David Salmon
/
ES_CW2_Starter_MDMA
ES2017 coursework 2
Fork of ES_CW2_Starter by
Diff: main.cpp
- Revision:
- 9:575b29cbf5e4
- Parent:
- 8:77627657da80
- Child:
- 10:0309d6c49f26
--- a/main.cpp Thu Mar 02 20:27:10 2017 +0000 +++ b/main.cpp Thu Mar 09 09:30:44 2017 +0000 @@ -35,37 +35,48 @@ 7 - - - */ //Drive state to output table -const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; +//const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; +const int8_t driveTable[6] = {0x38, 0x2C, 0x0E, 0x0B, 0x23, 0x32}; + +//const int8_t cwState[7] = {0, 4, 0, 5, 2, 3, 1}; +//const int8_t AcwState[7] = {0, 2, 4, 3, 0, 1, 5}; +//const int8_t cwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C}; +//const int8_t AcwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32}; +const int8_t AcwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C}; +const int8_t cwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid -const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; +//const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed //Phase lead to make motor spin -const int8_t lead = 2; //2 for forwards, -2 for backwards +//int8_t lead = -2; //2 for forwards, -2 for backwards //Status LED DigitalOut led1(LED1); //Photointerrupter inputs -//DigitalIn I1(I1pin); -InterruptIn I1(I1pin); -DigitalIn I2(I2pin); +DigitalIn I1(I1pin); +//InterruptIn I1(I1pin); +InterruptIn I2(I2pin); DigitalIn I3(I3pin); InterruptIn qA(CHA); InterruptIn qB(CHB); //Motor Drive outputs -DigitalOut L1L(L1Lpin); -DigitalOut L1H(L1Hpin); -DigitalOut L2L(L2Lpin); -DigitalOut L2H(L2Hpin); -DigitalOut L3L(L3Lpin); -DigitalOut L3H(L3Hpin); +//DigitalOut L1L(L1Lpin); +//DigitalOut L1H(L1Hpin); +//DigitalOut L2L(L2Lpin); +//DigitalOut L2H(L2Hpin); +//DigitalOut L3L(L3Lpin); +//DigitalOut L3H(L3Hpin); DigitalOut clk(LED1); DigitalOut Direction(LED2); -//DigitalOut testpin(D13); +DigitalOut testpin(D13); + +//NOTE, BusOut declares things in reverse (ie, 0, 1, 2, 3) compared to binary represenation +BusOut motor(L1Lpin, L1Hpin, L2Lpin, L2Hpin, L3Lpin, L3Hpin); //Timeout function for rotating at set speed Timeout spinTimer; @@ -82,47 +93,56 @@ int8_t orState = 0; //Rotor offset at motor state 0 int8_t intState = 0; int8_t intStateOld = 0; +int position = 0; int i=0; int pos=0; -bool DIR=0; +bool spinCW=0; //Set a given drive state void motorOut(int8_t driveState) { + //Set to zero + motor=0x2A; + + //Go to next state + if(!spinCW) motor = AcwState[driveState]; + else motor = cwState[driveState]; //Lookup the output byte from the drive state. - int8_t driveOut = driveTable[driveState & 0x07]; +// int8_t driveOut = driveTable[driveState & 0x07]; //Turn off first - if (~driveOut & 0x01) L1L = 0; - if (~driveOut & 0x02) L1H = 1; - if (~driveOut & 0x04) L2L = 0; - if (~driveOut & 0x08) L2H = 1; - if (~driveOut & 0x10) L3L = 0; - if (~driveOut & 0x20) L3H = 1; +// if (~driveOut & 0x01) L1L = 0; +// if (~driveOut & 0x02) L1H = 1; +// if (~driveOut & 0x04) L2L = 0; +// if (~driveOut & 0x08) L2H = 1; +// if (~driveOut & 0x10) L3L = 0; +// if (~driveOut & 0x20) L3H = 1; //Then turn on - if (driveOut & 0x01) L1L = 1; - if (driveOut & 0x02) L1H = 0; - if (driveOut & 0x04) L2L = 1; - if (driveOut & 0x08) L2H = 0; - if (driveOut & 0x10) L3L = 1; - if (driveOut & 0x20) L3H = 0; +// if (driveOut & 0x01) L1L = 1; +// if (driveOut & 0x02) L1H = 0; +// if (driveOut & 0x04) L2L = 1; +// if (driveOut & 0x08) L2H = 0; +// if (driveOut & 0x10) L3L = 1; +// if (driveOut & 0x20) L3H = 0; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState() { - return stateMap[I1 + 2*I2 + 4*I3]; + return (I1 + 2*I2 + 4*I3); } //Basic synchronisation routine int8_t motorHome() { //Put the motor in drive state 0 and wait for it to stabilise - motorOut(0); + motor=cwState[1]; wait(1.0); + + position = 0; //Get the rotor state return readRotorState(); @@ -131,58 +151,100 @@ void fixedSpeed() { //Read current motor state + clk=!clk; intState = readRotorState(); //Increment state machine to next state - motorOut((intState-orState+lead+6)%6); + motorOut(intState); //If spinning is required, attach the necessary wait to the //timeout interrupt to call this function again and //keep the motor spinning at the right speed if(revsec) spinTimer.attach(&fixedSpeed, spinWait); } -void rps() +/*void rps() { -// pc.printf("Tick\r\n"); - speedTimer.stop(); - revtimer = speedTimer.read_ms(); - revs = 1000/(revtimer); -// pc.printf("Revs / sec: %2.2f\r", revs); - speedTimer.start(); + testpin=!testpin; +// clk=!clk; +// speedTimer.stop(); +// revtimer = speedTimer.read_ms(); +// revs = 1000/(revtimer); +// pos=0; +// testpin=!testpin; +// clk=!clk; +// speedTimer.reset(); +// speedTimer.start(); } void speedo() { - pc.printf("Revs / sec: %2.4f\r", revs); + pc.printf("Revs / sec: %2.4f\r\n", revs); printSpeed.attach(&speedo, 1.0); } -void edgeRiseA(){ +void edgeRiseA() +{ pos++; - if(pos>=468){ + if(pos>=468) { // Direction=!Direction; pos=pos%468; // testpin=!testpin; } if(qB) DIR = 0; else DIR = 1; - clk=DIR; +// clk=DIR; //CLOCKWISE: A rises before B -> On A edge, B low -> DIR = 1 //ANTICLOCKWISE: B rises before A -> On A edge, B high-> DIR = 0 } -void edgeIncr(){ +void edgeIncr() +{ pos++; - if(pos>=468){ + if(pos>=468) { // Direction=!Direction; pos=pos%468; // testpin=!testpin; } -} +}*/ +//#define WAIT 2 //Main function int main() { - pc.printf("Hello\n\r"); + pc.printf("spin\n\r"); + +// motor = 0x0E; +/* while(1){ + motor=0x38; + printf("0x38\r\n"); + wait(WAIT); + position = I1 + 2*I2 + 4*I3; + printf("position: %d\r\n", position); + motor=0x2C; + printf("0x2C\r\n"); + wait(WAIT); + position = I1 + 2*I2 + 4*I3; + printf("position: %d\r\n", position); + motor=0x0E; + printf("0x0E\r\n"); + wait(WAIT); + position = I1 + 2*I2 + 4*I3; + printf("position: %d\r\n", position); + motor=0x0B; + printf("0x0B\r\n"); + wait(WAIT); + position = I1 + 2*I2 + 4*I3; + printf("position: %d\r\n", position); + motor=0x23; + printf("0x23\r\n"); + wait(WAIT); + position = I1 + 2*I2 + 4*I3; + printf("position: %d\r\n", position); + motor=0x32; + printf("0x32\r\n"); + wait(WAIT); + position = I1 + 2*I2 + 4*I3; + printf("position: %d\r\n", position); + }*/ //Run the motor synchronisation orState = motorHome(); @@ -194,17 +256,19 @@ int index=0; int units = 0, tens = 0, decimals = 0; char ch; -// testpin=0; + testpin=0; - speedTimer.start(); - I1.rise(&rps); - - qA.rise(&edgeRiseA); - qB.rise(&edgeIncr); - qA.fall(&edgeIncr); - qB.fall(&edgeIncr); +// speedTimer.reset(); +// speedTimer.start(); +// I2.rise(&rps); +// +// qA.rise(&edgeRiseA); +// qB.rise(&edgeIncr); +// qA.fall(&edgeIncr); +// qB.fall(&edgeIncr); while(1) { +// clk = I2; //Toggle LED so we know something's happening // clk = !clk; @@ -237,22 +301,42 @@ units = 0, tens = 0, decimals = 0; //For each character received, subtract ASCII 0 from ASCII //representation to obtain the integer value of the number + if(command[1]=='-') { + spinCW = 0; + //If decimal point is in the second character (eg, V-.1) + if(command[2]=='.') { + //Extract decimal rev/s + decimals = command[3] - '0'; - //If decimal point is in the second character (eg, V.1) - if(command[1]=='.') { - //Extract decimal rev/s - decimals = command[2] - '0'; + //If decimal point is in the third character (eg, V-0.1) + } else if(command[3]=='.') { + units = command[2] - '0'; + decimals = command[4] - '0'; - //If decimal point is in the third character (eg, V0.1) - } else if(command[2]=='.') { - units = command[1] - '0'; - decimals = command[3] - '0'; + //If decimal point is in the fourth character (eg, V-10.1) + } else if(command[4]=='.') { + tens = command[2] - '0'; + units = command[3] - '0'; + decimals = command[5] - '0'; + } + } else { + spinCW = 1; + //If decimal point is in the second character (eg, V.1) + if(command[1]=='.') { + //Extract decimal rev/s + decimals = command[2] - '0'; - //If decimal point is in the fourth character (eg, V10.1) - } else if(command[3]=='.') { - tens = command[1] - '0'; - units = command[2] - '0'; - decimals = command[4] - '0'; + //If decimal point is in the third character (eg, V0.1) + } else if(command[2]=='.') { + units = command[1] - '0'; + decimals = command[3] - '0'; + + //If decimal point is in the fourth character (eg, V10.1) + } else if(command[3]=='.') { + tens = command[1] - '0'; + units = command[2] - '0'; + decimals = command[4] - '0'; + } } //Calculate the number of revolutions per second required @@ -268,7 +352,8 @@ break; //If anything unexpected was received case 's': - pc.printf("Revs / sec: %2.2f\r", revs); +// pc.printf("Revs / sec: %2.2f\r", revs); +// printSpeed.attach(&speedo, 1.0); break; case 't': pc.printf("%d\n\r", pos); @@ -277,6 +362,7 @@ //Set speed variables to zero to stop motor spinning revsec=0; //Print error message + motor = 0x2A; pc.printf("Error in received data\n\r"); break; }