David Fletcher / Mbed 2 deprecated cc3100_Test_mqtt_CM4F

Dependencies:   mbed

Committer:
dflet
Date:
Thu Sep 03 14:07:01 2015 +0000
Revision:
0:1e7b5dd9edb4
First commit, it's been hanging around for a while. Updated SPI mode change 1 to 0.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
dflet 0:1e7b5dd9edb4 1 /*
dflet 0:1e7b5dd9edb4 2 FreeRTOS V8.2.1 - Copyright (C) 2015 Real Time Engineers Ltd.
dflet 0:1e7b5dd9edb4 3 All rights reserved
dflet 0:1e7b5dd9edb4 4
dflet 0:1e7b5dd9edb4 5 VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
dflet 0:1e7b5dd9edb4 6
dflet 0:1e7b5dd9edb4 7 This file is part of the FreeRTOS distribution.
dflet 0:1e7b5dd9edb4 8
dflet 0:1e7b5dd9edb4 9 FreeRTOS is free software; you can redistribute it and/or modify it under
dflet 0:1e7b5dd9edb4 10 the terms of the GNU General Public License (version 2) as published by the
dflet 0:1e7b5dd9edb4 11 Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
dflet 0:1e7b5dd9edb4 12
dflet 0:1e7b5dd9edb4 13 ***************************************************************************
dflet 0:1e7b5dd9edb4 14 >>! NOTE: The modification to the GPL is included to allow you to !<<
dflet 0:1e7b5dd9edb4 15 >>! distribute a combined work that includes FreeRTOS without being !<<
dflet 0:1e7b5dd9edb4 16 >>! obliged to provide the source code for proprietary components !<<
dflet 0:1e7b5dd9edb4 17 >>! outside of the FreeRTOS kernel. !<<
dflet 0:1e7b5dd9edb4 18 ***************************************************************************
dflet 0:1e7b5dd9edb4 19
dflet 0:1e7b5dd9edb4 20 FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
dflet 0:1e7b5dd9edb4 21 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
dflet 0:1e7b5dd9edb4 22 FOR A PARTICULAR PURPOSE. Full license text is available on the following
dflet 0:1e7b5dd9edb4 23 link: http://www.freertos.org/a00114.html
dflet 0:1e7b5dd9edb4 24
dflet 0:1e7b5dd9edb4 25 ***************************************************************************
dflet 0:1e7b5dd9edb4 26 * *
dflet 0:1e7b5dd9edb4 27 * FreeRTOS provides completely free yet professionally developed, *
dflet 0:1e7b5dd9edb4 28 * robust, strictly quality controlled, supported, and cross *
dflet 0:1e7b5dd9edb4 29 * platform software that is more than just the market leader, it *
dflet 0:1e7b5dd9edb4 30 * is the industry's de facto standard. *
dflet 0:1e7b5dd9edb4 31 * *
dflet 0:1e7b5dd9edb4 32 * Help yourself get started quickly while simultaneously helping *
dflet 0:1e7b5dd9edb4 33 * to support the FreeRTOS project by purchasing a FreeRTOS *
dflet 0:1e7b5dd9edb4 34 * tutorial book, reference manual, or both: *
dflet 0:1e7b5dd9edb4 35 * http://www.FreeRTOS.org/Documentation *
dflet 0:1e7b5dd9edb4 36 * *
dflet 0:1e7b5dd9edb4 37 ***************************************************************************
dflet 0:1e7b5dd9edb4 38
dflet 0:1e7b5dd9edb4 39 http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
dflet 0:1e7b5dd9edb4 40 the FAQ page "My application does not run, what could be wrong?". Have you
dflet 0:1e7b5dd9edb4 41 defined configASSERT()?
dflet 0:1e7b5dd9edb4 42
dflet 0:1e7b5dd9edb4 43 http://www.FreeRTOS.org/support - In return for receiving this top quality
dflet 0:1e7b5dd9edb4 44 embedded software for free we request you assist our global community by
dflet 0:1e7b5dd9edb4 45 participating in the support forum.
dflet 0:1e7b5dd9edb4 46
dflet 0:1e7b5dd9edb4 47 http://www.FreeRTOS.org/training - Investing in training allows your team to
dflet 0:1e7b5dd9edb4 48 be as productive as possible as early as possible. Now you can receive
dflet 0:1e7b5dd9edb4 49 FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
dflet 0:1e7b5dd9edb4 50 Ltd, and the world's leading authority on the world's leading RTOS.
dflet 0:1e7b5dd9edb4 51
dflet 0:1e7b5dd9edb4 52 http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
dflet 0:1e7b5dd9edb4 53 including FreeRTOS+Trace - an indispensable productivity tool, a DOS
dflet 0:1e7b5dd9edb4 54 compatible FAT file system, and our tiny thread aware UDP/IP stack.
dflet 0:1e7b5dd9edb4 55
dflet 0:1e7b5dd9edb4 56 http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
dflet 0:1e7b5dd9edb4 57 Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
dflet 0:1e7b5dd9edb4 58
dflet 0:1e7b5dd9edb4 59 http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
dflet 0:1e7b5dd9edb4 60 Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
dflet 0:1e7b5dd9edb4 61 licenses offer ticketed support, indemnification and commercial middleware.
dflet 0:1e7b5dd9edb4 62
dflet 0:1e7b5dd9edb4 63 http://www.SafeRTOS.com - High Integrity Systems also provide a safety
dflet 0:1e7b5dd9edb4 64 engineered and independently SIL3 certified version for use in safety and
dflet 0:1e7b5dd9edb4 65 mission critical applications that require provable dependability.
dflet 0:1e7b5dd9edb4 66
dflet 0:1e7b5dd9edb4 67 1 tab == 4 spaces!
dflet 0:1e7b5dd9edb4 68 */
dflet 0:1e7b5dd9edb4 69
dflet 0:1e7b5dd9edb4 70
dflet 0:1e7b5dd9edb4 71 #ifndef QUEUE_H
dflet 0:1e7b5dd9edb4 72 #define QUEUE_H
dflet 0:1e7b5dd9edb4 73
dflet 0:1e7b5dd9edb4 74 #ifndef INC_FREERTOS_H
dflet 0:1e7b5dd9edb4 75 #error "include FreeRTOS.h" must appear in source files before "include queue.h"
dflet 0:1e7b5dd9edb4 76 #endif
dflet 0:1e7b5dd9edb4 77
dflet 0:1e7b5dd9edb4 78 #ifdef __cplusplus
dflet 0:1e7b5dd9edb4 79 extern "C" {
dflet 0:1e7b5dd9edb4 80 #endif
dflet 0:1e7b5dd9edb4 81
dflet 0:1e7b5dd9edb4 82
dflet 0:1e7b5dd9edb4 83 /**
dflet 0:1e7b5dd9edb4 84 * Type by which queues are referenced. For example, a call to xQueueCreate()
dflet 0:1e7b5dd9edb4 85 * returns an QueueHandle_t variable that can then be used as a parameter to
dflet 0:1e7b5dd9edb4 86 * xQueueSend(), xQueueReceive(), etc.
dflet 0:1e7b5dd9edb4 87 */
dflet 0:1e7b5dd9edb4 88 typedef void * QueueHandle_t;
dflet 0:1e7b5dd9edb4 89
dflet 0:1e7b5dd9edb4 90 /**
dflet 0:1e7b5dd9edb4 91 * Type by which queue sets are referenced. For example, a call to
dflet 0:1e7b5dd9edb4 92 * xQueueCreateSet() returns an xQueueSet variable that can then be used as a
dflet 0:1e7b5dd9edb4 93 * parameter to xQueueSelectFromSet(), xQueueAddToSet(), etc.
dflet 0:1e7b5dd9edb4 94 */
dflet 0:1e7b5dd9edb4 95 typedef void * QueueSetHandle_t;
dflet 0:1e7b5dd9edb4 96
dflet 0:1e7b5dd9edb4 97 /**
dflet 0:1e7b5dd9edb4 98 * Queue sets can contain both queues and semaphores, so the
dflet 0:1e7b5dd9edb4 99 * QueueSetMemberHandle_t is defined as a type to be used where a parameter or
dflet 0:1e7b5dd9edb4 100 * return value can be either an QueueHandle_t or an SemaphoreHandle_t.
dflet 0:1e7b5dd9edb4 101 */
dflet 0:1e7b5dd9edb4 102 typedef void * QueueSetMemberHandle_t;
dflet 0:1e7b5dd9edb4 103
dflet 0:1e7b5dd9edb4 104 /* For internal use only. */
dflet 0:1e7b5dd9edb4 105 #define queueSEND_TO_BACK ( ( BaseType_t ) 0 )
dflet 0:1e7b5dd9edb4 106 #define queueSEND_TO_FRONT ( ( BaseType_t ) 1 )
dflet 0:1e7b5dd9edb4 107 #define queueOVERWRITE ( ( BaseType_t ) 2 )
dflet 0:1e7b5dd9edb4 108
dflet 0:1e7b5dd9edb4 109 /* For internal use only. These definitions *must* match those in queue.c. */
dflet 0:1e7b5dd9edb4 110 #define queueQUEUE_TYPE_BASE ( ( uint8_t ) 0U )
dflet 0:1e7b5dd9edb4 111 #define queueQUEUE_TYPE_SET ( ( uint8_t ) 0U )
dflet 0:1e7b5dd9edb4 112 #define queueQUEUE_TYPE_MUTEX ( ( uint8_t ) 1U )
dflet 0:1e7b5dd9edb4 113 #define queueQUEUE_TYPE_COUNTING_SEMAPHORE ( ( uint8_t ) 2U )
dflet 0:1e7b5dd9edb4 114 #define queueQUEUE_TYPE_BINARY_SEMAPHORE ( ( uint8_t ) 3U )
dflet 0:1e7b5dd9edb4 115 #define queueQUEUE_TYPE_RECURSIVE_MUTEX ( ( uint8_t ) 4U )
dflet 0:1e7b5dd9edb4 116
dflet 0:1e7b5dd9edb4 117 /**
dflet 0:1e7b5dd9edb4 118 * queue. h
dflet 0:1e7b5dd9edb4 119 * <pre>
dflet 0:1e7b5dd9edb4 120 QueueHandle_t xQueueCreate(
dflet 0:1e7b5dd9edb4 121 UBaseType_t uxQueueLength,
dflet 0:1e7b5dd9edb4 122 UBaseType_t uxItemSize
dflet 0:1e7b5dd9edb4 123 );
dflet 0:1e7b5dd9edb4 124 * </pre>
dflet 0:1e7b5dd9edb4 125 *
dflet 0:1e7b5dd9edb4 126 * Creates a new queue instance. This allocates the storage required by the
dflet 0:1e7b5dd9edb4 127 * new queue and returns a handle for the queue.
dflet 0:1e7b5dd9edb4 128 *
dflet 0:1e7b5dd9edb4 129 * @param uxQueueLength The maximum number of items that the queue can contain.
dflet 0:1e7b5dd9edb4 130 *
dflet 0:1e7b5dd9edb4 131 * @param uxItemSize The number of bytes each item in the queue will require.
dflet 0:1e7b5dd9edb4 132 * Items are queued by copy, not by reference, so this is the number of bytes
dflet 0:1e7b5dd9edb4 133 * that will be copied for each posted item. Each item on the queue must be
dflet 0:1e7b5dd9edb4 134 * the same size.
dflet 0:1e7b5dd9edb4 135 *
dflet 0:1e7b5dd9edb4 136 * @return If the queue is successfully create then a handle to the newly
dflet 0:1e7b5dd9edb4 137 * created queue is returned. If the queue cannot be created then 0 is
dflet 0:1e7b5dd9edb4 138 * returned.
dflet 0:1e7b5dd9edb4 139 *
dflet 0:1e7b5dd9edb4 140 * Example usage:
dflet 0:1e7b5dd9edb4 141 <pre>
dflet 0:1e7b5dd9edb4 142 struct AMessage
dflet 0:1e7b5dd9edb4 143 {
dflet 0:1e7b5dd9edb4 144 char ucMessageID;
dflet 0:1e7b5dd9edb4 145 char ucData[ 20 ];
dflet 0:1e7b5dd9edb4 146 };
dflet 0:1e7b5dd9edb4 147
dflet 0:1e7b5dd9edb4 148 void vATask( void *pvParameters )
dflet 0:1e7b5dd9edb4 149 {
dflet 0:1e7b5dd9edb4 150 QueueHandle_t xQueue1, xQueue2;
dflet 0:1e7b5dd9edb4 151
dflet 0:1e7b5dd9edb4 152 // Create a queue capable of containing 10 uint32_t values.
dflet 0:1e7b5dd9edb4 153 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
dflet 0:1e7b5dd9edb4 154 if( xQueue1 == 0 )
dflet 0:1e7b5dd9edb4 155 {
dflet 0:1e7b5dd9edb4 156 // Queue was not created and must not be used.
dflet 0:1e7b5dd9edb4 157 }
dflet 0:1e7b5dd9edb4 158
dflet 0:1e7b5dd9edb4 159 // Create a queue capable of containing 10 pointers to AMessage structures.
dflet 0:1e7b5dd9edb4 160 // These should be passed by pointer as they contain a lot of data.
dflet 0:1e7b5dd9edb4 161 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
dflet 0:1e7b5dd9edb4 162 if( xQueue2 == 0 )
dflet 0:1e7b5dd9edb4 163 {
dflet 0:1e7b5dd9edb4 164 // Queue was not created and must not be used.
dflet 0:1e7b5dd9edb4 165 }
dflet 0:1e7b5dd9edb4 166
dflet 0:1e7b5dd9edb4 167 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 168 }
dflet 0:1e7b5dd9edb4 169 </pre>
dflet 0:1e7b5dd9edb4 170 * \defgroup xQueueCreate xQueueCreate
dflet 0:1e7b5dd9edb4 171 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 172 */
dflet 0:1e7b5dd9edb4 173 #define xQueueCreate( uxQueueLength, uxItemSize ) xQueueGenericCreate( uxQueueLength, uxItemSize, queueQUEUE_TYPE_BASE )
dflet 0:1e7b5dd9edb4 174
dflet 0:1e7b5dd9edb4 175 /**
dflet 0:1e7b5dd9edb4 176 * queue. h
dflet 0:1e7b5dd9edb4 177 * <pre>
dflet 0:1e7b5dd9edb4 178 BaseType_t xQueueSendToToFront(
dflet 0:1e7b5dd9edb4 179 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 180 const void *pvItemToQueue,
dflet 0:1e7b5dd9edb4 181 TickType_t xTicksToWait
dflet 0:1e7b5dd9edb4 182 );
dflet 0:1e7b5dd9edb4 183 * </pre>
dflet 0:1e7b5dd9edb4 184 *
dflet 0:1e7b5dd9edb4 185 * This is a macro that calls xQueueGenericSend().
dflet 0:1e7b5dd9edb4 186 *
dflet 0:1e7b5dd9edb4 187 * Post an item to the front of a queue. The item is queued by copy, not by
dflet 0:1e7b5dd9edb4 188 * reference. This function must not be called from an interrupt service
dflet 0:1e7b5dd9edb4 189 * routine. See xQueueSendFromISR () for an alternative which may be used
dflet 0:1e7b5dd9edb4 190 * in an ISR.
dflet 0:1e7b5dd9edb4 191 *
dflet 0:1e7b5dd9edb4 192 * @param xQueue The handle to the queue on which the item is to be posted.
dflet 0:1e7b5dd9edb4 193 *
dflet 0:1e7b5dd9edb4 194 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 195 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 196 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 197 * into the queue storage area.
dflet 0:1e7b5dd9edb4 198 *
dflet 0:1e7b5dd9edb4 199 * @param xTicksToWait The maximum amount of time the task should block
dflet 0:1e7b5dd9edb4 200 * waiting for space to become available on the queue, should it already
dflet 0:1e7b5dd9edb4 201 * be full. The call will return immediately if this is set to 0 and the
dflet 0:1e7b5dd9edb4 202 * queue is full. The time is defined in tick periods so the constant
dflet 0:1e7b5dd9edb4 203 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
dflet 0:1e7b5dd9edb4 204 *
dflet 0:1e7b5dd9edb4 205 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
dflet 0:1e7b5dd9edb4 206 *
dflet 0:1e7b5dd9edb4 207 * Example usage:
dflet 0:1e7b5dd9edb4 208 <pre>
dflet 0:1e7b5dd9edb4 209 struct AMessage
dflet 0:1e7b5dd9edb4 210 {
dflet 0:1e7b5dd9edb4 211 char ucMessageID;
dflet 0:1e7b5dd9edb4 212 char ucData[ 20 ];
dflet 0:1e7b5dd9edb4 213 } xMessage;
dflet 0:1e7b5dd9edb4 214
dflet 0:1e7b5dd9edb4 215 uint32_t ulVar = 10UL;
dflet 0:1e7b5dd9edb4 216
dflet 0:1e7b5dd9edb4 217 void vATask( void *pvParameters )
dflet 0:1e7b5dd9edb4 218 {
dflet 0:1e7b5dd9edb4 219 QueueHandle_t xQueue1, xQueue2;
dflet 0:1e7b5dd9edb4 220 struct AMessage *pxMessage;
dflet 0:1e7b5dd9edb4 221
dflet 0:1e7b5dd9edb4 222 // Create a queue capable of containing 10 uint32_t values.
dflet 0:1e7b5dd9edb4 223 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
dflet 0:1e7b5dd9edb4 224
dflet 0:1e7b5dd9edb4 225 // Create a queue capable of containing 10 pointers to AMessage structures.
dflet 0:1e7b5dd9edb4 226 // These should be passed by pointer as they contain a lot of data.
dflet 0:1e7b5dd9edb4 227 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
dflet 0:1e7b5dd9edb4 228
dflet 0:1e7b5dd9edb4 229 // ...
dflet 0:1e7b5dd9edb4 230
dflet 0:1e7b5dd9edb4 231 if( xQueue1 != 0 )
dflet 0:1e7b5dd9edb4 232 {
dflet 0:1e7b5dd9edb4 233 // Send an uint32_t. Wait for 10 ticks for space to become
dflet 0:1e7b5dd9edb4 234 // available if necessary.
dflet 0:1e7b5dd9edb4 235 if( xQueueSendToFront( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
dflet 0:1e7b5dd9edb4 236 {
dflet 0:1e7b5dd9edb4 237 // Failed to post the message, even after 10 ticks.
dflet 0:1e7b5dd9edb4 238 }
dflet 0:1e7b5dd9edb4 239 }
dflet 0:1e7b5dd9edb4 240
dflet 0:1e7b5dd9edb4 241 if( xQueue2 != 0 )
dflet 0:1e7b5dd9edb4 242 {
dflet 0:1e7b5dd9edb4 243 // Send a pointer to a struct AMessage object. Don't block if the
dflet 0:1e7b5dd9edb4 244 // queue is already full.
dflet 0:1e7b5dd9edb4 245 pxMessage = & xMessage;
dflet 0:1e7b5dd9edb4 246 xQueueSendToFront( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
dflet 0:1e7b5dd9edb4 247 }
dflet 0:1e7b5dd9edb4 248
dflet 0:1e7b5dd9edb4 249 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 250 }
dflet 0:1e7b5dd9edb4 251 </pre>
dflet 0:1e7b5dd9edb4 252 * \defgroup xQueueSend xQueueSend
dflet 0:1e7b5dd9edb4 253 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 254 */
dflet 0:1e7b5dd9edb4 255 #define xQueueSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
dflet 0:1e7b5dd9edb4 256
dflet 0:1e7b5dd9edb4 257 /**
dflet 0:1e7b5dd9edb4 258 * queue. h
dflet 0:1e7b5dd9edb4 259 * <pre>
dflet 0:1e7b5dd9edb4 260 BaseType_t xQueueSendToBack(
dflet 0:1e7b5dd9edb4 261 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 262 const void *pvItemToQueue,
dflet 0:1e7b5dd9edb4 263 TickType_t xTicksToWait
dflet 0:1e7b5dd9edb4 264 );
dflet 0:1e7b5dd9edb4 265 * </pre>
dflet 0:1e7b5dd9edb4 266 *
dflet 0:1e7b5dd9edb4 267 * This is a macro that calls xQueueGenericSend().
dflet 0:1e7b5dd9edb4 268 *
dflet 0:1e7b5dd9edb4 269 * Post an item to the back of a queue. The item is queued by copy, not by
dflet 0:1e7b5dd9edb4 270 * reference. This function must not be called from an interrupt service
dflet 0:1e7b5dd9edb4 271 * routine. See xQueueSendFromISR () for an alternative which may be used
dflet 0:1e7b5dd9edb4 272 * in an ISR.
dflet 0:1e7b5dd9edb4 273 *
dflet 0:1e7b5dd9edb4 274 * @param xQueue The handle to the queue on which the item is to be posted.
dflet 0:1e7b5dd9edb4 275 *
dflet 0:1e7b5dd9edb4 276 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 277 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 278 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 279 * into the queue storage area.
dflet 0:1e7b5dd9edb4 280 *
dflet 0:1e7b5dd9edb4 281 * @param xTicksToWait The maximum amount of time the task should block
dflet 0:1e7b5dd9edb4 282 * waiting for space to become available on the queue, should it already
dflet 0:1e7b5dd9edb4 283 * be full. The call will return immediately if this is set to 0 and the queue
dflet 0:1e7b5dd9edb4 284 * is full. The time is defined in tick periods so the constant
dflet 0:1e7b5dd9edb4 285 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
dflet 0:1e7b5dd9edb4 286 *
dflet 0:1e7b5dd9edb4 287 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
dflet 0:1e7b5dd9edb4 288 *
dflet 0:1e7b5dd9edb4 289 * Example usage:
dflet 0:1e7b5dd9edb4 290 <pre>
dflet 0:1e7b5dd9edb4 291 struct AMessage
dflet 0:1e7b5dd9edb4 292 {
dflet 0:1e7b5dd9edb4 293 char ucMessageID;
dflet 0:1e7b5dd9edb4 294 char ucData[ 20 ];
dflet 0:1e7b5dd9edb4 295 } xMessage;
dflet 0:1e7b5dd9edb4 296
dflet 0:1e7b5dd9edb4 297 uint32_t ulVar = 10UL;
dflet 0:1e7b5dd9edb4 298
dflet 0:1e7b5dd9edb4 299 void vATask( void *pvParameters )
dflet 0:1e7b5dd9edb4 300 {
dflet 0:1e7b5dd9edb4 301 QueueHandle_t xQueue1, xQueue2;
dflet 0:1e7b5dd9edb4 302 struct AMessage *pxMessage;
dflet 0:1e7b5dd9edb4 303
dflet 0:1e7b5dd9edb4 304 // Create a queue capable of containing 10 uint32_t values.
dflet 0:1e7b5dd9edb4 305 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
dflet 0:1e7b5dd9edb4 306
dflet 0:1e7b5dd9edb4 307 // Create a queue capable of containing 10 pointers to AMessage structures.
dflet 0:1e7b5dd9edb4 308 // These should be passed by pointer as they contain a lot of data.
dflet 0:1e7b5dd9edb4 309 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
dflet 0:1e7b5dd9edb4 310
dflet 0:1e7b5dd9edb4 311 // ...
dflet 0:1e7b5dd9edb4 312
dflet 0:1e7b5dd9edb4 313 if( xQueue1 != 0 )
dflet 0:1e7b5dd9edb4 314 {
dflet 0:1e7b5dd9edb4 315 // Send an uint32_t. Wait for 10 ticks for space to become
dflet 0:1e7b5dd9edb4 316 // available if necessary.
dflet 0:1e7b5dd9edb4 317 if( xQueueSendToBack( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
dflet 0:1e7b5dd9edb4 318 {
dflet 0:1e7b5dd9edb4 319 // Failed to post the message, even after 10 ticks.
dflet 0:1e7b5dd9edb4 320 }
dflet 0:1e7b5dd9edb4 321 }
dflet 0:1e7b5dd9edb4 322
dflet 0:1e7b5dd9edb4 323 if( xQueue2 != 0 )
dflet 0:1e7b5dd9edb4 324 {
dflet 0:1e7b5dd9edb4 325 // Send a pointer to a struct AMessage object. Don't block if the
dflet 0:1e7b5dd9edb4 326 // queue is already full.
dflet 0:1e7b5dd9edb4 327 pxMessage = & xMessage;
dflet 0:1e7b5dd9edb4 328 xQueueSendToBack( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
dflet 0:1e7b5dd9edb4 329 }
dflet 0:1e7b5dd9edb4 330
dflet 0:1e7b5dd9edb4 331 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 332 }
dflet 0:1e7b5dd9edb4 333 </pre>
dflet 0:1e7b5dd9edb4 334 * \defgroup xQueueSend xQueueSend
dflet 0:1e7b5dd9edb4 335 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 336 */
dflet 0:1e7b5dd9edb4 337 #define xQueueSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
dflet 0:1e7b5dd9edb4 338
dflet 0:1e7b5dd9edb4 339 /**
dflet 0:1e7b5dd9edb4 340 * queue. h
dflet 0:1e7b5dd9edb4 341 * <pre>
dflet 0:1e7b5dd9edb4 342 BaseType_t xQueueSend(
dflet 0:1e7b5dd9edb4 343 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 344 const void * pvItemToQueue,
dflet 0:1e7b5dd9edb4 345 TickType_t xTicksToWait
dflet 0:1e7b5dd9edb4 346 );
dflet 0:1e7b5dd9edb4 347 * </pre>
dflet 0:1e7b5dd9edb4 348 *
dflet 0:1e7b5dd9edb4 349 * This is a macro that calls xQueueGenericSend(). It is included for
dflet 0:1e7b5dd9edb4 350 * backward compatibility with versions of FreeRTOS.org that did not
dflet 0:1e7b5dd9edb4 351 * include the xQueueSendToFront() and xQueueSendToBack() macros. It is
dflet 0:1e7b5dd9edb4 352 * equivalent to xQueueSendToBack().
dflet 0:1e7b5dd9edb4 353 *
dflet 0:1e7b5dd9edb4 354 * Post an item on a queue. The item is queued by copy, not by reference.
dflet 0:1e7b5dd9edb4 355 * This function must not be called from an interrupt service routine.
dflet 0:1e7b5dd9edb4 356 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
dflet 0:1e7b5dd9edb4 357 *
dflet 0:1e7b5dd9edb4 358 * @param xQueue The handle to the queue on which the item is to be posted.
dflet 0:1e7b5dd9edb4 359 *
dflet 0:1e7b5dd9edb4 360 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 361 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 362 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 363 * into the queue storage area.
dflet 0:1e7b5dd9edb4 364 *
dflet 0:1e7b5dd9edb4 365 * @param xTicksToWait The maximum amount of time the task should block
dflet 0:1e7b5dd9edb4 366 * waiting for space to become available on the queue, should it already
dflet 0:1e7b5dd9edb4 367 * be full. The call will return immediately if this is set to 0 and the
dflet 0:1e7b5dd9edb4 368 * queue is full. The time is defined in tick periods so the constant
dflet 0:1e7b5dd9edb4 369 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
dflet 0:1e7b5dd9edb4 370 *
dflet 0:1e7b5dd9edb4 371 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
dflet 0:1e7b5dd9edb4 372 *
dflet 0:1e7b5dd9edb4 373 * Example usage:
dflet 0:1e7b5dd9edb4 374 <pre>
dflet 0:1e7b5dd9edb4 375 struct AMessage
dflet 0:1e7b5dd9edb4 376 {
dflet 0:1e7b5dd9edb4 377 char ucMessageID;
dflet 0:1e7b5dd9edb4 378 char ucData[ 20 ];
dflet 0:1e7b5dd9edb4 379 } xMessage;
dflet 0:1e7b5dd9edb4 380
dflet 0:1e7b5dd9edb4 381 uint32_t ulVar = 10UL;
dflet 0:1e7b5dd9edb4 382
dflet 0:1e7b5dd9edb4 383 void vATask( void *pvParameters )
dflet 0:1e7b5dd9edb4 384 {
dflet 0:1e7b5dd9edb4 385 QueueHandle_t xQueue1, xQueue2;
dflet 0:1e7b5dd9edb4 386 struct AMessage *pxMessage;
dflet 0:1e7b5dd9edb4 387
dflet 0:1e7b5dd9edb4 388 // Create a queue capable of containing 10 uint32_t values.
dflet 0:1e7b5dd9edb4 389 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
dflet 0:1e7b5dd9edb4 390
dflet 0:1e7b5dd9edb4 391 // Create a queue capable of containing 10 pointers to AMessage structures.
dflet 0:1e7b5dd9edb4 392 // These should be passed by pointer as they contain a lot of data.
dflet 0:1e7b5dd9edb4 393 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
dflet 0:1e7b5dd9edb4 394
dflet 0:1e7b5dd9edb4 395 // ...
dflet 0:1e7b5dd9edb4 396
dflet 0:1e7b5dd9edb4 397 if( xQueue1 != 0 )
dflet 0:1e7b5dd9edb4 398 {
dflet 0:1e7b5dd9edb4 399 // Send an uint32_t. Wait for 10 ticks for space to become
dflet 0:1e7b5dd9edb4 400 // available if necessary.
dflet 0:1e7b5dd9edb4 401 if( xQueueSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
dflet 0:1e7b5dd9edb4 402 {
dflet 0:1e7b5dd9edb4 403 // Failed to post the message, even after 10 ticks.
dflet 0:1e7b5dd9edb4 404 }
dflet 0:1e7b5dd9edb4 405 }
dflet 0:1e7b5dd9edb4 406
dflet 0:1e7b5dd9edb4 407 if( xQueue2 != 0 )
dflet 0:1e7b5dd9edb4 408 {
dflet 0:1e7b5dd9edb4 409 // Send a pointer to a struct AMessage object. Don't block if the
dflet 0:1e7b5dd9edb4 410 // queue is already full.
dflet 0:1e7b5dd9edb4 411 pxMessage = & xMessage;
dflet 0:1e7b5dd9edb4 412 xQueueSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
dflet 0:1e7b5dd9edb4 413 }
dflet 0:1e7b5dd9edb4 414
dflet 0:1e7b5dd9edb4 415 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 416 }
dflet 0:1e7b5dd9edb4 417 </pre>
dflet 0:1e7b5dd9edb4 418 * \defgroup xQueueSend xQueueSend
dflet 0:1e7b5dd9edb4 419 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 420 */
dflet 0:1e7b5dd9edb4 421 #define xQueueSend( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
dflet 0:1e7b5dd9edb4 422
dflet 0:1e7b5dd9edb4 423 /**
dflet 0:1e7b5dd9edb4 424 * queue. h
dflet 0:1e7b5dd9edb4 425 * <pre>
dflet 0:1e7b5dd9edb4 426 BaseType_t xQueueOverwrite(
dflet 0:1e7b5dd9edb4 427 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 428 const void * pvItemToQueue
dflet 0:1e7b5dd9edb4 429 );
dflet 0:1e7b5dd9edb4 430 * </pre>
dflet 0:1e7b5dd9edb4 431 *
dflet 0:1e7b5dd9edb4 432 * Only for use with queues that have a length of one - so the queue is either
dflet 0:1e7b5dd9edb4 433 * empty or full.
dflet 0:1e7b5dd9edb4 434 *
dflet 0:1e7b5dd9edb4 435 * Post an item on a queue. If the queue is already full then overwrite the
dflet 0:1e7b5dd9edb4 436 * value held in the queue. The item is queued by copy, not by reference.
dflet 0:1e7b5dd9edb4 437 *
dflet 0:1e7b5dd9edb4 438 * This function must not be called from an interrupt service routine.
dflet 0:1e7b5dd9edb4 439 * See xQueueOverwriteFromISR () for an alternative which may be used in an ISR.
dflet 0:1e7b5dd9edb4 440 *
dflet 0:1e7b5dd9edb4 441 * @param xQueue The handle of the queue to which the data is being sent.
dflet 0:1e7b5dd9edb4 442 *
dflet 0:1e7b5dd9edb4 443 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 444 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 445 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 446 * into the queue storage area.
dflet 0:1e7b5dd9edb4 447 *
dflet 0:1e7b5dd9edb4 448 * @return xQueueOverwrite() is a macro that calls xQueueGenericSend(), and
dflet 0:1e7b5dd9edb4 449 * therefore has the same return values as xQueueSendToFront(). However, pdPASS
dflet 0:1e7b5dd9edb4 450 * is the only value that can be returned because xQueueOverwrite() will write
dflet 0:1e7b5dd9edb4 451 * to the queue even when the queue is already full.
dflet 0:1e7b5dd9edb4 452 *
dflet 0:1e7b5dd9edb4 453 * Example usage:
dflet 0:1e7b5dd9edb4 454 <pre>
dflet 0:1e7b5dd9edb4 455
dflet 0:1e7b5dd9edb4 456 void vFunction( void *pvParameters )
dflet 0:1e7b5dd9edb4 457 {
dflet 0:1e7b5dd9edb4 458 QueueHandle_t xQueue;
dflet 0:1e7b5dd9edb4 459 uint32_t ulVarToSend, ulValReceived;
dflet 0:1e7b5dd9edb4 460
dflet 0:1e7b5dd9edb4 461 // Create a queue to hold one uint32_t value. It is strongly
dflet 0:1e7b5dd9edb4 462 // recommended *not* to use xQueueOverwrite() on queues that can
dflet 0:1e7b5dd9edb4 463 // contain more than one value, and doing so will trigger an assertion
dflet 0:1e7b5dd9edb4 464 // if configASSERT() is defined.
dflet 0:1e7b5dd9edb4 465 xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
dflet 0:1e7b5dd9edb4 466
dflet 0:1e7b5dd9edb4 467 // Write the value 10 to the queue using xQueueOverwrite().
dflet 0:1e7b5dd9edb4 468 ulVarToSend = 10;
dflet 0:1e7b5dd9edb4 469 xQueueOverwrite( xQueue, &ulVarToSend );
dflet 0:1e7b5dd9edb4 470
dflet 0:1e7b5dd9edb4 471 // Peeking the queue should now return 10, but leave the value 10 in
dflet 0:1e7b5dd9edb4 472 // the queue. A block time of zero is used as it is known that the
dflet 0:1e7b5dd9edb4 473 // queue holds a value.
dflet 0:1e7b5dd9edb4 474 ulValReceived = 0;
dflet 0:1e7b5dd9edb4 475 xQueuePeek( xQueue, &ulValReceived, 0 );
dflet 0:1e7b5dd9edb4 476
dflet 0:1e7b5dd9edb4 477 if( ulValReceived != 10 )
dflet 0:1e7b5dd9edb4 478 {
dflet 0:1e7b5dd9edb4 479 // Error unless the item was removed by a different task.
dflet 0:1e7b5dd9edb4 480 }
dflet 0:1e7b5dd9edb4 481
dflet 0:1e7b5dd9edb4 482 // The queue is still full. Use xQueueOverwrite() to overwrite the
dflet 0:1e7b5dd9edb4 483 // value held in the queue with 100.
dflet 0:1e7b5dd9edb4 484 ulVarToSend = 100;
dflet 0:1e7b5dd9edb4 485 xQueueOverwrite( xQueue, &ulVarToSend );
dflet 0:1e7b5dd9edb4 486
dflet 0:1e7b5dd9edb4 487 // This time read from the queue, leaving the queue empty once more.
dflet 0:1e7b5dd9edb4 488 // A block time of 0 is used again.
dflet 0:1e7b5dd9edb4 489 xQueueReceive( xQueue, &ulValReceived, 0 );
dflet 0:1e7b5dd9edb4 490
dflet 0:1e7b5dd9edb4 491 // The value read should be the last value written, even though the
dflet 0:1e7b5dd9edb4 492 // queue was already full when the value was written.
dflet 0:1e7b5dd9edb4 493 if( ulValReceived != 100 )
dflet 0:1e7b5dd9edb4 494 {
dflet 0:1e7b5dd9edb4 495 // Error!
dflet 0:1e7b5dd9edb4 496 }
dflet 0:1e7b5dd9edb4 497
dflet 0:1e7b5dd9edb4 498 // ...
dflet 0:1e7b5dd9edb4 499 }
dflet 0:1e7b5dd9edb4 500 </pre>
dflet 0:1e7b5dd9edb4 501 * \defgroup xQueueOverwrite xQueueOverwrite
dflet 0:1e7b5dd9edb4 502 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 503 */
dflet 0:1e7b5dd9edb4 504 #define xQueueOverwrite( xQueue, pvItemToQueue ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), 0, queueOVERWRITE )
dflet 0:1e7b5dd9edb4 505
dflet 0:1e7b5dd9edb4 506
dflet 0:1e7b5dd9edb4 507 /**
dflet 0:1e7b5dd9edb4 508 * queue. h
dflet 0:1e7b5dd9edb4 509 * <pre>
dflet 0:1e7b5dd9edb4 510 BaseType_t xQueueGenericSend(
dflet 0:1e7b5dd9edb4 511 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 512 const void * pvItemToQueue,
dflet 0:1e7b5dd9edb4 513 TickType_t xTicksToWait
dflet 0:1e7b5dd9edb4 514 BaseType_t xCopyPosition
dflet 0:1e7b5dd9edb4 515 );
dflet 0:1e7b5dd9edb4 516 * </pre>
dflet 0:1e7b5dd9edb4 517 *
dflet 0:1e7b5dd9edb4 518 * It is preferred that the macros xQueueSend(), xQueueSendToFront() and
dflet 0:1e7b5dd9edb4 519 * xQueueSendToBack() are used in place of calling this function directly.
dflet 0:1e7b5dd9edb4 520 *
dflet 0:1e7b5dd9edb4 521 * Post an item on a queue. The item is queued by copy, not by reference.
dflet 0:1e7b5dd9edb4 522 * This function must not be called from an interrupt service routine.
dflet 0:1e7b5dd9edb4 523 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
dflet 0:1e7b5dd9edb4 524 *
dflet 0:1e7b5dd9edb4 525 * @param xQueue The handle to the queue on which the item is to be posted.
dflet 0:1e7b5dd9edb4 526 *
dflet 0:1e7b5dd9edb4 527 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 528 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 529 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 530 * into the queue storage area.
dflet 0:1e7b5dd9edb4 531 *
dflet 0:1e7b5dd9edb4 532 * @param xTicksToWait The maximum amount of time the task should block
dflet 0:1e7b5dd9edb4 533 * waiting for space to become available on the queue, should it already
dflet 0:1e7b5dd9edb4 534 * be full. The call will return immediately if this is set to 0 and the
dflet 0:1e7b5dd9edb4 535 * queue is full. The time is defined in tick periods so the constant
dflet 0:1e7b5dd9edb4 536 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
dflet 0:1e7b5dd9edb4 537 *
dflet 0:1e7b5dd9edb4 538 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
dflet 0:1e7b5dd9edb4 539 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
dflet 0:1e7b5dd9edb4 540 * at the front of the queue (for high priority messages).
dflet 0:1e7b5dd9edb4 541 *
dflet 0:1e7b5dd9edb4 542 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
dflet 0:1e7b5dd9edb4 543 *
dflet 0:1e7b5dd9edb4 544 * Example usage:
dflet 0:1e7b5dd9edb4 545 <pre>
dflet 0:1e7b5dd9edb4 546 struct AMessage
dflet 0:1e7b5dd9edb4 547 {
dflet 0:1e7b5dd9edb4 548 char ucMessageID;
dflet 0:1e7b5dd9edb4 549 char ucData[ 20 ];
dflet 0:1e7b5dd9edb4 550 } xMessage;
dflet 0:1e7b5dd9edb4 551
dflet 0:1e7b5dd9edb4 552 uint32_t ulVar = 10UL;
dflet 0:1e7b5dd9edb4 553
dflet 0:1e7b5dd9edb4 554 void vATask( void *pvParameters )
dflet 0:1e7b5dd9edb4 555 {
dflet 0:1e7b5dd9edb4 556 QueueHandle_t xQueue1, xQueue2;
dflet 0:1e7b5dd9edb4 557 struct AMessage *pxMessage;
dflet 0:1e7b5dd9edb4 558
dflet 0:1e7b5dd9edb4 559 // Create a queue capable of containing 10 uint32_t values.
dflet 0:1e7b5dd9edb4 560 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
dflet 0:1e7b5dd9edb4 561
dflet 0:1e7b5dd9edb4 562 // Create a queue capable of containing 10 pointers to AMessage structures.
dflet 0:1e7b5dd9edb4 563 // These should be passed by pointer as they contain a lot of data.
dflet 0:1e7b5dd9edb4 564 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
dflet 0:1e7b5dd9edb4 565
dflet 0:1e7b5dd9edb4 566 // ...
dflet 0:1e7b5dd9edb4 567
dflet 0:1e7b5dd9edb4 568 if( xQueue1 != 0 )
dflet 0:1e7b5dd9edb4 569 {
dflet 0:1e7b5dd9edb4 570 // Send an uint32_t. Wait for 10 ticks for space to become
dflet 0:1e7b5dd9edb4 571 // available if necessary.
dflet 0:1e7b5dd9edb4 572 if( xQueueGenericSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10, queueSEND_TO_BACK ) != pdPASS )
dflet 0:1e7b5dd9edb4 573 {
dflet 0:1e7b5dd9edb4 574 // Failed to post the message, even after 10 ticks.
dflet 0:1e7b5dd9edb4 575 }
dflet 0:1e7b5dd9edb4 576 }
dflet 0:1e7b5dd9edb4 577
dflet 0:1e7b5dd9edb4 578 if( xQueue2 != 0 )
dflet 0:1e7b5dd9edb4 579 {
dflet 0:1e7b5dd9edb4 580 // Send a pointer to a struct AMessage object. Don't block if the
dflet 0:1e7b5dd9edb4 581 // queue is already full.
dflet 0:1e7b5dd9edb4 582 pxMessage = & xMessage;
dflet 0:1e7b5dd9edb4 583 xQueueGenericSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0, queueSEND_TO_BACK );
dflet 0:1e7b5dd9edb4 584 }
dflet 0:1e7b5dd9edb4 585
dflet 0:1e7b5dd9edb4 586 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 587 }
dflet 0:1e7b5dd9edb4 588 </pre>
dflet 0:1e7b5dd9edb4 589 * \defgroup xQueueSend xQueueSend
dflet 0:1e7b5dd9edb4 590 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 591 */
dflet 0:1e7b5dd9edb4 592 BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 593
dflet 0:1e7b5dd9edb4 594 /**
dflet 0:1e7b5dd9edb4 595 * queue. h
dflet 0:1e7b5dd9edb4 596 * <pre>
dflet 0:1e7b5dd9edb4 597 BaseType_t xQueuePeek(
dflet 0:1e7b5dd9edb4 598 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 599 void *pvBuffer,
dflet 0:1e7b5dd9edb4 600 TickType_t xTicksToWait
dflet 0:1e7b5dd9edb4 601 );</pre>
dflet 0:1e7b5dd9edb4 602 *
dflet 0:1e7b5dd9edb4 603 * This is a macro that calls the xQueueGenericReceive() function.
dflet 0:1e7b5dd9edb4 604 *
dflet 0:1e7b5dd9edb4 605 * Receive an item from a queue without removing the item from the queue.
dflet 0:1e7b5dd9edb4 606 * The item is received by copy so a buffer of adequate size must be
dflet 0:1e7b5dd9edb4 607 * provided. The number of bytes copied into the buffer was defined when
dflet 0:1e7b5dd9edb4 608 * the queue was created.
dflet 0:1e7b5dd9edb4 609 *
dflet 0:1e7b5dd9edb4 610 * Successfully received items remain on the queue so will be returned again
dflet 0:1e7b5dd9edb4 611 * by the next call, or a call to xQueueReceive().
dflet 0:1e7b5dd9edb4 612 *
dflet 0:1e7b5dd9edb4 613 * This macro must not be used in an interrupt service routine. See
dflet 0:1e7b5dd9edb4 614 * xQueuePeekFromISR() for an alternative that can be called from an interrupt
dflet 0:1e7b5dd9edb4 615 * service routine.
dflet 0:1e7b5dd9edb4 616 *
dflet 0:1e7b5dd9edb4 617 * @param xQueue The handle to the queue from which the item is to be
dflet 0:1e7b5dd9edb4 618 * received.
dflet 0:1e7b5dd9edb4 619 *
dflet 0:1e7b5dd9edb4 620 * @param pvBuffer Pointer to the buffer into which the received item will
dflet 0:1e7b5dd9edb4 621 * be copied.
dflet 0:1e7b5dd9edb4 622 *
dflet 0:1e7b5dd9edb4 623 * @param xTicksToWait The maximum amount of time the task should block
dflet 0:1e7b5dd9edb4 624 * waiting for an item to receive should the queue be empty at the time
dflet 0:1e7b5dd9edb4 625 * of the call. The time is defined in tick periods so the constant
dflet 0:1e7b5dd9edb4 626 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
dflet 0:1e7b5dd9edb4 627 * xQueuePeek() will return immediately if xTicksToWait is 0 and the queue
dflet 0:1e7b5dd9edb4 628 * is empty.
dflet 0:1e7b5dd9edb4 629 *
dflet 0:1e7b5dd9edb4 630 * @return pdTRUE if an item was successfully received from the queue,
dflet 0:1e7b5dd9edb4 631 * otherwise pdFALSE.
dflet 0:1e7b5dd9edb4 632 *
dflet 0:1e7b5dd9edb4 633 * Example usage:
dflet 0:1e7b5dd9edb4 634 <pre>
dflet 0:1e7b5dd9edb4 635 struct AMessage
dflet 0:1e7b5dd9edb4 636 {
dflet 0:1e7b5dd9edb4 637 char ucMessageID;
dflet 0:1e7b5dd9edb4 638 char ucData[ 20 ];
dflet 0:1e7b5dd9edb4 639 } xMessage;
dflet 0:1e7b5dd9edb4 640
dflet 0:1e7b5dd9edb4 641 QueueHandle_t xQueue;
dflet 0:1e7b5dd9edb4 642
dflet 0:1e7b5dd9edb4 643 // Task to create a queue and post a value.
dflet 0:1e7b5dd9edb4 644 void vATask( void *pvParameters )
dflet 0:1e7b5dd9edb4 645 {
dflet 0:1e7b5dd9edb4 646 struct AMessage *pxMessage;
dflet 0:1e7b5dd9edb4 647
dflet 0:1e7b5dd9edb4 648 // Create a queue capable of containing 10 pointers to AMessage structures.
dflet 0:1e7b5dd9edb4 649 // These should be passed by pointer as they contain a lot of data.
dflet 0:1e7b5dd9edb4 650 xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
dflet 0:1e7b5dd9edb4 651 if( xQueue == 0 )
dflet 0:1e7b5dd9edb4 652 {
dflet 0:1e7b5dd9edb4 653 // Failed to create the queue.
dflet 0:1e7b5dd9edb4 654 }
dflet 0:1e7b5dd9edb4 655
dflet 0:1e7b5dd9edb4 656 // ...
dflet 0:1e7b5dd9edb4 657
dflet 0:1e7b5dd9edb4 658 // Send a pointer to a struct AMessage object. Don't block if the
dflet 0:1e7b5dd9edb4 659 // queue is already full.
dflet 0:1e7b5dd9edb4 660 pxMessage = & xMessage;
dflet 0:1e7b5dd9edb4 661 xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
dflet 0:1e7b5dd9edb4 662
dflet 0:1e7b5dd9edb4 663 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 664 }
dflet 0:1e7b5dd9edb4 665
dflet 0:1e7b5dd9edb4 666 // Task to peek the data from the queue.
dflet 0:1e7b5dd9edb4 667 void vADifferentTask( void *pvParameters )
dflet 0:1e7b5dd9edb4 668 {
dflet 0:1e7b5dd9edb4 669 struct AMessage *pxRxedMessage;
dflet 0:1e7b5dd9edb4 670
dflet 0:1e7b5dd9edb4 671 if( xQueue != 0 )
dflet 0:1e7b5dd9edb4 672 {
dflet 0:1e7b5dd9edb4 673 // Peek a message on the created queue. Block for 10 ticks if a
dflet 0:1e7b5dd9edb4 674 // message is not immediately available.
dflet 0:1e7b5dd9edb4 675 if( xQueuePeek( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
dflet 0:1e7b5dd9edb4 676 {
dflet 0:1e7b5dd9edb4 677 // pcRxedMessage now points to the struct AMessage variable posted
dflet 0:1e7b5dd9edb4 678 // by vATask, but the item still remains on the queue.
dflet 0:1e7b5dd9edb4 679 }
dflet 0:1e7b5dd9edb4 680 }
dflet 0:1e7b5dd9edb4 681
dflet 0:1e7b5dd9edb4 682 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 683 }
dflet 0:1e7b5dd9edb4 684 </pre>
dflet 0:1e7b5dd9edb4 685 * \defgroup xQueueReceive xQueueReceive
dflet 0:1e7b5dd9edb4 686 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 687 */
dflet 0:1e7b5dd9edb4 688 #define xQueuePeek( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
dflet 0:1e7b5dd9edb4 689
dflet 0:1e7b5dd9edb4 690 /**
dflet 0:1e7b5dd9edb4 691 * queue. h
dflet 0:1e7b5dd9edb4 692 * <pre>
dflet 0:1e7b5dd9edb4 693 BaseType_t xQueuePeekFromISR(
dflet 0:1e7b5dd9edb4 694 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 695 void *pvBuffer,
dflet 0:1e7b5dd9edb4 696 );</pre>
dflet 0:1e7b5dd9edb4 697 *
dflet 0:1e7b5dd9edb4 698 * A version of xQueuePeek() that can be called from an interrupt service
dflet 0:1e7b5dd9edb4 699 * routine (ISR).
dflet 0:1e7b5dd9edb4 700 *
dflet 0:1e7b5dd9edb4 701 * Receive an item from a queue without removing the item from the queue.
dflet 0:1e7b5dd9edb4 702 * The item is received by copy so a buffer of adequate size must be
dflet 0:1e7b5dd9edb4 703 * provided. The number of bytes copied into the buffer was defined when
dflet 0:1e7b5dd9edb4 704 * the queue was created.
dflet 0:1e7b5dd9edb4 705 *
dflet 0:1e7b5dd9edb4 706 * Successfully received items remain on the queue so will be returned again
dflet 0:1e7b5dd9edb4 707 * by the next call, or a call to xQueueReceive().
dflet 0:1e7b5dd9edb4 708 *
dflet 0:1e7b5dd9edb4 709 * @param xQueue The handle to the queue from which the item is to be
dflet 0:1e7b5dd9edb4 710 * received.
dflet 0:1e7b5dd9edb4 711 *
dflet 0:1e7b5dd9edb4 712 * @param pvBuffer Pointer to the buffer into which the received item will
dflet 0:1e7b5dd9edb4 713 * be copied.
dflet 0:1e7b5dd9edb4 714 *
dflet 0:1e7b5dd9edb4 715 * @return pdTRUE if an item was successfully received from the queue,
dflet 0:1e7b5dd9edb4 716 * otherwise pdFALSE.
dflet 0:1e7b5dd9edb4 717 *
dflet 0:1e7b5dd9edb4 718 * \defgroup xQueuePeekFromISR xQueuePeekFromISR
dflet 0:1e7b5dd9edb4 719 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 720 */
dflet 0:1e7b5dd9edb4 721 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 722
dflet 0:1e7b5dd9edb4 723 /**
dflet 0:1e7b5dd9edb4 724 * queue. h
dflet 0:1e7b5dd9edb4 725 * <pre>
dflet 0:1e7b5dd9edb4 726 BaseType_t xQueueReceive(
dflet 0:1e7b5dd9edb4 727 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 728 void *pvBuffer,
dflet 0:1e7b5dd9edb4 729 TickType_t xTicksToWait
dflet 0:1e7b5dd9edb4 730 );</pre>
dflet 0:1e7b5dd9edb4 731 *
dflet 0:1e7b5dd9edb4 732 * This is a macro that calls the xQueueGenericReceive() function.
dflet 0:1e7b5dd9edb4 733 *
dflet 0:1e7b5dd9edb4 734 * Receive an item from a queue. The item is received by copy so a buffer of
dflet 0:1e7b5dd9edb4 735 * adequate size must be provided. The number of bytes copied into the buffer
dflet 0:1e7b5dd9edb4 736 * was defined when the queue was created.
dflet 0:1e7b5dd9edb4 737 *
dflet 0:1e7b5dd9edb4 738 * Successfully received items are removed from the queue.
dflet 0:1e7b5dd9edb4 739 *
dflet 0:1e7b5dd9edb4 740 * This function must not be used in an interrupt service routine. See
dflet 0:1e7b5dd9edb4 741 * xQueueReceiveFromISR for an alternative that can.
dflet 0:1e7b5dd9edb4 742 *
dflet 0:1e7b5dd9edb4 743 * @param xQueue The handle to the queue from which the item is to be
dflet 0:1e7b5dd9edb4 744 * received.
dflet 0:1e7b5dd9edb4 745 *
dflet 0:1e7b5dd9edb4 746 * @param pvBuffer Pointer to the buffer into which the received item will
dflet 0:1e7b5dd9edb4 747 * be copied.
dflet 0:1e7b5dd9edb4 748 *
dflet 0:1e7b5dd9edb4 749 * @param xTicksToWait The maximum amount of time the task should block
dflet 0:1e7b5dd9edb4 750 * waiting for an item to receive should the queue be empty at the time
dflet 0:1e7b5dd9edb4 751 * of the call. xQueueReceive() will return immediately if xTicksToWait
dflet 0:1e7b5dd9edb4 752 * is zero and the queue is empty. The time is defined in tick periods so the
dflet 0:1e7b5dd9edb4 753 * constant portTICK_PERIOD_MS should be used to convert to real time if this is
dflet 0:1e7b5dd9edb4 754 * required.
dflet 0:1e7b5dd9edb4 755 *
dflet 0:1e7b5dd9edb4 756 * @return pdTRUE if an item was successfully received from the queue,
dflet 0:1e7b5dd9edb4 757 * otherwise pdFALSE.
dflet 0:1e7b5dd9edb4 758 *
dflet 0:1e7b5dd9edb4 759 * Example usage:
dflet 0:1e7b5dd9edb4 760 <pre>
dflet 0:1e7b5dd9edb4 761 struct AMessage
dflet 0:1e7b5dd9edb4 762 {
dflet 0:1e7b5dd9edb4 763 char ucMessageID;
dflet 0:1e7b5dd9edb4 764 char ucData[ 20 ];
dflet 0:1e7b5dd9edb4 765 } xMessage;
dflet 0:1e7b5dd9edb4 766
dflet 0:1e7b5dd9edb4 767 QueueHandle_t xQueue;
dflet 0:1e7b5dd9edb4 768
dflet 0:1e7b5dd9edb4 769 // Task to create a queue and post a value.
dflet 0:1e7b5dd9edb4 770 void vATask( void *pvParameters )
dflet 0:1e7b5dd9edb4 771 {
dflet 0:1e7b5dd9edb4 772 struct AMessage *pxMessage;
dflet 0:1e7b5dd9edb4 773
dflet 0:1e7b5dd9edb4 774 // Create a queue capable of containing 10 pointers to AMessage structures.
dflet 0:1e7b5dd9edb4 775 // These should be passed by pointer as they contain a lot of data.
dflet 0:1e7b5dd9edb4 776 xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
dflet 0:1e7b5dd9edb4 777 if( xQueue == 0 )
dflet 0:1e7b5dd9edb4 778 {
dflet 0:1e7b5dd9edb4 779 // Failed to create the queue.
dflet 0:1e7b5dd9edb4 780 }
dflet 0:1e7b5dd9edb4 781
dflet 0:1e7b5dd9edb4 782 // ...
dflet 0:1e7b5dd9edb4 783
dflet 0:1e7b5dd9edb4 784 // Send a pointer to a struct AMessage object. Don't block if the
dflet 0:1e7b5dd9edb4 785 // queue is already full.
dflet 0:1e7b5dd9edb4 786 pxMessage = & xMessage;
dflet 0:1e7b5dd9edb4 787 xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
dflet 0:1e7b5dd9edb4 788
dflet 0:1e7b5dd9edb4 789 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 790 }
dflet 0:1e7b5dd9edb4 791
dflet 0:1e7b5dd9edb4 792 // Task to receive from the queue.
dflet 0:1e7b5dd9edb4 793 void vADifferentTask( void *pvParameters )
dflet 0:1e7b5dd9edb4 794 {
dflet 0:1e7b5dd9edb4 795 struct AMessage *pxRxedMessage;
dflet 0:1e7b5dd9edb4 796
dflet 0:1e7b5dd9edb4 797 if( xQueue != 0 )
dflet 0:1e7b5dd9edb4 798 {
dflet 0:1e7b5dd9edb4 799 // Receive a message on the created queue. Block for 10 ticks if a
dflet 0:1e7b5dd9edb4 800 // message is not immediately available.
dflet 0:1e7b5dd9edb4 801 if( xQueueReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
dflet 0:1e7b5dd9edb4 802 {
dflet 0:1e7b5dd9edb4 803 // pcRxedMessage now points to the struct AMessage variable posted
dflet 0:1e7b5dd9edb4 804 // by vATask.
dflet 0:1e7b5dd9edb4 805 }
dflet 0:1e7b5dd9edb4 806 }
dflet 0:1e7b5dd9edb4 807
dflet 0:1e7b5dd9edb4 808 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 809 }
dflet 0:1e7b5dd9edb4 810 </pre>
dflet 0:1e7b5dd9edb4 811 * \defgroup xQueueReceive xQueueReceive
dflet 0:1e7b5dd9edb4 812 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 813 */
dflet 0:1e7b5dd9edb4 814 #define xQueueReceive( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
dflet 0:1e7b5dd9edb4 815
dflet 0:1e7b5dd9edb4 816
dflet 0:1e7b5dd9edb4 817 /**
dflet 0:1e7b5dd9edb4 818 * queue. h
dflet 0:1e7b5dd9edb4 819 * <pre>
dflet 0:1e7b5dd9edb4 820 BaseType_t xQueueGenericReceive(
dflet 0:1e7b5dd9edb4 821 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 822 void *pvBuffer,
dflet 0:1e7b5dd9edb4 823 TickType_t xTicksToWait
dflet 0:1e7b5dd9edb4 824 BaseType_t xJustPeek
dflet 0:1e7b5dd9edb4 825 );</pre>
dflet 0:1e7b5dd9edb4 826 *
dflet 0:1e7b5dd9edb4 827 * It is preferred that the macro xQueueReceive() be used rather than calling
dflet 0:1e7b5dd9edb4 828 * this function directly.
dflet 0:1e7b5dd9edb4 829 *
dflet 0:1e7b5dd9edb4 830 * Receive an item from a queue. The item is received by copy so a buffer of
dflet 0:1e7b5dd9edb4 831 * adequate size must be provided. The number of bytes copied into the buffer
dflet 0:1e7b5dd9edb4 832 * was defined when the queue was created.
dflet 0:1e7b5dd9edb4 833 *
dflet 0:1e7b5dd9edb4 834 * This function must not be used in an interrupt service routine. See
dflet 0:1e7b5dd9edb4 835 * xQueueReceiveFromISR for an alternative that can.
dflet 0:1e7b5dd9edb4 836 *
dflet 0:1e7b5dd9edb4 837 * @param xQueue The handle to the queue from which the item is to be
dflet 0:1e7b5dd9edb4 838 * received.
dflet 0:1e7b5dd9edb4 839 *
dflet 0:1e7b5dd9edb4 840 * @param pvBuffer Pointer to the buffer into which the received item will
dflet 0:1e7b5dd9edb4 841 * be copied.
dflet 0:1e7b5dd9edb4 842 *
dflet 0:1e7b5dd9edb4 843 * @param xTicksToWait The maximum amount of time the task should block
dflet 0:1e7b5dd9edb4 844 * waiting for an item to receive should the queue be empty at the time
dflet 0:1e7b5dd9edb4 845 * of the call. The time is defined in tick periods so the constant
dflet 0:1e7b5dd9edb4 846 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
dflet 0:1e7b5dd9edb4 847 * xQueueGenericReceive() will return immediately if the queue is empty and
dflet 0:1e7b5dd9edb4 848 * xTicksToWait is 0.
dflet 0:1e7b5dd9edb4 849 *
dflet 0:1e7b5dd9edb4 850 * @param xJustPeek When set to true, the item received from the queue is not
dflet 0:1e7b5dd9edb4 851 * actually removed from the queue - meaning a subsequent call to
dflet 0:1e7b5dd9edb4 852 * xQueueReceive() will return the same item. When set to false, the item
dflet 0:1e7b5dd9edb4 853 * being received from the queue is also removed from the queue.
dflet 0:1e7b5dd9edb4 854 *
dflet 0:1e7b5dd9edb4 855 * @return pdTRUE if an item was successfully received from the queue,
dflet 0:1e7b5dd9edb4 856 * otherwise pdFALSE.
dflet 0:1e7b5dd9edb4 857 *
dflet 0:1e7b5dd9edb4 858 * Example usage:
dflet 0:1e7b5dd9edb4 859 <pre>
dflet 0:1e7b5dd9edb4 860 struct AMessage
dflet 0:1e7b5dd9edb4 861 {
dflet 0:1e7b5dd9edb4 862 char ucMessageID;
dflet 0:1e7b5dd9edb4 863 char ucData[ 20 ];
dflet 0:1e7b5dd9edb4 864 } xMessage;
dflet 0:1e7b5dd9edb4 865
dflet 0:1e7b5dd9edb4 866 QueueHandle_t xQueue;
dflet 0:1e7b5dd9edb4 867
dflet 0:1e7b5dd9edb4 868 // Task to create a queue and post a value.
dflet 0:1e7b5dd9edb4 869 void vATask( void *pvParameters )
dflet 0:1e7b5dd9edb4 870 {
dflet 0:1e7b5dd9edb4 871 struct AMessage *pxMessage;
dflet 0:1e7b5dd9edb4 872
dflet 0:1e7b5dd9edb4 873 // Create a queue capable of containing 10 pointers to AMessage structures.
dflet 0:1e7b5dd9edb4 874 // These should be passed by pointer as they contain a lot of data.
dflet 0:1e7b5dd9edb4 875 xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
dflet 0:1e7b5dd9edb4 876 if( xQueue == 0 )
dflet 0:1e7b5dd9edb4 877 {
dflet 0:1e7b5dd9edb4 878 // Failed to create the queue.
dflet 0:1e7b5dd9edb4 879 }
dflet 0:1e7b5dd9edb4 880
dflet 0:1e7b5dd9edb4 881 // ...
dflet 0:1e7b5dd9edb4 882
dflet 0:1e7b5dd9edb4 883 // Send a pointer to a struct AMessage object. Don't block if the
dflet 0:1e7b5dd9edb4 884 // queue is already full.
dflet 0:1e7b5dd9edb4 885 pxMessage = & xMessage;
dflet 0:1e7b5dd9edb4 886 xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
dflet 0:1e7b5dd9edb4 887
dflet 0:1e7b5dd9edb4 888 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 889 }
dflet 0:1e7b5dd9edb4 890
dflet 0:1e7b5dd9edb4 891 // Task to receive from the queue.
dflet 0:1e7b5dd9edb4 892 void vADifferentTask( void *pvParameters )
dflet 0:1e7b5dd9edb4 893 {
dflet 0:1e7b5dd9edb4 894 struct AMessage *pxRxedMessage;
dflet 0:1e7b5dd9edb4 895
dflet 0:1e7b5dd9edb4 896 if( xQueue != 0 )
dflet 0:1e7b5dd9edb4 897 {
dflet 0:1e7b5dd9edb4 898 // Receive a message on the created queue. Block for 10 ticks if a
dflet 0:1e7b5dd9edb4 899 // message is not immediately available.
dflet 0:1e7b5dd9edb4 900 if( xQueueGenericReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
dflet 0:1e7b5dd9edb4 901 {
dflet 0:1e7b5dd9edb4 902 // pcRxedMessage now points to the struct AMessage variable posted
dflet 0:1e7b5dd9edb4 903 // by vATask.
dflet 0:1e7b5dd9edb4 904 }
dflet 0:1e7b5dd9edb4 905 }
dflet 0:1e7b5dd9edb4 906
dflet 0:1e7b5dd9edb4 907 // ... Rest of task code.
dflet 0:1e7b5dd9edb4 908 }
dflet 0:1e7b5dd9edb4 909 </pre>
dflet 0:1e7b5dd9edb4 910 * \defgroup xQueueReceive xQueueReceive
dflet 0:1e7b5dd9edb4 911 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 912 */
dflet 0:1e7b5dd9edb4 913 BaseType_t xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeek ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 914
dflet 0:1e7b5dd9edb4 915 /**
dflet 0:1e7b5dd9edb4 916 * queue. h
dflet 0:1e7b5dd9edb4 917 * <pre>UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );</pre>
dflet 0:1e7b5dd9edb4 918 *
dflet 0:1e7b5dd9edb4 919 * Return the number of messages stored in a queue.
dflet 0:1e7b5dd9edb4 920 *
dflet 0:1e7b5dd9edb4 921 * @param xQueue A handle to the queue being queried.
dflet 0:1e7b5dd9edb4 922 *
dflet 0:1e7b5dd9edb4 923 * @return The number of messages available in the queue.
dflet 0:1e7b5dd9edb4 924 *
dflet 0:1e7b5dd9edb4 925 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
dflet 0:1e7b5dd9edb4 926 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 927 */
dflet 0:1e7b5dd9edb4 928 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 929
dflet 0:1e7b5dd9edb4 930 /**
dflet 0:1e7b5dd9edb4 931 * queue. h
dflet 0:1e7b5dd9edb4 932 * <pre>UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );</pre>
dflet 0:1e7b5dd9edb4 933 *
dflet 0:1e7b5dd9edb4 934 * Return the number of free spaces available in a queue. This is equal to the
dflet 0:1e7b5dd9edb4 935 * number of items that can be sent to the queue before the queue becomes full
dflet 0:1e7b5dd9edb4 936 * if no items are removed.
dflet 0:1e7b5dd9edb4 937 *
dflet 0:1e7b5dd9edb4 938 * @param xQueue A handle to the queue being queried.
dflet 0:1e7b5dd9edb4 939 *
dflet 0:1e7b5dd9edb4 940 * @return The number of spaces available in the queue.
dflet 0:1e7b5dd9edb4 941 *
dflet 0:1e7b5dd9edb4 942 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
dflet 0:1e7b5dd9edb4 943 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 944 */
dflet 0:1e7b5dd9edb4 945 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 946
dflet 0:1e7b5dd9edb4 947 /**
dflet 0:1e7b5dd9edb4 948 * queue. h
dflet 0:1e7b5dd9edb4 949 * <pre>void vQueueDelete( QueueHandle_t xQueue );</pre>
dflet 0:1e7b5dd9edb4 950 *
dflet 0:1e7b5dd9edb4 951 * Delete a queue - freeing all the memory allocated for storing of items
dflet 0:1e7b5dd9edb4 952 * placed on the queue.
dflet 0:1e7b5dd9edb4 953 *
dflet 0:1e7b5dd9edb4 954 * @param xQueue A handle to the queue to be deleted.
dflet 0:1e7b5dd9edb4 955 *
dflet 0:1e7b5dd9edb4 956 * \defgroup vQueueDelete vQueueDelete
dflet 0:1e7b5dd9edb4 957 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 958 */
dflet 0:1e7b5dd9edb4 959 void vQueueDelete( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 960
dflet 0:1e7b5dd9edb4 961 /**
dflet 0:1e7b5dd9edb4 962 * queue. h
dflet 0:1e7b5dd9edb4 963 * <pre>
dflet 0:1e7b5dd9edb4 964 BaseType_t xQueueSendToFrontFromISR(
dflet 0:1e7b5dd9edb4 965 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 966 const void *pvItemToQueue,
dflet 0:1e7b5dd9edb4 967 BaseType_t *pxHigherPriorityTaskWoken
dflet 0:1e7b5dd9edb4 968 );
dflet 0:1e7b5dd9edb4 969 </pre>
dflet 0:1e7b5dd9edb4 970 *
dflet 0:1e7b5dd9edb4 971 * This is a macro that calls xQueueGenericSendFromISR().
dflet 0:1e7b5dd9edb4 972 *
dflet 0:1e7b5dd9edb4 973 * Post an item to the front of a queue. It is safe to use this macro from
dflet 0:1e7b5dd9edb4 974 * within an interrupt service routine.
dflet 0:1e7b5dd9edb4 975 *
dflet 0:1e7b5dd9edb4 976 * Items are queued by copy not reference so it is preferable to only
dflet 0:1e7b5dd9edb4 977 * queue small items, especially when called from an ISR. In most cases
dflet 0:1e7b5dd9edb4 978 * it would be preferable to store a pointer to the item being queued.
dflet 0:1e7b5dd9edb4 979 *
dflet 0:1e7b5dd9edb4 980 * @param xQueue The handle to the queue on which the item is to be posted.
dflet 0:1e7b5dd9edb4 981 *
dflet 0:1e7b5dd9edb4 982 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 983 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 984 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 985 * into the queue storage area.
dflet 0:1e7b5dd9edb4 986 *
dflet 0:1e7b5dd9edb4 987 * @param pxHigherPriorityTaskWoken xQueueSendToFrontFromISR() will set
dflet 0:1e7b5dd9edb4 988 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
dflet 0:1e7b5dd9edb4 989 * to unblock, and the unblocked task has a priority higher than the currently
dflet 0:1e7b5dd9edb4 990 * running task. If xQueueSendToFromFromISR() sets this value to pdTRUE then
dflet 0:1e7b5dd9edb4 991 * a context switch should be requested before the interrupt is exited.
dflet 0:1e7b5dd9edb4 992 *
dflet 0:1e7b5dd9edb4 993 * @return pdTRUE if the data was successfully sent to the queue, otherwise
dflet 0:1e7b5dd9edb4 994 * errQUEUE_FULL.
dflet 0:1e7b5dd9edb4 995 *
dflet 0:1e7b5dd9edb4 996 * Example usage for buffered IO (where the ISR can obtain more than one value
dflet 0:1e7b5dd9edb4 997 * per call):
dflet 0:1e7b5dd9edb4 998 <pre>
dflet 0:1e7b5dd9edb4 999 void vBufferISR( void )
dflet 0:1e7b5dd9edb4 1000 {
dflet 0:1e7b5dd9edb4 1001 char cIn;
dflet 0:1e7b5dd9edb4 1002 BaseType_t xHigherPrioritTaskWoken;
dflet 0:1e7b5dd9edb4 1003
dflet 0:1e7b5dd9edb4 1004 // We have not woken a task at the start of the ISR.
dflet 0:1e7b5dd9edb4 1005 xHigherPriorityTaskWoken = pdFALSE;
dflet 0:1e7b5dd9edb4 1006
dflet 0:1e7b5dd9edb4 1007 // Loop until the buffer is empty.
dflet 0:1e7b5dd9edb4 1008 do
dflet 0:1e7b5dd9edb4 1009 {
dflet 0:1e7b5dd9edb4 1010 // Obtain a byte from the buffer.
dflet 0:1e7b5dd9edb4 1011 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
dflet 0:1e7b5dd9edb4 1012
dflet 0:1e7b5dd9edb4 1013 // Post the byte.
dflet 0:1e7b5dd9edb4 1014 xQueueSendToFrontFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
dflet 0:1e7b5dd9edb4 1015
dflet 0:1e7b5dd9edb4 1016 } while( portINPUT_BYTE( BUFFER_COUNT ) );
dflet 0:1e7b5dd9edb4 1017
dflet 0:1e7b5dd9edb4 1018 // Now the buffer is empty we can switch context if necessary.
dflet 0:1e7b5dd9edb4 1019 if( xHigherPriorityTaskWoken )
dflet 0:1e7b5dd9edb4 1020 {
dflet 0:1e7b5dd9edb4 1021 taskYIELD ();
dflet 0:1e7b5dd9edb4 1022 }
dflet 0:1e7b5dd9edb4 1023 }
dflet 0:1e7b5dd9edb4 1024 </pre>
dflet 0:1e7b5dd9edb4 1025 *
dflet 0:1e7b5dd9edb4 1026 * \defgroup xQueueSendFromISR xQueueSendFromISR
dflet 0:1e7b5dd9edb4 1027 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 1028 */
dflet 0:1e7b5dd9edb4 1029 #define xQueueSendToFrontFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_FRONT )
dflet 0:1e7b5dd9edb4 1030
dflet 0:1e7b5dd9edb4 1031
dflet 0:1e7b5dd9edb4 1032 /**
dflet 0:1e7b5dd9edb4 1033 * queue. h
dflet 0:1e7b5dd9edb4 1034 * <pre>
dflet 0:1e7b5dd9edb4 1035 BaseType_t xQueueSendToBackFromISR(
dflet 0:1e7b5dd9edb4 1036 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 1037 const void *pvItemToQueue,
dflet 0:1e7b5dd9edb4 1038 BaseType_t *pxHigherPriorityTaskWoken
dflet 0:1e7b5dd9edb4 1039 );
dflet 0:1e7b5dd9edb4 1040 </pre>
dflet 0:1e7b5dd9edb4 1041 *
dflet 0:1e7b5dd9edb4 1042 * This is a macro that calls xQueueGenericSendFromISR().
dflet 0:1e7b5dd9edb4 1043 *
dflet 0:1e7b5dd9edb4 1044 * Post an item to the back of a queue. It is safe to use this macro from
dflet 0:1e7b5dd9edb4 1045 * within an interrupt service routine.
dflet 0:1e7b5dd9edb4 1046 *
dflet 0:1e7b5dd9edb4 1047 * Items are queued by copy not reference so it is preferable to only
dflet 0:1e7b5dd9edb4 1048 * queue small items, especially when called from an ISR. In most cases
dflet 0:1e7b5dd9edb4 1049 * it would be preferable to store a pointer to the item being queued.
dflet 0:1e7b5dd9edb4 1050 *
dflet 0:1e7b5dd9edb4 1051 * @param xQueue The handle to the queue on which the item is to be posted.
dflet 0:1e7b5dd9edb4 1052 *
dflet 0:1e7b5dd9edb4 1053 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 1054 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 1055 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 1056 * into the queue storage area.
dflet 0:1e7b5dd9edb4 1057 *
dflet 0:1e7b5dd9edb4 1058 * @param pxHigherPriorityTaskWoken xQueueSendToBackFromISR() will set
dflet 0:1e7b5dd9edb4 1059 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
dflet 0:1e7b5dd9edb4 1060 * to unblock, and the unblocked task has a priority higher than the currently
dflet 0:1e7b5dd9edb4 1061 * running task. If xQueueSendToBackFromISR() sets this value to pdTRUE then
dflet 0:1e7b5dd9edb4 1062 * a context switch should be requested before the interrupt is exited.
dflet 0:1e7b5dd9edb4 1063 *
dflet 0:1e7b5dd9edb4 1064 * @return pdTRUE if the data was successfully sent to the queue, otherwise
dflet 0:1e7b5dd9edb4 1065 * errQUEUE_FULL.
dflet 0:1e7b5dd9edb4 1066 *
dflet 0:1e7b5dd9edb4 1067 * Example usage for buffered IO (where the ISR can obtain more than one value
dflet 0:1e7b5dd9edb4 1068 * per call):
dflet 0:1e7b5dd9edb4 1069 <pre>
dflet 0:1e7b5dd9edb4 1070 void vBufferISR( void )
dflet 0:1e7b5dd9edb4 1071 {
dflet 0:1e7b5dd9edb4 1072 char cIn;
dflet 0:1e7b5dd9edb4 1073 BaseType_t xHigherPriorityTaskWoken;
dflet 0:1e7b5dd9edb4 1074
dflet 0:1e7b5dd9edb4 1075 // We have not woken a task at the start of the ISR.
dflet 0:1e7b5dd9edb4 1076 xHigherPriorityTaskWoken = pdFALSE;
dflet 0:1e7b5dd9edb4 1077
dflet 0:1e7b5dd9edb4 1078 // Loop until the buffer is empty.
dflet 0:1e7b5dd9edb4 1079 do
dflet 0:1e7b5dd9edb4 1080 {
dflet 0:1e7b5dd9edb4 1081 // Obtain a byte from the buffer.
dflet 0:1e7b5dd9edb4 1082 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
dflet 0:1e7b5dd9edb4 1083
dflet 0:1e7b5dd9edb4 1084 // Post the byte.
dflet 0:1e7b5dd9edb4 1085 xQueueSendToBackFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
dflet 0:1e7b5dd9edb4 1086
dflet 0:1e7b5dd9edb4 1087 } while( portINPUT_BYTE( BUFFER_COUNT ) );
dflet 0:1e7b5dd9edb4 1088
dflet 0:1e7b5dd9edb4 1089 // Now the buffer is empty we can switch context if necessary.
dflet 0:1e7b5dd9edb4 1090 if( xHigherPriorityTaskWoken )
dflet 0:1e7b5dd9edb4 1091 {
dflet 0:1e7b5dd9edb4 1092 taskYIELD ();
dflet 0:1e7b5dd9edb4 1093 }
dflet 0:1e7b5dd9edb4 1094 }
dflet 0:1e7b5dd9edb4 1095 </pre>
dflet 0:1e7b5dd9edb4 1096 *
dflet 0:1e7b5dd9edb4 1097 * \defgroup xQueueSendFromISR xQueueSendFromISR
dflet 0:1e7b5dd9edb4 1098 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 1099 */
dflet 0:1e7b5dd9edb4 1100 #define xQueueSendToBackFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
dflet 0:1e7b5dd9edb4 1101
dflet 0:1e7b5dd9edb4 1102 /**
dflet 0:1e7b5dd9edb4 1103 * queue. h
dflet 0:1e7b5dd9edb4 1104 * <pre>
dflet 0:1e7b5dd9edb4 1105 BaseType_t xQueueOverwriteFromISR(
dflet 0:1e7b5dd9edb4 1106 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 1107 const void * pvItemToQueue,
dflet 0:1e7b5dd9edb4 1108 BaseType_t *pxHigherPriorityTaskWoken
dflet 0:1e7b5dd9edb4 1109 );
dflet 0:1e7b5dd9edb4 1110 * </pre>
dflet 0:1e7b5dd9edb4 1111 *
dflet 0:1e7b5dd9edb4 1112 * A version of xQueueOverwrite() that can be used in an interrupt service
dflet 0:1e7b5dd9edb4 1113 * routine (ISR).
dflet 0:1e7b5dd9edb4 1114 *
dflet 0:1e7b5dd9edb4 1115 * Only for use with queues that can hold a single item - so the queue is either
dflet 0:1e7b5dd9edb4 1116 * empty or full.
dflet 0:1e7b5dd9edb4 1117 *
dflet 0:1e7b5dd9edb4 1118 * Post an item on a queue. If the queue is already full then overwrite the
dflet 0:1e7b5dd9edb4 1119 * value held in the queue. The item is queued by copy, not by reference.
dflet 0:1e7b5dd9edb4 1120 *
dflet 0:1e7b5dd9edb4 1121 * @param xQueue The handle to the queue on which the item is to be posted.
dflet 0:1e7b5dd9edb4 1122 *
dflet 0:1e7b5dd9edb4 1123 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 1124 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 1125 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 1126 * into the queue storage area.
dflet 0:1e7b5dd9edb4 1127 *
dflet 0:1e7b5dd9edb4 1128 * @param pxHigherPriorityTaskWoken xQueueOverwriteFromISR() will set
dflet 0:1e7b5dd9edb4 1129 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
dflet 0:1e7b5dd9edb4 1130 * to unblock, and the unblocked task has a priority higher than the currently
dflet 0:1e7b5dd9edb4 1131 * running task. If xQueueOverwriteFromISR() sets this value to pdTRUE then
dflet 0:1e7b5dd9edb4 1132 * a context switch should be requested before the interrupt is exited.
dflet 0:1e7b5dd9edb4 1133 *
dflet 0:1e7b5dd9edb4 1134 * @return xQueueOverwriteFromISR() is a macro that calls
dflet 0:1e7b5dd9edb4 1135 * xQueueGenericSendFromISR(), and therefore has the same return values as
dflet 0:1e7b5dd9edb4 1136 * xQueueSendToFrontFromISR(). However, pdPASS is the only value that can be
dflet 0:1e7b5dd9edb4 1137 * returned because xQueueOverwriteFromISR() will write to the queue even when
dflet 0:1e7b5dd9edb4 1138 * the queue is already full.
dflet 0:1e7b5dd9edb4 1139 *
dflet 0:1e7b5dd9edb4 1140 * Example usage:
dflet 0:1e7b5dd9edb4 1141 <pre>
dflet 0:1e7b5dd9edb4 1142
dflet 0:1e7b5dd9edb4 1143 QueueHandle_t xQueue;
dflet 0:1e7b5dd9edb4 1144
dflet 0:1e7b5dd9edb4 1145 void vFunction( void *pvParameters )
dflet 0:1e7b5dd9edb4 1146 {
dflet 0:1e7b5dd9edb4 1147 // Create a queue to hold one uint32_t value. It is strongly
dflet 0:1e7b5dd9edb4 1148 // recommended *not* to use xQueueOverwriteFromISR() on queues that can
dflet 0:1e7b5dd9edb4 1149 // contain more than one value, and doing so will trigger an assertion
dflet 0:1e7b5dd9edb4 1150 // if configASSERT() is defined.
dflet 0:1e7b5dd9edb4 1151 xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
dflet 0:1e7b5dd9edb4 1152 }
dflet 0:1e7b5dd9edb4 1153
dflet 0:1e7b5dd9edb4 1154 void vAnInterruptHandler( void )
dflet 0:1e7b5dd9edb4 1155 {
dflet 0:1e7b5dd9edb4 1156 // xHigherPriorityTaskWoken must be set to pdFALSE before it is used.
dflet 0:1e7b5dd9edb4 1157 BaseType_t xHigherPriorityTaskWoken = pdFALSE;
dflet 0:1e7b5dd9edb4 1158 uint32_t ulVarToSend, ulValReceived;
dflet 0:1e7b5dd9edb4 1159
dflet 0:1e7b5dd9edb4 1160 // Write the value 10 to the queue using xQueueOverwriteFromISR().
dflet 0:1e7b5dd9edb4 1161 ulVarToSend = 10;
dflet 0:1e7b5dd9edb4 1162 xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
dflet 0:1e7b5dd9edb4 1163
dflet 0:1e7b5dd9edb4 1164 // The queue is full, but calling xQueueOverwriteFromISR() again will still
dflet 0:1e7b5dd9edb4 1165 // pass because the value held in the queue will be overwritten with the
dflet 0:1e7b5dd9edb4 1166 // new value.
dflet 0:1e7b5dd9edb4 1167 ulVarToSend = 100;
dflet 0:1e7b5dd9edb4 1168 xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
dflet 0:1e7b5dd9edb4 1169
dflet 0:1e7b5dd9edb4 1170 // Reading from the queue will now return 100.
dflet 0:1e7b5dd9edb4 1171
dflet 0:1e7b5dd9edb4 1172 // ...
dflet 0:1e7b5dd9edb4 1173
dflet 0:1e7b5dd9edb4 1174 if( xHigherPrioritytaskWoken == pdTRUE )
dflet 0:1e7b5dd9edb4 1175 {
dflet 0:1e7b5dd9edb4 1176 // Writing to the queue caused a task to unblock and the unblocked task
dflet 0:1e7b5dd9edb4 1177 // has a priority higher than or equal to the priority of the currently
dflet 0:1e7b5dd9edb4 1178 // executing task (the task this interrupt interrupted). Perform a context
dflet 0:1e7b5dd9edb4 1179 // switch so this interrupt returns directly to the unblocked task.
dflet 0:1e7b5dd9edb4 1180 portYIELD_FROM_ISR(); // or portEND_SWITCHING_ISR() depending on the port.
dflet 0:1e7b5dd9edb4 1181 }
dflet 0:1e7b5dd9edb4 1182 }
dflet 0:1e7b5dd9edb4 1183 </pre>
dflet 0:1e7b5dd9edb4 1184 * \defgroup xQueueOverwriteFromISR xQueueOverwriteFromISR
dflet 0:1e7b5dd9edb4 1185 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 1186 */
dflet 0:1e7b5dd9edb4 1187 #define xQueueOverwriteFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueOVERWRITE )
dflet 0:1e7b5dd9edb4 1188
dflet 0:1e7b5dd9edb4 1189 /**
dflet 0:1e7b5dd9edb4 1190 * queue. h
dflet 0:1e7b5dd9edb4 1191 * <pre>
dflet 0:1e7b5dd9edb4 1192 BaseType_t xQueueSendFromISR(
dflet 0:1e7b5dd9edb4 1193 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 1194 const void *pvItemToQueue,
dflet 0:1e7b5dd9edb4 1195 BaseType_t *pxHigherPriorityTaskWoken
dflet 0:1e7b5dd9edb4 1196 );
dflet 0:1e7b5dd9edb4 1197 </pre>
dflet 0:1e7b5dd9edb4 1198 *
dflet 0:1e7b5dd9edb4 1199 * This is a macro that calls xQueueGenericSendFromISR(). It is included
dflet 0:1e7b5dd9edb4 1200 * for backward compatibility with versions of FreeRTOS.org that did not
dflet 0:1e7b5dd9edb4 1201 * include the xQueueSendToBackFromISR() and xQueueSendToFrontFromISR()
dflet 0:1e7b5dd9edb4 1202 * macros.
dflet 0:1e7b5dd9edb4 1203 *
dflet 0:1e7b5dd9edb4 1204 * Post an item to the back of a queue. It is safe to use this function from
dflet 0:1e7b5dd9edb4 1205 * within an interrupt service routine.
dflet 0:1e7b5dd9edb4 1206 *
dflet 0:1e7b5dd9edb4 1207 * Items are queued by copy not reference so it is preferable to only
dflet 0:1e7b5dd9edb4 1208 * queue small items, especially when called from an ISR. In most cases
dflet 0:1e7b5dd9edb4 1209 * it would be preferable to store a pointer to the item being queued.
dflet 0:1e7b5dd9edb4 1210 *
dflet 0:1e7b5dd9edb4 1211 * @param xQueue The handle to the queue on which the item is to be posted.
dflet 0:1e7b5dd9edb4 1212 *
dflet 0:1e7b5dd9edb4 1213 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 1214 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 1215 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 1216 * into the queue storage area.
dflet 0:1e7b5dd9edb4 1217 *
dflet 0:1e7b5dd9edb4 1218 * @param pxHigherPriorityTaskWoken xQueueSendFromISR() will set
dflet 0:1e7b5dd9edb4 1219 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
dflet 0:1e7b5dd9edb4 1220 * to unblock, and the unblocked task has a priority higher than the currently
dflet 0:1e7b5dd9edb4 1221 * running task. If xQueueSendFromISR() sets this value to pdTRUE then
dflet 0:1e7b5dd9edb4 1222 * a context switch should be requested before the interrupt is exited.
dflet 0:1e7b5dd9edb4 1223 *
dflet 0:1e7b5dd9edb4 1224 * @return pdTRUE if the data was successfully sent to the queue, otherwise
dflet 0:1e7b5dd9edb4 1225 * errQUEUE_FULL.
dflet 0:1e7b5dd9edb4 1226 *
dflet 0:1e7b5dd9edb4 1227 * Example usage for buffered IO (where the ISR can obtain more than one value
dflet 0:1e7b5dd9edb4 1228 * per call):
dflet 0:1e7b5dd9edb4 1229 <pre>
dflet 0:1e7b5dd9edb4 1230 void vBufferISR( void )
dflet 0:1e7b5dd9edb4 1231 {
dflet 0:1e7b5dd9edb4 1232 char cIn;
dflet 0:1e7b5dd9edb4 1233 BaseType_t xHigherPriorityTaskWoken;
dflet 0:1e7b5dd9edb4 1234
dflet 0:1e7b5dd9edb4 1235 // We have not woken a task at the start of the ISR.
dflet 0:1e7b5dd9edb4 1236 xHigherPriorityTaskWoken = pdFALSE;
dflet 0:1e7b5dd9edb4 1237
dflet 0:1e7b5dd9edb4 1238 // Loop until the buffer is empty.
dflet 0:1e7b5dd9edb4 1239 do
dflet 0:1e7b5dd9edb4 1240 {
dflet 0:1e7b5dd9edb4 1241 // Obtain a byte from the buffer.
dflet 0:1e7b5dd9edb4 1242 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
dflet 0:1e7b5dd9edb4 1243
dflet 0:1e7b5dd9edb4 1244 // Post the byte.
dflet 0:1e7b5dd9edb4 1245 xQueueSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
dflet 0:1e7b5dd9edb4 1246
dflet 0:1e7b5dd9edb4 1247 } while( portINPUT_BYTE( BUFFER_COUNT ) );
dflet 0:1e7b5dd9edb4 1248
dflet 0:1e7b5dd9edb4 1249 // Now the buffer is empty we can switch context if necessary.
dflet 0:1e7b5dd9edb4 1250 if( xHigherPriorityTaskWoken )
dflet 0:1e7b5dd9edb4 1251 {
dflet 0:1e7b5dd9edb4 1252 // Actual macro used here is port specific.
dflet 0:1e7b5dd9edb4 1253 portYIELD_FROM_ISR ();
dflet 0:1e7b5dd9edb4 1254 }
dflet 0:1e7b5dd9edb4 1255 }
dflet 0:1e7b5dd9edb4 1256 </pre>
dflet 0:1e7b5dd9edb4 1257 *
dflet 0:1e7b5dd9edb4 1258 * \defgroup xQueueSendFromISR xQueueSendFromISR
dflet 0:1e7b5dd9edb4 1259 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 1260 */
dflet 0:1e7b5dd9edb4 1261 #define xQueueSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
dflet 0:1e7b5dd9edb4 1262
dflet 0:1e7b5dd9edb4 1263 /**
dflet 0:1e7b5dd9edb4 1264 * queue. h
dflet 0:1e7b5dd9edb4 1265 * <pre>
dflet 0:1e7b5dd9edb4 1266 BaseType_t xQueueGenericSendFromISR(
dflet 0:1e7b5dd9edb4 1267 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 1268 const void *pvItemToQueue,
dflet 0:1e7b5dd9edb4 1269 BaseType_t *pxHigherPriorityTaskWoken,
dflet 0:1e7b5dd9edb4 1270 BaseType_t xCopyPosition
dflet 0:1e7b5dd9edb4 1271 );
dflet 0:1e7b5dd9edb4 1272 </pre>
dflet 0:1e7b5dd9edb4 1273 *
dflet 0:1e7b5dd9edb4 1274 * It is preferred that the macros xQueueSendFromISR(),
dflet 0:1e7b5dd9edb4 1275 * xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() be used in place
dflet 0:1e7b5dd9edb4 1276 * of calling this function directly. xQueueGiveFromISR() is an
dflet 0:1e7b5dd9edb4 1277 * equivalent for use by semaphores that don't actually copy any data.
dflet 0:1e7b5dd9edb4 1278 *
dflet 0:1e7b5dd9edb4 1279 * Post an item on a queue. It is safe to use this function from within an
dflet 0:1e7b5dd9edb4 1280 * interrupt service routine.
dflet 0:1e7b5dd9edb4 1281 *
dflet 0:1e7b5dd9edb4 1282 * Items are queued by copy not reference so it is preferable to only
dflet 0:1e7b5dd9edb4 1283 * queue small items, especially when called from an ISR. In most cases
dflet 0:1e7b5dd9edb4 1284 * it would be preferable to store a pointer to the item being queued.
dflet 0:1e7b5dd9edb4 1285 *
dflet 0:1e7b5dd9edb4 1286 * @param xQueue The handle to the queue on which the item is to be posted.
dflet 0:1e7b5dd9edb4 1287 *
dflet 0:1e7b5dd9edb4 1288 * @param pvItemToQueue A pointer to the item that is to be placed on the
dflet 0:1e7b5dd9edb4 1289 * queue. The size of the items the queue will hold was defined when the
dflet 0:1e7b5dd9edb4 1290 * queue was created, so this many bytes will be copied from pvItemToQueue
dflet 0:1e7b5dd9edb4 1291 * into the queue storage area.
dflet 0:1e7b5dd9edb4 1292 *
dflet 0:1e7b5dd9edb4 1293 * @param pxHigherPriorityTaskWoken xQueueGenericSendFromISR() will set
dflet 0:1e7b5dd9edb4 1294 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
dflet 0:1e7b5dd9edb4 1295 * to unblock, and the unblocked task has a priority higher than the currently
dflet 0:1e7b5dd9edb4 1296 * running task. If xQueueGenericSendFromISR() sets this value to pdTRUE then
dflet 0:1e7b5dd9edb4 1297 * a context switch should be requested before the interrupt is exited.
dflet 0:1e7b5dd9edb4 1298 *
dflet 0:1e7b5dd9edb4 1299 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
dflet 0:1e7b5dd9edb4 1300 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
dflet 0:1e7b5dd9edb4 1301 * at the front of the queue (for high priority messages).
dflet 0:1e7b5dd9edb4 1302 *
dflet 0:1e7b5dd9edb4 1303 * @return pdTRUE if the data was successfully sent to the queue, otherwise
dflet 0:1e7b5dd9edb4 1304 * errQUEUE_FULL.
dflet 0:1e7b5dd9edb4 1305 *
dflet 0:1e7b5dd9edb4 1306 * Example usage for buffered IO (where the ISR can obtain more than one value
dflet 0:1e7b5dd9edb4 1307 * per call):
dflet 0:1e7b5dd9edb4 1308 <pre>
dflet 0:1e7b5dd9edb4 1309 void vBufferISR( void )
dflet 0:1e7b5dd9edb4 1310 {
dflet 0:1e7b5dd9edb4 1311 char cIn;
dflet 0:1e7b5dd9edb4 1312 BaseType_t xHigherPriorityTaskWokenByPost;
dflet 0:1e7b5dd9edb4 1313
dflet 0:1e7b5dd9edb4 1314 // We have not woken a task at the start of the ISR.
dflet 0:1e7b5dd9edb4 1315 xHigherPriorityTaskWokenByPost = pdFALSE;
dflet 0:1e7b5dd9edb4 1316
dflet 0:1e7b5dd9edb4 1317 // Loop until the buffer is empty.
dflet 0:1e7b5dd9edb4 1318 do
dflet 0:1e7b5dd9edb4 1319 {
dflet 0:1e7b5dd9edb4 1320 // Obtain a byte from the buffer.
dflet 0:1e7b5dd9edb4 1321 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
dflet 0:1e7b5dd9edb4 1322
dflet 0:1e7b5dd9edb4 1323 // Post each byte.
dflet 0:1e7b5dd9edb4 1324 xQueueGenericSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWokenByPost, queueSEND_TO_BACK );
dflet 0:1e7b5dd9edb4 1325
dflet 0:1e7b5dd9edb4 1326 } while( portINPUT_BYTE( BUFFER_COUNT ) );
dflet 0:1e7b5dd9edb4 1327
dflet 0:1e7b5dd9edb4 1328 // Now the buffer is empty we can switch context if necessary. Note that the
dflet 0:1e7b5dd9edb4 1329 // name of the yield function required is port specific.
dflet 0:1e7b5dd9edb4 1330 if( xHigherPriorityTaskWokenByPost )
dflet 0:1e7b5dd9edb4 1331 {
dflet 0:1e7b5dd9edb4 1332 taskYIELD_YIELD_FROM_ISR();
dflet 0:1e7b5dd9edb4 1333 }
dflet 0:1e7b5dd9edb4 1334 }
dflet 0:1e7b5dd9edb4 1335 </pre>
dflet 0:1e7b5dd9edb4 1336 *
dflet 0:1e7b5dd9edb4 1337 * \defgroup xQueueSendFromISR xQueueSendFromISR
dflet 0:1e7b5dd9edb4 1338 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 1339 */
dflet 0:1e7b5dd9edb4 1340 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1341 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1342
dflet 0:1e7b5dd9edb4 1343 /**
dflet 0:1e7b5dd9edb4 1344 * queue. h
dflet 0:1e7b5dd9edb4 1345 * <pre>
dflet 0:1e7b5dd9edb4 1346 BaseType_t xQueueReceiveFromISR(
dflet 0:1e7b5dd9edb4 1347 QueueHandle_t xQueue,
dflet 0:1e7b5dd9edb4 1348 void *pvBuffer,
dflet 0:1e7b5dd9edb4 1349 BaseType_t *pxTaskWoken
dflet 0:1e7b5dd9edb4 1350 );
dflet 0:1e7b5dd9edb4 1351 * </pre>
dflet 0:1e7b5dd9edb4 1352 *
dflet 0:1e7b5dd9edb4 1353 * Receive an item from a queue. It is safe to use this function from within an
dflet 0:1e7b5dd9edb4 1354 * interrupt service routine.
dflet 0:1e7b5dd9edb4 1355 *
dflet 0:1e7b5dd9edb4 1356 * @param xQueue The handle to the queue from which the item is to be
dflet 0:1e7b5dd9edb4 1357 * received.
dflet 0:1e7b5dd9edb4 1358 *
dflet 0:1e7b5dd9edb4 1359 * @param pvBuffer Pointer to the buffer into which the received item will
dflet 0:1e7b5dd9edb4 1360 * be copied.
dflet 0:1e7b5dd9edb4 1361 *
dflet 0:1e7b5dd9edb4 1362 * @param pxTaskWoken A task may be blocked waiting for space to become
dflet 0:1e7b5dd9edb4 1363 * available on the queue. If xQueueReceiveFromISR causes such a task to
dflet 0:1e7b5dd9edb4 1364 * unblock *pxTaskWoken will get set to pdTRUE, otherwise *pxTaskWoken will
dflet 0:1e7b5dd9edb4 1365 * remain unchanged.
dflet 0:1e7b5dd9edb4 1366 *
dflet 0:1e7b5dd9edb4 1367 * @return pdTRUE if an item was successfully received from the queue,
dflet 0:1e7b5dd9edb4 1368 * otherwise pdFALSE.
dflet 0:1e7b5dd9edb4 1369 *
dflet 0:1e7b5dd9edb4 1370 * Example usage:
dflet 0:1e7b5dd9edb4 1371 <pre>
dflet 0:1e7b5dd9edb4 1372
dflet 0:1e7b5dd9edb4 1373 QueueHandle_t xQueue;
dflet 0:1e7b5dd9edb4 1374
dflet 0:1e7b5dd9edb4 1375 // Function to create a queue and post some values.
dflet 0:1e7b5dd9edb4 1376 void vAFunction( void *pvParameters )
dflet 0:1e7b5dd9edb4 1377 {
dflet 0:1e7b5dd9edb4 1378 char cValueToPost;
dflet 0:1e7b5dd9edb4 1379 const TickType_t xTicksToWait = ( TickType_t )0xff;
dflet 0:1e7b5dd9edb4 1380
dflet 0:1e7b5dd9edb4 1381 // Create a queue capable of containing 10 characters.
dflet 0:1e7b5dd9edb4 1382 xQueue = xQueueCreate( 10, sizeof( char ) );
dflet 0:1e7b5dd9edb4 1383 if( xQueue == 0 )
dflet 0:1e7b5dd9edb4 1384 {
dflet 0:1e7b5dd9edb4 1385 // Failed to create the queue.
dflet 0:1e7b5dd9edb4 1386 }
dflet 0:1e7b5dd9edb4 1387
dflet 0:1e7b5dd9edb4 1388 // ...
dflet 0:1e7b5dd9edb4 1389
dflet 0:1e7b5dd9edb4 1390 // Post some characters that will be used within an ISR. If the queue
dflet 0:1e7b5dd9edb4 1391 // is full then this task will block for xTicksToWait ticks.
dflet 0:1e7b5dd9edb4 1392 cValueToPost = 'a';
dflet 0:1e7b5dd9edb4 1393 xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
dflet 0:1e7b5dd9edb4 1394 cValueToPost = 'b';
dflet 0:1e7b5dd9edb4 1395 xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
dflet 0:1e7b5dd9edb4 1396
dflet 0:1e7b5dd9edb4 1397 // ... keep posting characters ... this task may block when the queue
dflet 0:1e7b5dd9edb4 1398 // becomes full.
dflet 0:1e7b5dd9edb4 1399
dflet 0:1e7b5dd9edb4 1400 cValueToPost = 'c';
dflet 0:1e7b5dd9edb4 1401 xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
dflet 0:1e7b5dd9edb4 1402 }
dflet 0:1e7b5dd9edb4 1403
dflet 0:1e7b5dd9edb4 1404 // ISR that outputs all the characters received on the queue.
dflet 0:1e7b5dd9edb4 1405 void vISR_Routine( void )
dflet 0:1e7b5dd9edb4 1406 {
dflet 0:1e7b5dd9edb4 1407 BaseType_t xTaskWokenByReceive = pdFALSE;
dflet 0:1e7b5dd9edb4 1408 char cRxedChar;
dflet 0:1e7b5dd9edb4 1409
dflet 0:1e7b5dd9edb4 1410 while( xQueueReceiveFromISR( xQueue, ( void * ) &cRxedChar, &xTaskWokenByReceive) )
dflet 0:1e7b5dd9edb4 1411 {
dflet 0:1e7b5dd9edb4 1412 // A character was received. Output the character now.
dflet 0:1e7b5dd9edb4 1413 vOutputCharacter( cRxedChar );
dflet 0:1e7b5dd9edb4 1414
dflet 0:1e7b5dd9edb4 1415 // If removing the character from the queue woke the task that was
dflet 0:1e7b5dd9edb4 1416 // posting onto the queue cTaskWokenByReceive will have been set to
dflet 0:1e7b5dd9edb4 1417 // pdTRUE. No matter how many times this loop iterates only one
dflet 0:1e7b5dd9edb4 1418 // task will be woken.
dflet 0:1e7b5dd9edb4 1419 }
dflet 0:1e7b5dd9edb4 1420
dflet 0:1e7b5dd9edb4 1421 if( cTaskWokenByPost != ( char ) pdFALSE;
dflet 0:1e7b5dd9edb4 1422 {
dflet 0:1e7b5dd9edb4 1423 taskYIELD ();
dflet 0:1e7b5dd9edb4 1424 }
dflet 0:1e7b5dd9edb4 1425 }
dflet 0:1e7b5dd9edb4 1426 </pre>
dflet 0:1e7b5dd9edb4 1427 * \defgroup xQueueReceiveFromISR xQueueReceiveFromISR
dflet 0:1e7b5dd9edb4 1428 * \ingroup QueueManagement
dflet 0:1e7b5dd9edb4 1429 */
dflet 0:1e7b5dd9edb4 1430 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1431
dflet 0:1e7b5dd9edb4 1432 /*
dflet 0:1e7b5dd9edb4 1433 * Utilities to query queues that are safe to use from an ISR. These utilities
dflet 0:1e7b5dd9edb4 1434 * should be used only from witin an ISR, or within a critical section.
dflet 0:1e7b5dd9edb4 1435 */
dflet 0:1e7b5dd9edb4 1436 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1437 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1438 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1439
dflet 0:1e7b5dd9edb4 1440
dflet 0:1e7b5dd9edb4 1441 /*
dflet 0:1e7b5dd9edb4 1442 * xQueueAltGenericSend() is an alternative version of xQueueGenericSend().
dflet 0:1e7b5dd9edb4 1443 * Likewise xQueueAltGenericReceive() is an alternative version of
dflet 0:1e7b5dd9edb4 1444 * xQueueGenericReceive().
dflet 0:1e7b5dd9edb4 1445 *
dflet 0:1e7b5dd9edb4 1446 * The source code that implements the alternative (Alt) API is much
dflet 0:1e7b5dd9edb4 1447 * simpler because it executes everything from within a critical section.
dflet 0:1e7b5dd9edb4 1448 * This is the approach taken by many other RTOSes, but FreeRTOS.org has the
dflet 0:1e7b5dd9edb4 1449 * preferred fully featured API too. The fully featured API has more
dflet 0:1e7b5dd9edb4 1450 * complex code that takes longer to execute, but makes much less use of
dflet 0:1e7b5dd9edb4 1451 * critical sections. Therefore the alternative API sacrifices interrupt
dflet 0:1e7b5dd9edb4 1452 * responsiveness to gain execution speed, whereas the fully featured API
dflet 0:1e7b5dd9edb4 1453 * sacrifices execution speed to ensure better interrupt responsiveness.
dflet 0:1e7b5dd9edb4 1454 */
dflet 0:1e7b5dd9edb4 1455 BaseType_t xQueueAltGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, BaseType_t xCopyPosition );
dflet 0:1e7b5dd9edb4 1456 BaseType_t xQueueAltGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, BaseType_t xJustPeeking );
dflet 0:1e7b5dd9edb4 1457 #define xQueueAltSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
dflet 0:1e7b5dd9edb4 1458 #define xQueueAltSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
dflet 0:1e7b5dd9edb4 1459 #define xQueueAltReceive( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
dflet 0:1e7b5dd9edb4 1460 #define xQueueAltPeek( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
dflet 0:1e7b5dd9edb4 1461
dflet 0:1e7b5dd9edb4 1462 /*
dflet 0:1e7b5dd9edb4 1463 * The functions defined above are for passing data to and from tasks. The
dflet 0:1e7b5dd9edb4 1464 * functions below are the equivalents for passing data to and from
dflet 0:1e7b5dd9edb4 1465 * co-routines.
dflet 0:1e7b5dd9edb4 1466 *
dflet 0:1e7b5dd9edb4 1467 * These functions are called from the co-routine macro implementation and
dflet 0:1e7b5dd9edb4 1468 * should not be called directly from application code. Instead use the macro
dflet 0:1e7b5dd9edb4 1469 * wrappers defined within croutine.h.
dflet 0:1e7b5dd9edb4 1470 */
dflet 0:1e7b5dd9edb4 1471 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken );
dflet 0:1e7b5dd9edb4 1472 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxTaskWoken );
dflet 0:1e7b5dd9edb4 1473 BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait );
dflet 0:1e7b5dd9edb4 1474 BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait );
dflet 0:1e7b5dd9edb4 1475
dflet 0:1e7b5dd9edb4 1476 /*
dflet 0:1e7b5dd9edb4 1477 * For internal use only. Use xSemaphoreCreateMutex(),
dflet 0:1e7b5dd9edb4 1478 * xSemaphoreCreateCounting() or xSemaphoreGetMutexHolder() instead of calling
dflet 0:1e7b5dd9edb4 1479 * these functions directly.
dflet 0:1e7b5dd9edb4 1480 */
dflet 0:1e7b5dd9edb4 1481 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1482 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1483 void* xQueueGetMutexHolder( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1484
dflet 0:1e7b5dd9edb4 1485 /*
dflet 0:1e7b5dd9edb4 1486 * For internal use only. Use xSemaphoreTakeMutexRecursive() or
dflet 0:1e7b5dd9edb4 1487 * xSemaphoreGiveMutexRecursive() instead of calling these functions directly.
dflet 0:1e7b5dd9edb4 1488 */
dflet 0:1e7b5dd9edb4 1489 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1490 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t pxMutex ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1491
dflet 0:1e7b5dd9edb4 1492 /*
dflet 0:1e7b5dd9edb4 1493 * Reset a queue back to its original empty state. The return value is now
dflet 0:1e7b5dd9edb4 1494 * obsolete and is always set to pdPASS.
dflet 0:1e7b5dd9edb4 1495 */
dflet 0:1e7b5dd9edb4 1496 #define xQueueReset( xQueue ) xQueueGenericReset( xQueue, pdFALSE )
dflet 0:1e7b5dd9edb4 1497
dflet 0:1e7b5dd9edb4 1498 /*
dflet 0:1e7b5dd9edb4 1499 * The registry is provided as a means for kernel aware debuggers to
dflet 0:1e7b5dd9edb4 1500 * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
dflet 0:1e7b5dd9edb4 1501 * a queue, semaphore or mutex handle to the registry if you want the handle
dflet 0:1e7b5dd9edb4 1502 * to be available to a kernel aware debugger. If you are not using a kernel
dflet 0:1e7b5dd9edb4 1503 * aware debugger then this function can be ignored.
dflet 0:1e7b5dd9edb4 1504 *
dflet 0:1e7b5dd9edb4 1505 * configQUEUE_REGISTRY_SIZE defines the maximum number of handles the
dflet 0:1e7b5dd9edb4 1506 * registry can hold. configQUEUE_REGISTRY_SIZE must be greater than 0
dflet 0:1e7b5dd9edb4 1507 * within FreeRTOSConfig.h for the registry to be available. Its value
dflet 0:1e7b5dd9edb4 1508 * does not effect the number of queues, semaphores and mutexes that can be
dflet 0:1e7b5dd9edb4 1509 * created - just the number that the registry can hold.
dflet 0:1e7b5dd9edb4 1510 *
dflet 0:1e7b5dd9edb4 1511 * @param xQueue The handle of the queue being added to the registry. This
dflet 0:1e7b5dd9edb4 1512 * is the handle returned by a call to xQueueCreate(). Semaphore and mutex
dflet 0:1e7b5dd9edb4 1513 * handles can also be passed in here.
dflet 0:1e7b5dd9edb4 1514 *
dflet 0:1e7b5dd9edb4 1515 * @param pcName The name to be associated with the handle. This is the
dflet 0:1e7b5dd9edb4 1516 * name that the kernel aware debugger will display. The queue registry only
dflet 0:1e7b5dd9edb4 1517 * stores a pointer to the string - so the string must be persistent (global or
dflet 0:1e7b5dd9edb4 1518 * preferably in ROM/Flash), not on the stack.
dflet 0:1e7b5dd9edb4 1519 */
dflet 0:1e7b5dd9edb4 1520 #if configQUEUE_REGISTRY_SIZE > 0
dflet 0:1e7b5dd9edb4 1521 void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcName ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
dflet 0:1e7b5dd9edb4 1522 #endif
dflet 0:1e7b5dd9edb4 1523
dflet 0:1e7b5dd9edb4 1524 /*
dflet 0:1e7b5dd9edb4 1525 * The registry is provided as a means for kernel aware debuggers to
dflet 0:1e7b5dd9edb4 1526 * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
dflet 0:1e7b5dd9edb4 1527 * a queue, semaphore or mutex handle to the registry if you want the handle
dflet 0:1e7b5dd9edb4 1528 * to be available to a kernel aware debugger, and vQueueUnregisterQueue() to
dflet 0:1e7b5dd9edb4 1529 * remove the queue, semaphore or mutex from the register. If you are not using
dflet 0:1e7b5dd9edb4 1530 * a kernel aware debugger then this function can be ignored.
dflet 0:1e7b5dd9edb4 1531 *
dflet 0:1e7b5dd9edb4 1532 * @param xQueue The handle of the queue being removed from the registry.
dflet 0:1e7b5dd9edb4 1533 */
dflet 0:1e7b5dd9edb4 1534 #if configQUEUE_REGISTRY_SIZE > 0
dflet 0:1e7b5dd9edb4 1535 void vQueueUnregisterQueue( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1536 #endif
dflet 0:1e7b5dd9edb4 1537
dflet 0:1e7b5dd9edb4 1538 /*
dflet 0:1e7b5dd9edb4 1539 * Generic version of the queue creation function, which is in turn called by
dflet 0:1e7b5dd9edb4 1540 * any queue, semaphore or mutex creation function or macro.
dflet 0:1e7b5dd9edb4 1541 */
dflet 0:1e7b5dd9edb4 1542 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1543
dflet 0:1e7b5dd9edb4 1544 /*
dflet 0:1e7b5dd9edb4 1545 * Queue sets provide a mechanism to allow a task to block (pend) on a read
dflet 0:1e7b5dd9edb4 1546 * operation from multiple queues or semaphores simultaneously.
dflet 0:1e7b5dd9edb4 1547 *
dflet 0:1e7b5dd9edb4 1548 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
dflet 0:1e7b5dd9edb4 1549 * function.
dflet 0:1e7b5dd9edb4 1550 *
dflet 0:1e7b5dd9edb4 1551 * A queue set must be explicitly created using a call to xQueueCreateSet()
dflet 0:1e7b5dd9edb4 1552 * before it can be used. Once created, standard FreeRTOS queues and semaphores
dflet 0:1e7b5dd9edb4 1553 * can be added to the set using calls to xQueueAddToSet().
dflet 0:1e7b5dd9edb4 1554 * xQueueSelectFromSet() is then used to determine which, if any, of the queues
dflet 0:1e7b5dd9edb4 1555 * or semaphores contained in the set is in a state where a queue read or
dflet 0:1e7b5dd9edb4 1556 * semaphore take operation would be successful.
dflet 0:1e7b5dd9edb4 1557 *
dflet 0:1e7b5dd9edb4 1558 * Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
dflet 0:1e7b5dd9edb4 1559 * for reasons why queue sets are very rarely needed in practice as there are
dflet 0:1e7b5dd9edb4 1560 * simpler methods of blocking on multiple objects.
dflet 0:1e7b5dd9edb4 1561 *
dflet 0:1e7b5dd9edb4 1562 * Note 2: Blocking on a queue set that contains a mutex will not cause the
dflet 0:1e7b5dd9edb4 1563 * mutex holder to inherit the priority of the blocked task.
dflet 0:1e7b5dd9edb4 1564 *
dflet 0:1e7b5dd9edb4 1565 * Note 3: An additional 4 bytes of RAM is required for each space in a every
dflet 0:1e7b5dd9edb4 1566 * queue added to a queue set. Therefore counting semaphores that have a high
dflet 0:1e7b5dd9edb4 1567 * maximum count value should not be added to a queue set.
dflet 0:1e7b5dd9edb4 1568 *
dflet 0:1e7b5dd9edb4 1569 * Note 4: A receive (in the case of a queue) or take (in the case of a
dflet 0:1e7b5dd9edb4 1570 * semaphore) operation must not be performed on a member of a queue set unless
dflet 0:1e7b5dd9edb4 1571 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
dflet 0:1e7b5dd9edb4 1572 *
dflet 0:1e7b5dd9edb4 1573 * @param uxEventQueueLength Queue sets store events that occur on
dflet 0:1e7b5dd9edb4 1574 * the queues and semaphores contained in the set. uxEventQueueLength specifies
dflet 0:1e7b5dd9edb4 1575 * the maximum number of events that can be queued at once. To be absolutely
dflet 0:1e7b5dd9edb4 1576 * certain that events are not lost uxEventQueueLength should be set to the
dflet 0:1e7b5dd9edb4 1577 * total sum of the length of the queues added to the set, where binary
dflet 0:1e7b5dd9edb4 1578 * semaphores and mutexes have a length of 1, and counting semaphores have a
dflet 0:1e7b5dd9edb4 1579 * length set by their maximum count value. Examples:
dflet 0:1e7b5dd9edb4 1580 * + If a queue set is to hold a queue of length 5, another queue of length 12,
dflet 0:1e7b5dd9edb4 1581 * and a binary semaphore, then uxEventQueueLength should be set to
dflet 0:1e7b5dd9edb4 1582 * (5 + 12 + 1), or 18.
dflet 0:1e7b5dd9edb4 1583 * + If a queue set is to hold three binary semaphores then uxEventQueueLength
dflet 0:1e7b5dd9edb4 1584 * should be set to (1 + 1 + 1 ), or 3.
dflet 0:1e7b5dd9edb4 1585 * + If a queue set is to hold a counting semaphore that has a maximum count of
dflet 0:1e7b5dd9edb4 1586 * 5, and a counting semaphore that has a maximum count of 3, then
dflet 0:1e7b5dd9edb4 1587 * uxEventQueueLength should be set to (5 + 3), or 8.
dflet 0:1e7b5dd9edb4 1588 *
dflet 0:1e7b5dd9edb4 1589 * @return If the queue set is created successfully then a handle to the created
dflet 0:1e7b5dd9edb4 1590 * queue set is returned. Otherwise NULL is returned.
dflet 0:1e7b5dd9edb4 1591 */
dflet 0:1e7b5dd9edb4 1592 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1593
dflet 0:1e7b5dd9edb4 1594 /*
dflet 0:1e7b5dd9edb4 1595 * Adds a queue or semaphore to a queue set that was previously created by a
dflet 0:1e7b5dd9edb4 1596 * call to xQueueCreateSet().
dflet 0:1e7b5dd9edb4 1597 *
dflet 0:1e7b5dd9edb4 1598 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
dflet 0:1e7b5dd9edb4 1599 * function.
dflet 0:1e7b5dd9edb4 1600 *
dflet 0:1e7b5dd9edb4 1601 * Note 1: A receive (in the case of a queue) or take (in the case of a
dflet 0:1e7b5dd9edb4 1602 * semaphore) operation must not be performed on a member of a queue set unless
dflet 0:1e7b5dd9edb4 1603 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
dflet 0:1e7b5dd9edb4 1604 *
dflet 0:1e7b5dd9edb4 1605 * @param xQueueOrSemaphore The handle of the queue or semaphore being added to
dflet 0:1e7b5dd9edb4 1606 * the queue set (cast to an QueueSetMemberHandle_t type).
dflet 0:1e7b5dd9edb4 1607 *
dflet 0:1e7b5dd9edb4 1608 * @param xQueueSet The handle of the queue set to which the queue or semaphore
dflet 0:1e7b5dd9edb4 1609 * is being added.
dflet 0:1e7b5dd9edb4 1610 *
dflet 0:1e7b5dd9edb4 1611 * @return If the queue or semaphore was successfully added to the queue set
dflet 0:1e7b5dd9edb4 1612 * then pdPASS is returned. If the queue could not be successfully added to the
dflet 0:1e7b5dd9edb4 1613 * queue set because it is already a member of a different queue set then pdFAIL
dflet 0:1e7b5dd9edb4 1614 * is returned.
dflet 0:1e7b5dd9edb4 1615 */
dflet 0:1e7b5dd9edb4 1616 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1617
dflet 0:1e7b5dd9edb4 1618 /*
dflet 0:1e7b5dd9edb4 1619 * Removes a queue or semaphore from a queue set. A queue or semaphore can only
dflet 0:1e7b5dd9edb4 1620 * be removed from a set if the queue or semaphore is empty.
dflet 0:1e7b5dd9edb4 1621 *
dflet 0:1e7b5dd9edb4 1622 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
dflet 0:1e7b5dd9edb4 1623 * function.
dflet 0:1e7b5dd9edb4 1624 *
dflet 0:1e7b5dd9edb4 1625 * @param xQueueOrSemaphore The handle of the queue or semaphore being removed
dflet 0:1e7b5dd9edb4 1626 * from the queue set (cast to an QueueSetMemberHandle_t type).
dflet 0:1e7b5dd9edb4 1627 *
dflet 0:1e7b5dd9edb4 1628 * @param xQueueSet The handle of the queue set in which the queue or semaphore
dflet 0:1e7b5dd9edb4 1629 * is included.
dflet 0:1e7b5dd9edb4 1630 *
dflet 0:1e7b5dd9edb4 1631 * @return If the queue or semaphore was successfully removed from the queue set
dflet 0:1e7b5dd9edb4 1632 * then pdPASS is returned. If the queue was not in the queue set, or the
dflet 0:1e7b5dd9edb4 1633 * queue (or semaphore) was not empty, then pdFAIL is returned.
dflet 0:1e7b5dd9edb4 1634 */
dflet 0:1e7b5dd9edb4 1635 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1636
dflet 0:1e7b5dd9edb4 1637 /*
dflet 0:1e7b5dd9edb4 1638 * xQueueSelectFromSet() selects from the members of a queue set a queue or
dflet 0:1e7b5dd9edb4 1639 * semaphore that either contains data (in the case of a queue) or is available
dflet 0:1e7b5dd9edb4 1640 * to take (in the case of a semaphore). xQueueSelectFromSet() effectively
dflet 0:1e7b5dd9edb4 1641 * allows a task to block (pend) on a read operation on all the queues and
dflet 0:1e7b5dd9edb4 1642 * semaphores in a queue set simultaneously.
dflet 0:1e7b5dd9edb4 1643 *
dflet 0:1e7b5dd9edb4 1644 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
dflet 0:1e7b5dd9edb4 1645 * function.
dflet 0:1e7b5dd9edb4 1646 *
dflet 0:1e7b5dd9edb4 1647 * Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
dflet 0:1e7b5dd9edb4 1648 * for reasons why queue sets are very rarely needed in practice as there are
dflet 0:1e7b5dd9edb4 1649 * simpler methods of blocking on multiple objects.
dflet 0:1e7b5dd9edb4 1650 *
dflet 0:1e7b5dd9edb4 1651 * Note 2: Blocking on a queue set that contains a mutex will not cause the
dflet 0:1e7b5dd9edb4 1652 * mutex holder to inherit the priority of the blocked task.
dflet 0:1e7b5dd9edb4 1653 *
dflet 0:1e7b5dd9edb4 1654 * Note 3: A receive (in the case of a queue) or take (in the case of a
dflet 0:1e7b5dd9edb4 1655 * semaphore) operation must not be performed on a member of a queue set unless
dflet 0:1e7b5dd9edb4 1656 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
dflet 0:1e7b5dd9edb4 1657 *
dflet 0:1e7b5dd9edb4 1658 * @param xQueueSet The queue set on which the task will (potentially) block.
dflet 0:1e7b5dd9edb4 1659 *
dflet 0:1e7b5dd9edb4 1660 * @param xTicksToWait The maximum time, in ticks, that the calling task will
dflet 0:1e7b5dd9edb4 1661 * remain in the Blocked state (with other tasks executing) to wait for a member
dflet 0:1e7b5dd9edb4 1662 * of the queue set to be ready for a successful queue read or semaphore take
dflet 0:1e7b5dd9edb4 1663 * operation.
dflet 0:1e7b5dd9edb4 1664 *
dflet 0:1e7b5dd9edb4 1665 * @return xQueueSelectFromSet() will return the handle of a queue (cast to
dflet 0:1e7b5dd9edb4 1666 * a QueueSetMemberHandle_t type) contained in the queue set that contains data,
dflet 0:1e7b5dd9edb4 1667 * or the handle of a semaphore (cast to a QueueSetMemberHandle_t type) contained
dflet 0:1e7b5dd9edb4 1668 * in the queue set that is available, or NULL if no such queue or semaphore
dflet 0:1e7b5dd9edb4 1669 * exists before before the specified block time expires.
dflet 0:1e7b5dd9edb4 1670 */
dflet 0:1e7b5dd9edb4 1671 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1672
dflet 0:1e7b5dd9edb4 1673 /*
dflet 0:1e7b5dd9edb4 1674 * A version of xQueueSelectFromSet() that can be used from an ISR.
dflet 0:1e7b5dd9edb4 1675 */
dflet 0:1e7b5dd9edb4 1676 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1677
dflet 0:1e7b5dd9edb4 1678 /* Not public API functions. */
dflet 0:1e7b5dd9edb4 1679 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1680 BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1681 void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1682 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1683 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
dflet 0:1e7b5dd9edb4 1684
dflet 0:1e7b5dd9edb4 1685
dflet 0:1e7b5dd9edb4 1686 #ifdef __cplusplus
dflet 0:1e7b5dd9edb4 1687 }
dflet 0:1e7b5dd9edb4 1688 #endif
dflet 0:1e7b5dd9edb4 1689
dflet 0:1e7b5dd9edb4 1690 #endif /* QUEUE_H */
dflet 0:1e7b5dd9edb4 1691
dflet 0:1e7b5dd9edb4 1692