Send the data of GR-PEACH_HVC-P2_sample to the cloud.

Dependencies:   AsciiFont GR-PEACH_video GraphicsFramework LCD_shield_config R_BSP USBHost_custom easy-connect-gr-peach

Fork of mbed-os-example-client by mbed-os-examples

Note at the time of sample import

Please not check the "Update all libraries to the latest version" at the time of import.

Warning!

When exporting and using it, increase the following stack size.

mbed-os/features/FEATURE_LWIP/lwip-interface/lwipopts.h

#define TCPIP_THREAD_STACKSIZE      1024
->
#define TCPIP_THREAD_STACKSIZE      2048

Overview

This is a sample to send the analysis result of GR-PEACH_HVC-P2_sample to the cloud using mbed-client. Please refer to following for operation of HVC-P2.

Import programGR-PEACH_HVC-P2_sample

Sample to operate omron HVC-P2 on GR-PEACH.


Required hardware

Application setup

Client credentials

To register the application to mbed Device Connector, you need to create and set the client side certificate.

  1. Go to https://connector.mbed.com/ and log in with your mbed account
  2. On mbed Device Connector, go to https://connector.mbed.com/#credentials and click the Get my device security credentials button to get new credentials for your device.
  3. Replace the contents in security.h of this example with content copied above.

Ethernet settings

This sample uses Ethernet as the default connection type. To change the connection type, set WIFI_BP3595 in mbed_app.json:

mbed_app.json

"network-interface":{
    "help": "Options are ETHERNET, WIFI_ESP8266, WIFI_BP3595",
    "value": "ETHERNET"
},


To specify MAC address, add fllowing function to main.cpp. (When using Wifi, setting of MAC address is not necessary.)

Specify MAC address

// set mac address
void mbed_mac_address(char *mac) {
    mac[0] = 0x00;
    mac[1] = 0x02;
    mac[2] = 0xF7;
    mac[3] = 0xF0;
    mac[4] = 0x00;
    mac[5] = 0x00;
}


Wifi settings

This example can use BP3595 Wifi Interface for managing the wireless connectivity. To run this example using Wifi, you need:

  1. A BP3595 Wifi module ( https://developer.mbed.org/components/BP3595-for-GR-PEACH/ )
  2. Mount BP3595 onto GR-PEACH
  3. Close GR-PEACH's JP21 (https://developer.mbed.org/teams/Renesas/wiki/Jumper-settings-of-GR-PEACH)
  4. In the mbed_app.json file, change

mbed_app.json

"network-interface":{
    "help": "Options are ETHERNET, WIFI_ESP8266, WIFI_BP3595",
    "value": "WIFI_BP3595"
},


Provide your Wifi SSID and password here and leave \" in the beginning and end of your SSID and password as shown in the example below:

mbed_app.json

"wifi-ssid": {
    "help": "WiFi SSID",
    "value": "\"SSID\""
},
"wifi-password": {
    "help": "WIFI Password",
    "value": "\"Password\""
}


Specify the security type for connection to be used. When the security type is WPA2, you need to specify NSAPI_SECURITY_WAP as follows:

mbed_app.json

"wifi-security":{
    "help": "Options are NSAPI_SECURITY_WEP, NSAPI_SECURITY_WPA, NSAPI_SECURITY_WPA2, NSAPI_SECURITY_WPA_WPA2",
    "value": "NSAPI_SECURITY_WEP"
},

By default, NSAPI_SECURITY_WPA_WPA2 is specified here.

Application resources

This example exposes four resources listed below:

  1. 3202/0/5700. Recognition result from HVC-P2 (GET).
  2. 3201/0/5850. Blink function, blinks LED when executed (POST).
  3. 3201/0/5853. Blink pattern, used by the blink function to determine how to blink. In the format of 1000:500:1000:500:1000:500 (PUT).
  4. 3201/0/5855. Blink color, used by the blink function. Any of red, green, blue, cyan, yellow and magenta is acceptable (PUT).

For more info on how to get notifications when resource 1 changes, or how to use resource 2, 3 and 4, please look at

Import programGR-PEACH_mbed-connector-ZXingSample-node

Node.js based Web Application for mbed Device Connector specific to GR-PEACH_mbed-os-client-ZXingSample

# This is a Web Application for GR-PEACH_mbed-os-client-ZXingSample, but it can also be used for this sample.

main.cpp

Committer:
mbed_official
Date:
2016-08-05
Revision:
13:c44e318674db
Parent:
10:4a3aaf2e130a
Child:
19:91eb6f58fd77

File content as of revision 13:c44e318674db:

/*
 * Copyright (c) 2015 ARM Limited. All rights reserved.
 * SPDX-License-Identifier: Apache-2.0
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "simpleclient.h"
#include <string>
#include <sstream>
#include <vector>
#include "mbed-trace/mbed_trace.h"

#include "security.h"

#include "mbed.h"
#include "rtos.h"

#define ETHERNET        1
#define WIFI            2
#define MESH_LOWPAN_ND  3
#define MESH_THREAD     4

#define STRINGIFY(s) #s

#if MBED_CONF_APP_NETWORK_INTERFACE == WIFI
#include "ESP8266Interface.h"
ESP8266Interface esp(MBED_CONF_APP_WIFI_TX, MBED_CONF_APP_WIFI_RX);
#elif MBED_CONF_APP_NETWORK_INTERFACE == ETHERNET
#include "EthernetInterface.h"
EthernetInterface eth;
#elif MBED_CONF_APP_NETWORK_INTERFACE == MESH_LOWPAN_ND
#define MESH
#include "NanostackInterface.h"
LoWPANNDInterface mesh;
#elif MBED_CONF_APP_NETWORK_INTERFACE == MESH_THREAD
#define MESH
#include "NanostackInterface.h"
ThreadInterface mesh;
#endif

#ifndef MESH
// This is address to mbed Device Connector
#define MBED_SERVER_ADDRESS "coap://api.connector.mbed.com:5684"
#else
// This is address to mbed Device Connector
#define MBED_SERVER_ADDRESS "coaps://[2607:f0d0:2601:52::20]:5684"
#endif

Serial output(USBTX, USBRX);

// These are example resource values for the Device Object
struct MbedClientDevice device = {
    "Manufacturer_String",      // Manufacturer
    "Type_String",              // Type
    "ModelNumber_String",       // ModelNumber
    "SerialNumber_String"       // SerialNumber
};

// Instantiate the class which implements LWM2M Client API (from simpleclient.h)
MbedClient mbed_client(device);


// In case of K64F board , there is button resource available
// to change resource value and unregister
#ifdef TARGET_K64F
// Set up Hardware interrupt button.
InterruptIn obs_button(SW2);
InterruptIn unreg_button(SW3);
#else
//In non K64F boards , set up a timer to simulate updating resource,
// there is no functionality to unregister.
Ticker timer;
#endif

// LED Output
DigitalOut led1(LED1);

/*
 * The Led contains one property (pattern) and a function (blink).
 * When the function blink is executed, the pattern is read, and the LED
 * will blink based on the pattern.
 */
class LedResource {
public:
    LedResource() {
        // create ObjectID with metadata tag of '3201', which is 'digital output'
        led_object = M2MInterfaceFactory::create_object("3201");
        M2MObjectInstance* led_inst = led_object->create_object_instance();

        // 5853 = Multi-state output
        M2MResource* pattern_res = led_inst->create_dynamic_resource("5853", "Pattern",
            M2MResourceInstance::STRING, false);
        // read and write
        pattern_res->set_operation(M2MBase::GET_PUT_ALLOWED);
        // set initial pattern (toggle every 200ms. 7 toggles in total)
        pattern_res->set_value((const uint8_t*)"500:500:500:500:500:500:500", 27);

        // there's not really an execute LWM2M ID that matches... hmm...
        M2MResource* led_res = led_inst->create_dynamic_resource("5850", "Blink",
            M2MResourceInstance::OPAQUE, false);
        // we allow executing a function here...
        led_res->set_operation(M2MBase::POST_ALLOWED);
        // when a POST comes in, we want to execute the led_execute_callback
        led_res->set_execute_function(execute_callback(this, &LedResource::blink));
    }

    M2MObject* get_object() {
        return led_object;
    }

    void blink(void *) {
        // read the value of 'Pattern'
        M2MObjectInstance* inst = led_object->object_instance();
        M2MResource* res = inst->resource("5853");

        // values in mbed Client are all buffers, and we need a vector of int's
        uint8_t* buffIn = NULL;
        uint32_t sizeIn;
        res->get_value(buffIn, sizeIn);

        // turn the buffer into a string, and initialize a vector<int> on the heap
        std::string s((char*)buffIn, sizeIn);
        std::vector<uint32_t>* v = new std::vector<uint32_t>;

        output.printf("led_execute_callback pattern=%s\r\n", s.c_str());

        // our pattern is something like 500:200:500, so parse that
        std::size_t found = s.find_first_of(":");
        while (found!=std::string::npos) {

            v->push_back(atoi((const char*)s.substr(0,found).c_str()));
            s = s.substr(found+1);
            found=s.find_first_of(":");
            if(found == std::string::npos) {
                v->push_back(atoi((const char*)s.c_str()));
            }
        }


        // do_blink is called with the vector, and starting at -1
        do_blink(v, 0);
    }

private:
    M2MObject* led_object;

    void do_blink(std::vector<uint32_t>* pattern, uint16_t position) {
        // blink the LED
        led1 = !led1;

        // up the position, if we reached the end of the vector
        if (position >= pattern->size()) {
            // free memory, and exit this function
            delete pattern;
            return;
        }

        // how long do we need to wait before the next blink?
        uint32_t delay_ms = pattern->at(position);

        // Invoke same function after `delay_ms` (upping position)
        Thread::wait(delay_ms);
        do_blink(pattern, ++position);
    }
};

/*
 * The button contains one property (click count).
 * When `handle_button_click` is executed, the counter updates.
 */
class ButtonResource {
public:
    ButtonResource(): counter(0) {
        // create ObjectID with metadata tag of '3200', which is 'digital input'
        btn_object = M2MInterfaceFactory::create_object("3200");
        M2MObjectInstance* btn_inst = btn_object->create_object_instance();
        // create resource with ID '5501', which is digital input counter
        M2MResource* btn_res = btn_inst->create_dynamic_resource("5501", "Button",
            M2MResourceInstance::INTEGER, true /* observable */);
        // we can read this value
        btn_res->set_operation(M2MBase::GET_ALLOWED);
        // set initial value (all values in mbed Client are buffers)
        // to be able to read this data easily in the Connector console, we'll use a string
        btn_res->set_value((uint8_t*)"0", 1);        
    }

    ~ButtonResource() {
    }

    M2MObject* get_object() {
        return btn_object;
    }

    /*
     * When you press the button, we read the current value of the click counter
     * from mbed Device Connector, then up the value with one.
     */
    void handle_button_click() {
        M2MObjectInstance* inst = btn_object->object_instance();
        M2MResource* res = inst->resource("5501");

        // up counter
        counter++;
#ifdef TARGET_K64F
        printf("handle_button_click, new value of counter is %d\r\n", counter);
#else
        printf("simulate button_click, new value of counter is %d\r\n", counter);
#endif
        // serialize the value of counter as a string, and tell connector
        char buffer[20];
        int size = sprintf(buffer,"%d",counter);
        res->set_value((uint8_t*)buffer, size);
    }

private:
    M2MObject* btn_object;
    uint16_t counter;
};

// Network interaction must be performed outside of interrupt context
Semaphore updates(0);
volatile bool registered = false;
volatile bool clicked = false;
osThreadId mainThread;

void unregister() {
    registered = false;
    updates.release();
}

void button_clicked() {
    clicked = true;
    updates.release();
}

// debug printf function
void trace_printer(const char* str) {
    printf("%s\r\n", str);
}

// Status indication
Ticker status_ticker;
DigitalOut status_led(LED1);
void blinky() { status_led = !status_led; }


// Entry point to the program
int main() {

#ifndef MBEDTLS_ENTROPY_HARDWARE_ALT

#ifdef MBEDTLS_TEST_NULL_ENTROPY
#warning "mbedTLS security feature is disabled. Connection will not be secure !! Implement proper hardware entropy for your selected hardware."

#else

#error "This hardware does not have entropy, endpoint will not register to Connector.\
You need to enable NULL ENTROPY for your application, but if this configuration change is made then no security is offered by mbed TLS.\
Add MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES and MBEDTLS_TEST_NULL_ENTROPY in mbed_app.json macros to register your endpoint."
#endif

#endif
    status_ticker.attach_us(blinky, 250000);

    // Keep track of the main thread
    mainThread = osThreadGetId();

    // Sets the console baud-rate
    output.baud(115200);

    output.printf("Starting mbed Client example...\r\n");

    mbed_trace_init();
    mbed_trace_print_function_set(trace_printer);

    NetworkInterface *network_interface = 0;
    int connect_success = -1;
#if MBED_CONF_APP_NETWORK_INTERFACE == WIFI
    output.printf("\n\rUsing WiFi \r\n");
    output.printf("\n\rConnecting to WiFi..\r\n");
    connect_success = esp.connect(MBED_CONF_APP_WIFI_SSID, MBED_CONF_APP_WIFI_PASSWORD);
    network_interface = &esp;
#elif MBED_CONF_APP_NETWORK_INTERFACE == ETHERNET
    output.printf("Using Ethernet\r\n");
    connect_success = eth.connect();
    network_interface = &eth;
#endif
#ifdef MESH
    output.printf("Using Mesh\r\n");
    output.printf("\n\rConnecting to Mesh..\r\n");
    connect_success = mesh.connect();
    network_interface = &mesh;
#endif
    if(connect_success == 0) {
    output.printf("\n\rConnected to Network successfully\r\n");
    } else {
        output.printf("\n\rConnection to Network Failed %d! Exiting application....\r\n", connect_success);
        return 0;
    }
    const char *ip_addr = network_interface->get_ip_address();
    if (ip_addr) {
        output.printf("IP address %s\r\n", ip_addr);
    } else {
        output.printf("No IP address\r\n");
    }

    // we create our button and LED resources
    ButtonResource button_resource;
    LedResource led_resource;

#ifdef TARGET_K64F
    // On press of SW3 button on K64F board, example application
    // will call unregister API towards mbed Device Connector
    //unreg_button.fall(&mbed_client,&MbedClient::test_unregister);
    unreg_button.fall(&unregister);

    // Observation Button (SW2) press will send update of endpoint resource values to connector
    obs_button.fall(&button_clicked);
#else
    // Send update of endpoint resource values to connector every 15 seconds periodically
    timer.attach(&button_clicked, 15.0);
#endif

    // Create endpoint interface to manage register and unregister
    mbed_client.create_interface(MBED_SERVER_ADDRESS, network_interface);

    // Create Objects of varying types, see simpleclient.h for more details on implementation.
    M2MSecurity* register_object = mbed_client.create_register_object(); // server object specifying connector info
    M2MDevice*   device_object   = mbed_client.create_device_object();   // device resources object

    // Create list of Objects to register
    M2MObjectList object_list;

    // Add objects to list
    object_list.push_back(device_object);
    object_list.push_back(button_resource.get_object());
    object_list.push_back(led_resource.get_object());

    // Set endpoint registration object
    mbed_client.set_register_object(register_object);

    // Register with mbed Device Connector
    mbed_client.test_register(register_object, object_list);
    registered = true;

    while (true) {
        updates.wait(25000);
        if(registered) {
            if(!clicked) {
                mbed_client.test_update_register();
            }
        }else {
            break;
        }
        if(clicked) {
           clicked = false;
            button_resource.handle_button_click();
        }
    }

    mbed_client.test_unregister();
    status_ticker.detach();
}