Run a K30 CO2 sensor on a Nordic nRF52DK Board
Fork of mbed-os-example-ble-BatteryLevel by
source/main.cpp
- Committer:
- davidgsIoT
- Date:
- 2018-05-01
- Revision:
- 62:e947447e0d8c
- Parent:
- 61:a5d14d0a94a1
File content as of revision 62:e947447e0d8c:
/* mbed Microcontroller Library * Copyright (c) 2018 David G. Simmons * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <events/mbed_events.h> #include <mbed.h> #include "ble/BLE.h" #include "ble/Gap.h" #include "k30.h" #include "nrf_nvic.h" DigitalOut led1(LED1); DigitalOut led2(LED2); DigitalOut led3(LED3); DigitalOut led4(LED4); //I2C i2c(p24 , p25); // Standard I2C pins on the nRF52. But you can use any pins you want really. I2C i2c(p26, p27); /** If you want to debug, or see output, uncomment this **/ //Serial pc(USBTX, USBRX); // tx, rx /* 7-bit address of the K30 CO2 Sensor */ const int addr = 0xD0; /* keep track of the number of sensor failures */ static int failures = 0; /** Device name, and the Serice UUID **/ const static char DEVICE_NAME[] = "CO2Sensor"; static const uint16_t uuid16_list[] = {K30Service::K30_SERVICE_UUID}; /** random initial level and a Service pointer **/ static float co2Level = 50.0; static K30Service* k30ServicePtr; /** Event Queue **/ static EventQueue eventQueue(/* event count */ 16 * EVENTS_EVENT_SIZE); /** light pattern in a circle **/ void lightsFwd(){ led1 = !led1; wait(.15); led2 = !led2; wait(.15); led4 = !led4; wait(.15); led3 = !led3; wait(.15); } /** reverser light pattern **/ void lightsRev(){ led1 = !led1; wait(.15); led3 = !led3; wait(.15); led4 = !led4; wait(.15); led2 = !led2; wait(.15); } /** here we read the sensor **/ void readSensor(){ // register values char cmd[4] = {0x22, 0x00, 0x08, 0x2A}; int ack = i2c.write(addr, cmd, 4); wait(0.5); char readBuff[4]; i2c.read(addr, readBuff, 4, false); int high = readBuff[1]; //high byte for value is 4th byte in packet in the packet int low = readBuff[2]; //low byte for value is 5th byte in the packet float CO2 = high*256 + low; //Combine high byte and low byte with this formula to get value char sum = readBuff[0] + readBuff[1] + readBuff[2]; //Byte addition utilizes overflow if (sum == readBuff[3] & ack == 0){ //pc.printf("CO2 value = %f\n", CO2); k30ServicePtr->updateK30Value(CO2); if(failures > 0){ failures--; } } else { //pc.printf("** Sensor Failure **\n"); failures++; CO2 = -1; k30ServicePtr->updateK30Value(CO2); if(failures > 5){ // Keep track of the number of failures. If more than 5, reboot the board. i2c.stop(); for(int x = 0; x < 10; x++){ lightsRev(); } NVIC_SystemReset(); } } } void disconnectionCallback(const Gap::DisconnectionCallbackParams_t *params) { //pc.printf("Disconnected!\n"); BLE::Instance().gap().startAdvertising(); } void updateSensorValue() { lightsFwd(); readSensor(); wait(1.5); lightsFwd(); wait(1.5 // k30ServicePtr->updateK30Value(co2Level); } void connectionCallback(const Gap::ConnectionCallbackParams_t *params) { // pc.printf("Connected!\n"); BLE::Instance().gap().stopAdvertising(); eventQueue.call(updateSensorValue); } void blinkCallback(void) { BLE &ble = BLE::Instance(); if (ble.gap().getState().connected) { eventQueue.call(updateSensorValue); } else { lightsFwd(); } } /** * This function is called when the ble initialization process has failled */ void onBleInitError(BLE &ble, ble_error_t error) { /* Initialization error handling should go here */ } void printMacAddress() { /* Print out device MAC address to the console*/ Gap::AddressType_t addr_type; Gap::Address_t address; BLE::Instance().gap().getAddress(&addr_type, address); //pc.printf("DEVICE MAC ADDRESS: "); for (int i = 5; i >= 1; i--){ // printf("%02x:", address[i]); } //pc.printf("%02x\r\n", address[0]); } /** * Callback triggered when the ble initialization process has finished */ void bleInitComplete(BLE::InitializationCompleteCallbackContext *params) { BLE& ble = params->ble; ble_error_t error = params->error; if (error != BLE_ERROR_NONE) { /* In case of error, forward the error handling to onBleInitError */ onBleInitError(ble, error); return; } /* Ensure that it is the default instance of BLE */ if(ble.getInstanceID() != BLE::DEFAULT_INSTANCE) { return; } ble.gap().onDisconnection(disconnectionCallback); ble.gap().onConnection(connectionCallback); /* Setup primary service */ k30ServicePtr = new K30Service(ble, co2Level); /* Setup advertising */ ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE); ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS, (uint8_t *) uuid16_list, sizeof(uuid16_list)); ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, (uint8_t *) DEVICE_NAME, sizeof(DEVICE_NAME)); ble.gap().setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED); ble.gap().setAdvertisingInterval(1000); /* 1000ms */ ble.gap().startAdvertising(); //printMacAddress(); } void scheduleBleEventsProcessing(BLE::OnEventsToProcessCallbackContext* context) { BLE &ble = BLE::Instance(); eventQueue.call(Callback<void()>(&ble, &BLE::processEvents)); } int main() { eventQueue.call_every(1000, blinkCallback); BLE &ble = BLE::Instance(); ble.onEventsToProcess(scheduleBleEventsProcessing); ble.init(bleInitComplete); eventQueue.dispatch_forever(); return 0; }