ES2017 coursework 2

Dependencies:   PID

Fork of ES_CW2_Starter by Edward Stott

main.cpp

Committer:
david_s95
Date:
2017-03-09
Revision:
9:575b29cbf5e4
Parent:
8:77627657da80
Child:
10:0309d6c49f26

File content as of revision 9:575b29cbf5e4:

#include "mbed.h"
#include "rtos.h"
#include <string>

//Photointerrupter input pins
#define I1pin D2
#define I2pin D11
#define I3pin D12

//Incremental encoder input pins
#define CHA   D7
#define CHB   D8

//Motor Drive output pins   //Mask in output byte
#define L1Lpin D4           //0x01
#define L1Hpin D5           //0x02
#define L2Lpin D3           //0x04
#define L2Hpin D6           //0x08
#define L3Lpin D9           //0x10
#define L3Hpin D10          //0x20

//Define sized for command arrays
#define ARRAYSIZE 8

//Mapping from sequential drive states to motor phase outputs
/*
State   L1  L2  L3
0       H   -   L
1       -   H   L
2       L   H   -
3       L   -   H
4       -   L   H
5       H   L   -
6       -   -   -
7       -   -   -
*/
//Drive state to output table
//const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};
const int8_t driveTable[6] = {0x38, 0x2C, 0x0E, 0x0B, 0x23, 0x32};

//const int8_t cwState[7] = {0, 4, 0, 5, 2, 3, 1};
//const int8_t AcwState[7] = {0, 2, 4, 3, 0, 1, 5};
//const int8_t cwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C};
//const int8_t AcwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32};
const int8_t AcwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C};
const int8_t cwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32};

//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
//const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed

//Phase lead to make motor spin
//int8_t lead = -2;  //2 for forwards, -2 for backwards

//Status LED
DigitalOut led1(LED1);

//Photointerrupter inputs
DigitalIn I1(I1pin);
//InterruptIn I1(I1pin);
InterruptIn I2(I2pin);
DigitalIn I3(I3pin);

InterruptIn qA(CHA);
InterruptIn qB(CHB);

//Motor Drive outputs
//DigitalOut L1L(L1Lpin);
//DigitalOut L1H(L1Hpin);
//DigitalOut L2L(L2Lpin);
//DigitalOut L2H(L2Hpin);
//DigitalOut L3L(L3Lpin);
//DigitalOut L3H(L3Hpin);
DigitalOut clk(LED1);
DigitalOut Direction(LED2);
DigitalOut testpin(D13);

//NOTE, BusOut declares things in reverse (ie, 0, 1, 2, 3) compared to binary represenation
BusOut motor(L1Lpin, L1Hpin, L2Lpin, L2Hpin, L3Lpin, L3Hpin);

//Timeout function for rotating at set speed
Timeout spinTimer;
float spinWait = 10;
float revsec = 0;

//Timer used for calculating speed
Timer speedTimer;
float revs = 0, revtimer = 0;
Ticker printSpeed;

Serial pc(SERIAL_TX, SERIAL_RX);

int8_t orState = 0;    //Rotor offset at motor state 0
int8_t intState = 0;
int8_t intStateOld = 0;
int position = 0;

int i=0;
int pos=0;
bool spinCW=0;

//Set a given drive state
void motorOut(int8_t driveState)
{

    //Set to zero
    motor=0x2A;
    
    //Go to next state
    if(!spinCW) motor = AcwState[driveState];
    else motor = cwState[driveState];
    //Lookup the output byte from the drive state.
//    int8_t driveOut = driveTable[driveState & 0x07];

    //Turn off first
//    if (~driveOut & 0x01) L1L = 0;
//    if (~driveOut & 0x02) L1H = 1;
//    if (~driveOut & 0x04) L2L = 0;
//    if (~driveOut & 0x08) L2H = 1;
//    if (~driveOut & 0x10) L3L = 0;
//    if (~driveOut & 0x20) L3H = 1;

    //Then turn on
//    if (driveOut & 0x01) L1L = 1;
//    if (driveOut & 0x02) L1H = 0;
//    if (driveOut & 0x04) L2L = 1;
//    if (driveOut & 0x08) L2H = 0;
//    if (driveOut & 0x10) L3L = 1;
//    if (driveOut & 0x20) L3H = 0;
}

//Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState()
{
    return (I1 + 2*I2 + 4*I3);
}

//Basic synchronisation routine
int8_t motorHome()
{
    //Put the motor in drive state 0 and wait for it to stabilise
    motor=cwState[1];
    wait(1.0);
    
    position = 0;

    //Get the rotor state
    return readRotorState();
}

void fixedSpeed()
{
    //Read current motor state
    clk=!clk;
    intState = readRotorState();
    //Increment state machine to next state
    motorOut(intState);
    //If spinning is required, attach the necessary wait to the
    //timeout interrupt to call this function again and
    //keep the motor spinning at the right speed
    if(revsec) spinTimer.attach(&fixedSpeed, spinWait);
}

/*void rps()
{
    testpin=!testpin;
//    clk=!clk;
//    speedTimer.stop();
//    revtimer = speedTimer.read_ms();
//    revs = 1000/(revtimer);
//    pos=0;
//    testpin=!testpin;
//    clk=!clk;
//    speedTimer.reset();
//    speedTimer.start();
}

void speedo()
{
    pc.printf("Revs / sec: %2.4f\r\n", revs);
    printSpeed.attach(&speedo, 1.0);
}

void edgeRiseA()
{
    pos++;
    if(pos>=468) {
//        Direction=!Direction;
        pos=pos%468;
//        testpin=!testpin;
    }
    if(qB) DIR = 0;
    else DIR = 1;
//    clk=DIR;
//CLOCKWISE:        A rises before B -> On A edge, B low -> DIR = 1
//ANTICLOCKWISE:    B rises before A -> On A edge, B high-> DIR = 0
}

void edgeIncr()
{
    pos++;
    if(pos>=468) {
//        Direction=!Direction;
        pos=pos%468;
//        testpin=!testpin;
    }
}*/

//#define WAIT 2
//Main function
int main()
{
    pc.printf("spin\n\r");
    
//    motor = 0x0E;
/*    while(1){
        motor=0x38;
        printf("0x38\r\n");
        wait(WAIT);
        position = I1 + 2*I2 + 4*I3;
        printf("position: %d\r\n", position);
        motor=0x2C;
        printf("0x2C\r\n");
        wait(WAIT);
        position = I1 + 2*I2 + 4*I3;
        printf("position: %d\r\n", position);
        motor=0x0E;
        printf("0x0E\r\n");
        wait(WAIT);
        position = I1 + 2*I2 + 4*I3;
        printf("position: %d\r\n", position);
        motor=0x0B;
        printf("0x0B\r\n");
        wait(WAIT);
        position = I1 + 2*I2 + 4*I3;
        printf("position: %d\r\n", position);
        motor=0x23;
        printf("0x23\r\n");
        wait(WAIT);
        position = I1 + 2*I2 + 4*I3;
        printf("position: %d\r\n", position);
        motor=0x32;
        printf("0x32\r\n");
        wait(WAIT);
        position = I1 + 2*I2 + 4*I3;
        printf("position: %d\r\n", position);
    }*/

    //Run the motor synchronisation
    orState = motorHome();
    //orState is subtracted from future rotor state inputs to align rotor and motor states

    pc.printf("Rotor origin: %x\n\r",orState);

    char command[ARRAYSIZE];
    int index=0;
    int units = 0, tens = 0, decimals = 0;
    char ch;
    testpin=0;

//    speedTimer.reset();
//    speedTimer.start();
//    I2.rise(&rps);
//
//    qA.rise(&edgeRiseA);
//    qB.rise(&edgeIncr);
//    qA.fall(&edgeIncr);
//    qB.fall(&edgeIncr);

    while(1) {
//        clk = I2;
        //Toggle LED so we know something's happening
//        clk = !clk;

        //If there's a character to read from the serial port
        if (pc.readable()) {

            //Clear index counter and control variables
            index = 0;
//            revsec = spinWait = 0;

            //Read each value from the serial port until Enter key is pressed
            do {
                //Read character
                ch = pc.getc();
                //Print character to serial for visual feedback
                pc.putc(ch);
                //Add character to input array
                command[index++]=ch;  // put it into the value array and increment the index
                //d10 and d13 used for detecting Enter key on Windows/Unix/Mac
            } while(ch != 10 && ch != 13);

            //Start new line on terminal for printing data
            pc.putc('\n');
            pc.putc('\r');

            //Analyse the input string
            switch (command[0]) {
                    //If a V was typed...
                case 'V':
                    units = 0, tens = 0, decimals = 0;
                    //For each character received, subtract ASCII 0 from ASCII
                    //representation to obtain the integer value of the number
                    if(command[1]=='-') {
                        spinCW = 0;
                        //If decimal point is in the second character (eg, V-.1)
                        if(command[2]=='.') {
                            //Extract decimal rev/s
                            decimals = command[3] - '0';

                            //If decimal point is in the third character (eg, V-0.1)
                        } else if(command[3]=='.') {
                            units = command[2] - '0';
                            decimals = command[4] - '0';

                            //If decimal point is in the fourth character (eg, V-10.1)
                        } else if(command[4]=='.') {
                            tens = command[2] - '0';
                            units = command[3] - '0';
                            decimals = command[5] - '0';
                        }
                    } else {
                        spinCW = 1;
                        //If decimal point is in the second character (eg, V.1)
                        if(command[1]=='.') {
                            //Extract decimal rev/s
                            decimals = command[2] - '0';

                            //If decimal point is in the third character (eg, V0.1)
                        } else if(command[2]=='.') {
                            units = command[1] - '0';
                            decimals = command[3] - '0';

                            //If decimal point is in the fourth character (eg, V10.1)
                        } else if(command[3]=='.') {
                            tens = command[1] - '0';
                            units = command[2] - '0';
                            decimals = command[4] - '0';
                        }
                    }

                    //Calculate the number of revolutions per second required
                    revsec = float(tens)*10 + float(units) + float(decimals)/10;
                    //Calculate the required wait period
                    spinWait = (1/revsec)/6;

                    //Print values for verification
                    pc.printf("Rev/S: %2.4f, Wait: %2.4f\n\r", revsec, spinWait);

                    //Run the function to start rotating at a fixed speed
                    fixedSpeed();
                    break;
                    //If anything unexpected was received
                case 's':
//                    pc.printf("Revs / sec: %2.2f\r", revs);
//                    printSpeed.attach(&speedo, 1.0);
                    break;
                case 't':
                    pc.printf("%d\n\r", pos);
                    break;
                default:
                    //Set speed variables to zero to stop motor spinning
                    revsec=0;
                    //Print error message
                    motor = 0x2A;
                    pc.printf("Error in received data\n\r");
                    break;
            }
        }
//        printSpeed.attach(&speedo, 1.0);
//        pc.printf("Revs / sec: %2.2f\r", revs);
    }

}