This one compatable with brobot V3, V4, Lab6 Part 3. first commit to BroBot
Fork of MPU6050_V3 by
helper_3dmath.h
- Committer:
- syundo0730
- Date:
- 2016-01-31
- Revision:
- 7:d5845b617139
- Parent:
- 0:662207e34fba
File content as of revision 7:d5845b617139:
#ifndef _HELPER_3DMATH_H_ #define _HELPER_3DMATH_H_ class Quaternion { public: float w; float x; float y; float z; Quaternion() { w = 1.0f; x = 0.0f; y = 0.0f; z = 0.0f; } Quaternion(float nw, float nx, float ny, float nz) { w = nw; x = nx; y = ny; z = nz; } Quaternion getProduct(Quaternion q) { // Quaternion multiplication is defined by: // (Q1 * Q2).w = (w1w2 - x1x2 - y1y2 - z1z2) // (Q1 * Q2).x = (w1x2 + x1w2 + y1z2 - z1y2) // (Q1 * Q2).y = (w1y2 - x1z2 + y1w2 + z1x2) // (Q1 * Q2).z = (w1z2 + x1y2 - y1x2 + z1w2 return Quaternion( w*q.w - x*q.x - y*q.y - z*q.z, // new w w*q.x + x*q.w + y*q.z - z*q.y, // new x w*q.y - x*q.z + y*q.w + z*q.x, // new y w*q.z + x*q.y - y*q.x + z*q.w); // new z } Quaternion getConjugate() { return Quaternion(w, -x, -y, -z); } float getMagnitude() { return sqrt((float)(w*w + x*x + y*y + z*z)); } void normalize() { float m = getMagnitude(); w /= m; x /= m; y /= m; z /= m; } Quaternion getNormalized() { Quaternion r(w, x, y, z); r.normalize(); return r; } }; class VectorInt16 { public: int16_t x; int16_t y; int16_t z; VectorInt16() { x = 0; y = 0; z = 0; } VectorInt16(int16_t nx, int16_t ny, int16_t nz) { x = nx; y = ny; z = nz; } float getMagnitude() { return sqrt((float)(x*x + y*y + z*z)); } void normalize() { float m = getMagnitude(); x /= m; y /= m; z /= m; } VectorInt16 getNormalized() { VectorInt16 r(x, y, z); r.normalize(); return r; } void rotate(Quaternion *q) { // http://www.cprogramming.com/tutorial/3d/quaternions.html // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm // http://content.gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation // ^ or: http://webcache.googleusercontent.com/search?q=cache:xgJAp3bDNhQJ:content.gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation&hl=en&gl=us&strip=1 // P_out = q * P_in * conj(q) // - P_out is the output vector // - q is the orientation quaternion // - P_in is the input vector (a*aReal) // - conj(q) is the conjugate of the orientation quaternion (q=[w,x,y,z], q*=[w,-x,-y,-z]) Quaternion p(0, x, y, z); // quaternion multiplication: q * p, stored back in p p = q -> getProduct(p); // quaternion multiplication: p * conj(q), stored back in p p = p.getProduct(q -> getConjugate()); // p quaternion is now [0, x', y', z'] x = p.x; y = p.y; z = p.z; } VectorInt16 getRotated(Quaternion *q) { VectorInt16 r(x, y, z); r.rotate(q); return r; } }; class VectorFloat { public: float x; float y; float z; VectorFloat() { x = 0; y = 0; z = 0; } VectorFloat(float nx, float ny, float nz) { x = nx; y = ny; z = nz; } float getMagnitude() { return sqrt((float)(x*x + y*y + z*z)); } void normalize() { float m = getMagnitude(); x /= m; y /= m; z /= m; } VectorFloat getNormalized() { VectorFloat r(x, y, z); r.normalize(); return r; } void rotate(Quaternion *q) { Quaternion p(0, x, y, z); // quaternion multiplication: q * p, stored back in p p = q -> getProduct(p); // quaternion multiplication: p * conj(q), stored back in p p = p.getProduct(q -> getConjugate()); // p quaternion is now [0, x', y', z'] x = p.x; y = p.y; z = p.z; } VectorFloat getRotated(Quaternion *q) { VectorFloat r(x, y, z); r.rotate(q); return r; } }; #endif /* _HELPER_3DMATH_H_ */