buf[7] = 0; // dio3 radio.xfer(OPCODE_SET_DIO_IRQ_PARAMS, 8, 0, buf); } #ifdef RX_INDICATION RX_INDICATION = 1; #endif if (timeout == 0) radio.start_rx(RX_TIMEOUT_CONTINUOUS); else radio.start_rx(timeout * RC_TICKS_PER_US); } void Radio::Standby() { radio.setStandby(STBY_RC); // STBY_XOSC antswPower = 0; } void Radio::Sleep() { radio.setSleep(true, false); antswPower = 0; } void Radio::set_tx_dbm(int8_t dbm) { radio.set_tx_dbm(chipType == CHIP_TYPE_SX1262, dbm); } void Radio::SetTxContinuousWave(unsigned hz, int8_t dbm, unsigned timeout_us) { SetChannel(hz); radio.set_tx_dbm(chipType == CHIP_TYPE_SX1262, dbm); radio.xfer(OPCODE_SET_TX_CARRIER, 0, 0, NULL); } uint32_t Radio::Random(void) { uint32_t ret; radio.start_rx(RX_TIMEOUT_CONTINUOUS); ret = radio.readReg(REG_ADDR_RANDOM, 4); Standby(); return ret; } bool Radio::CheckRfFrequency(unsigned hz) { return true; } void Radio::SetChannel(unsigned hz) { radio.setMHz(hz / 1000000.0); } float Radio::getFrfMHz() { return radio.getMHz(); } void Radio::LoRaPacketConfig(unsigned preambleLen, bool fixLen, bool crcOn, bool invIQ) { if (radio.getPacketType() != PACKET_TYPE_LORA) radio.setPacketType(PACKET_TYPE_LORA); pp.lora.PreambleLengthHi = preambleLen >> 8; pp.lora.PreambleLengthLo = preambleLen; pp.lora.HeaderType = fixLen; pp.lora.CRCType = crcOn; pp.lora.InvertIQ = invIQ; radio.xfer(OPCODE_SET_PACKET_PARAMS, 6, 0, pp.buf); } void Radio::GFSKModemConfig(unsigned bps, unsigned bw_hz, unsigned fdev_hz) { ModulationParams_t mp; uint32_t u32; if (radio.getPacketType() != PACKET_TYPE_GFSK) radio.setPacketType(PACKET_TYPE_GFSK); u32 = 32 * (XTAL_FREQ_HZ / bps); mp.gfsk.bitrateHi = u32 >> 16; // param1 mp.gfsk.bitrateMid = u32 >> 8; // param2 mp.gfsk.bitrateLo = u32; // param3 mp.gfsk.PulseShape = GFSK_SHAPE_BT1_0; // param4 // param5: if (bw_hz < 5800) mp.gfsk.bandwidth = GFSK_RX_BW_4800; else if (bw_hz < 7300) mp.gfsk.bandwidth = GFSK_RX_BW_5800; else if (bw_hz < 9700) mp.gfsk.bandwidth = GFSK_RX_BW_7300; else if (bw_hz < 11700) mp.gfsk.bandwidth = GFSK_RX_BW_9700; else if (bw_hz < 14600) mp.gfsk.bandwidth = GFSK_RX_BW_11700; else if (bw_hz < 19500) mp.gfsk.bandwidth = GFSK_RX_BW_14600; else if (bw_hz < 23400) mp.gfsk.bandwidth = GFSK_RX_BW_19500; else if (bw_hz < 29300) mp.gfsk.bandwidth = GFSK_RX_BW_23400; else if (bw_hz < 39000) mp.gfsk.bandwidth = GFSK_RX_BW_29300; else if (bw_hz < 46900) mp.gfsk.bandwidth = GFSK_RX_BW_39000; else if (bw_hz < 58600) mp.gfsk.bandwidth = GFSK_RX_BW_46900; else if (bw_hz < 78200) mp.gfsk.bandwidth = GFSK_RX_BW_58600; else if (bw_hz < 93800) mp.gfsk.bandwidth = GFSK_RX_BW_78200; else if (bw_hz < 117300) mp.gfsk.bandwidth = GFSK_RX_BW_93800; else if (bw_hz < 156200) mp.gfsk.bandwidth = GFSK_RX_BW_117300; else if (bw_hz < 187200) mp.gfsk.bandwidth = GFSK_RX_BW_156200; else if (bw_hz < 234300) mp.gfsk.bandwidth = GFSK_RX_BW_187200; else if (bw_hz < 312000) mp.gfsk.bandwidth = GFSK_RX_BW_234300; else if (bw_hz < 373600) mp.gfsk.bandwidth = GFSK_RX_BW_312000; else if (bw_hz < 467000) mp.gfsk.bandwidth = GFSK_RX_BW_373600; else mp.gfsk.bandwidth = GFSK_RX_BW_467000; if (fdev_hz > 0) { u32 = fdev_hz / FREQ_STEP; mp.gfsk.fdevHi = u32 >> 16; // param6 mp.gfsk.fdevMid = u32 >> 8; // param7 mp.gfsk.fdevLo = u32; // param8 } radio.xfer(OPCODE_SET_MODULATION_PARAMS, 8, 0, mp.buf); } void Radio::GFSKPacketConfig(unsigned preambleLen, bool fixLen, bool crcOn) { if (radio.getPacketType() != PACKET_TYPE_GFSK) radio.setPacketType(PACKET_TYPE_GFSK); pp.gfsk.PreambleLengthHi = preambleLen >> 8; pp.gfsk.PreambleLengthLo = preambleLen; pp.gfsk.PreambleDetectorLength = GFSK_PREAMBLE_DETECTOR_LENGTH_16BITS; pp.gfsk.SyncWordLength = 24; // 0xC194C1 pp.gfsk.AddrComp = 0; pp.gfsk.PacketType = fixLen; if (crcOn) pp.gfsk.CRCType = GFSK_CRC_2_BYTE; else pp.gfsk.CRCType = GFSK_CRC_OFF; //TODO pp.gfsk.PayloadLength = ; radio.xfer(OPCODE_SET_PACKET_PARAMS, 8, 0, pp.buf); } void Radio::LoRaModemConfig(unsigned bwKHz, uint8_t sf, uint8_t cr) { ModulationParams_t mp; float khz, sp; if (radio.getPacketType() != PACKET_TYPE_LORA) radio.setPacketType(PACKET_TYPE_LORA); if (bwKHz > 250) { mp.lora.bandwidth = LORA_BW_500; khz = 500; } else if (bwKHz > 125) { mp.lora.bandwidth = LORA_BW_250; khz = 250; } else if (bwKHz > 63) { mp.lora.bandwidth = LORA_BW_125; khz = 125; } else if (bwKHz > 42) { mp.lora.bandwidth = LORA_BW_62; khz = 62.5; } else if (bwKHz > 32) { mp.lora.bandwidth = LORA_BW_41; khz = 41.67; } else if (bwKHz > 21) { mp.lora.bandwidth = LORA_BW_31; khz = 31.25; } else if (bwKHz > 16) { mp.lora.bandwidth = LORA_BW_20; khz = 20.83; } else if (bwKHz > 11) { mp.lora.bandwidth = LORA_BW_15; khz = 15.625; } else if (bwKHz > 11) { mp.lora.bandwidth = LORA_BW_10; khz = 10.42; } else { mp.lora.bandwidth = LORA_BW_7; khz = 7.81; } mp.lora.spreadingFactor = sf; mp.lora.codingRate = cr; sp = (1 << mp.lora.spreadingFactor) / khz; /* TCXO dependent */ if (sp > 16) mp.lora.LowDatarateOptimize = 1; // param4 else mp.lora.LowDatarateOptimize = 0; // param4 radio.xfer(OPCODE_SET_MODULATION_PARAMS, 4, 0, mp.buf); } void Radio::SetLoRaSymbolTimeout(uint8_t symbs) { if (radio.getPacketType() != PACKET_TYPE_LORA) radio.setPacketType(PACKET_TYPE_LORA); radio.xfer(OPCODE_SET_LORA_SYMBOL_TIMEOUT, 1, 0, &symbs); } int Radio::Send(uint8_t size, timestamp_t maxListenTime, timestamp_t channelFreeTime, int rssiThresh) { uint8_t buf[8]; uint8_t pktType = radio.getPacketType(); buf[0] = 0; // TX base address buf[1] = 0; // RX base address radio.xfer(OPCODE_SET_BUFFER_BASE_ADDR, 2, 0, buf); if (pktType == PACKET_TYPE_GFSK) { pp.gfsk.PayloadLength = size; radio.xfer(OPCODE_SET_PACKET_PARAMS, 8, 0, pp.buf); } else if (pktType == PACKET_TYPE_LORA) { pp.lora.PayloadLength = size; radio.xfer(OPCODE_SET_PACKET_PARAMS, 6, 0, pp.buf); } { IrqFlags_t irqEnable; irqEnable.word = 0; irqEnable.bits.TxDone = 1; irqEnable.bits.Timeout = 1; buf[0] = irqEnable.word >> 8; // enable bits buf[1] = irqEnable.word; // enable bits buf[2] = irqEnable.word >> 8; // dio1 buf[3] = irqEnable.word; // dio1 buf[4] = 0; // dio2 buf[5] = 0; // dio2 buf[6] = 0; // dio3 buf[7] = 0; // dio3 radio.xfer(OPCODE_SET_DIO_IRQ_PARAMS, 8, 0, buf); } antswPower = 1; if (maxListenTime > 0) { int rssi; us_timestamp_t startAt, chFreeAt, now; uint8_t symbs = 0; radio.xfer(OPCODE_SET_LORA_SYMBOL_TIMEOUT, 1, 0, &symbs); radio.start_rx(RX_TIMEOUT_CONTINUOUS); startAt = lpt.read_us(); Lstart: do { now = lpt.read_us(); if ((now - startAt) > maxListenTime) { return -1; } radio.xfer(OPCODE_GET_RSSIINST, 0, 2, buf); rssi = buf[1] / -2; } while (rssi > rssiThresh); chFreeAt = lpt.read_us(); do { now = lpt.read_us(); radio.xfer(OPCODE_GET_RSSIINST, 0, 2, buf); rssi = buf[1] / -2; if (rssi > rssiThresh) { goto Lstart; } } while ((now - chFreeAt) < channelFreeTime); } radio.start_tx(size); return 0; } // ..Send() void Radio::SetRxMaxPayloadLength(uint8_t max) { uint8_t pktType = radio.getPacketType(); if (pktType == PACKET_TYPE_GFSK) { pp.gfsk.PayloadLength = max; radio.xfer(OPCODE_SET_PACKET_PARAMS, 8, 0, pp.buf); } else if (pktType == PACKET_TYPE_LORA) { pp.lora.PayloadLength = max; radio.xfer(OPCODE_SET_PACKET_PARAMS, 6, 0, pp.buf); } } void Radio::dio1_top_half() { irqAt = lpt.read_us(); if (radio.chipMode == CHIPMODE_TX) { /* TxDone handling requires low latency */ if (RadioEvents->TxDone_topHalf) { RadioEvents->TxDone_topHalf(); } } else { #ifdef RX_INDICATION RX_INDICATION = 0; #endif } } void Radio::timeout_callback(bool tx) { if (!tx) { if (RadioEvents->RxTimeout) RadioEvents->RxTimeout(); #ifdef RX_INDICATION RX_INDICATION = 0; #endif } // else TODO tx timeout } void Radio::rx_done(uint8_t size, float rssi, float snr) { RadioEvents->RxDone(size, rssi, snr); } void Radio::txDoneBottom() { if (RadioEvents->TxDone_botHalf) RadioEvents->TxDone_botHalf(); } void Radio::Init(const RadioEvents_t* e) { radio.txDone = txDoneBottom; radio.rxDone = rx_done; radio.timeout = timeout_callback; radio.chipModeChange = chipModeChange; radio.dio1_topHalf = dio1_top_half; RadioEvents = e; lpt.start(); radio.SetDIO2AsRfSwitchCtrl(1); } void Radio::service() { radio.service(); } void Radio::SetPublicNetwork(bool en) { uint16_t ppg; if (en) ppg = 0x3444; else ppg = 0x1424; radio.writeReg(REG_ADDR_LORA_SYNC, ppg, 2); } uint32_t Radio::lora_toa_us( uint8_t pktLen ) { double bwKHz; unsigned preambleLen; ModulationParams_t mp; { loraConfig1_t conf1; conf1.octet = radio.readReg(REG_ADDR_LORA_CONFIG1, 1); mp.lora.LowDatarateOptimize = conf1.bits.ppm_offset; pp.lora.HeaderType = conf1.bits.implicit_header; pp.lora.InvertIQ = conf1.bits.rx_invert_iq; mp.lora.codingRate = conf1.bits.tx_coding_rate; } { loraConfig2_t conf2; conf2.octet = radio.readReg(REG_ADDR_LORA_CONFIG2, 1); pp.lora.CRCType = conf2.bits.tx_payload_crc16_en; } { uint32_t val; val = radio.readReg(REG_ADDR_LORA_PREAMBLE_SYMBNB, 2); pp.lora.PreambleLengthHi = val >> 8; pp.lora.PreambleLengthLo = val; } preambleLen = (pp.lora.PreambleLengthHi << 8) + pp.lora.PreambleLengthLo; { loraConfig0_t conf0; conf0.octet = radio.readReg(REG_ADDR_LORA_CONFIG0, 1); mp.lora.spreadingFactor = conf0.bits.modem_sf; mp.lora.bandwidth = conf0.bits.modem_bw; } switch (mp.lora.bandwidth) { case LORA_BW_7: bwKHz = 7.81; break; case LORA_BW_10: bwKHz = 10.42; break; case LORA_BW_15: bwKHz = 15.625; break; case LORA_BW_20: bwKHz = 20.83; break; case LORA_BW_31: bwKHz = 31.25; break; case LORA_BW_41: bwKHz = 41.67; break; case LORA_BW_62: bwKHz = 62.5; break; case LORA_BW_125: bwKHz = 125; break; case LORA_BW_250: bwKHz = 250; break; case LORA_BW_500: bwKHz = 500; break; default: bwKHz = 0; break; } // Symbol rate : time for one symbol (secs) double rs = bwKHz / ( 1 << mp.lora.spreadingFactor ); double ts = 1 / rs; // time of preamble double tPreamble = ( preambleLen + 4.25 ) * ts; // Symbol length of payload and time double tmp = ceil( ( 8 * pktLen - 4 * mp.lora.spreadingFactor + 28 + 16 * pp.lora.CRCType - ( pp.lora.HeaderType ? 20 : 0 ) ) / ( double )( 4 * ( mp.lora.spreadingFactor - ( ( mp.lora.LowDatarateOptimize > 0 ) ? 2 : 0 ) ) ) ) * ( mp.lora.codingRate + 4 ); double nPayload = 8 + ( ( tmp > 0 ) ? tmp : 0 ); double tPayload = nPayload * ts; // Time on air double tOnAir = tPreamble + tPayload; // return microseconds return floor( tOnAir * 1000 + 0.999 ); } #if 0 void Radio::PrintStatus() { /* uint8_t buf[4]; status_t status; IrqFlags_t irqFlags; radio.xfer(OPCODE_GET_IRQ_STATUS, 0, 3, buf); irqFlags.word = buf[1] << 8; irqFlags.word |= buf[2]; printf("dio1:%u irqFlags:%04x\r\n", radio.getDIO1(), irqFlags.word); radio.xfer(OPCODE_GET_STATUS, 0, 1, &status.octet); radio.PrintChipStatus(status);*/ { loraConfig1_t conf1; conf1.octet = radio.readReg(REG_ADDR_LORA_CONFIG1, 1); printf("ldro%u %s %s cr%u\r\n", conf1.bits.ppm_offset, conf1.bits.implicit_header ? "fixed" : "var", conf1.bits.rx_invert_iq ? "inv" : "std", conf1.bits.tx_coding_rate ); } { loraConfig2_t conf2; conf2.octet = radio.readReg(REG_ADDR_LORA_CONFIG2, 1); printf("crc16en:%u ", conf2.bits.tx_payload_crc16_en); } { uint32_t val; val = radio.readReg(REG_ADDR_LORA_PREAMBLE_SYMBNB, 2); printf("prelen %lu ", val); } { loraConfig0_t conf0; conf0.octet = radio.readReg(REG_ADDR_LORA_CONFIG0, 1); printf("sf%u, bw%u ", conf0.bits.modem_sf, conf0.bits.modem_bw); } printf("%.3fMHz\r\n", radio.getMHz()); } #endif /* if 0 */ #endif /* ..SX126x_H */