This one compatable with brobot V3, V4, Lab6 Part 3. first commit to BroBot
Fork of MPU6050_V3 by
MPU6050.cpp
- Committer:
- syundo0730
- Date:
- 2016-01-31
- Revision:
- 7:d5845b617139
- Parent:
- 6:f38dfe62d74c
File content as of revision 7:d5845b617139:
#include "MPU6050.h" /** Default constructor, uses default I2C address. * @see MPU6050_DEFAULT_ADDRESS */ MPU6050::MPU6050() { devAddr = MPU6050_DEFAULT_ADDRESS; } /** Specific address constructor. * @param address I2C address * @see MPU6050_DEFAULT_ADDRESS * @see MPU6050_ADDRESS_AD0_LOW * @see MPU6050_ADDRESS_AD0_HIGH */ MPU6050::MPU6050(uint8_t address) { devAddr = address; } /** Power on and prepare for general usage. * This will activate the device and take it out of sleep mode (which must be done * after start-up). This function also sets both the accelerometer and the gyroscope * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets * the clock source to use the X Gyro for reference, which is slightly better than * the default internal clock source. */ void MPU6050::initialize() { setClockSource(MPU6050_CLOCK_PLL_XGYRO); setFullScaleGyroRange(MPU6050_GYRO_FS_250); setFullScaleAccelRange(MPU6050_ACCEL_FS_2); setSleepEnabled(false); // thanks to Jack Elston for pointing this one out! } /** Verify the I2C connection. * Make sure the device is connected and responds as expected. * @return True if connection is valid, false otherwise */ bool MPU6050::testConnection() { return getDeviceID() == 0x34; } // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC) /** Get the auxiliary I2C supply voltage level. * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to * the MPU-6000, which does not have a VLOGIC pin. * @return I2C supply voltage level (0=VLOGIC, 1=VDD) */ uint8_t MPU6050::getAuxVDDIOLevel() { I2Cdev::readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer); return buffer[0]; } /** Set the auxiliary I2C supply voltage level. * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to * the MPU-6000, which does not have a VLOGIC pin. * @param level I2C supply voltage level (0=VLOGIC, 1=VDD) */ void MPU6050::setAuxVDDIOLevel(uint8_t level) { I2Cdev::writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level); } // SMPLRT_DIV register /** Get gyroscope output rate divider. * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero * Motion detection, and Free Fall detection are all based on the Sample Rate. * The Sample Rate is generated by dividing the gyroscope output rate by * SMPLRT_DIV: * * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV) * * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or * 7), and 1kHz when the DLPF is enabled (see Register 26). * * Note: The accelerometer output rate is 1kHz. This means that for a Sample * Rate greater than 1kHz, the same accelerometer sample may be output to the * FIFO, DMP, and sensor registers more than once. * * For a diagram of the gyroscope and accelerometer signal paths, see Section 8 * of the MPU-6000/MPU-6050 Product Specification document. * * @return Current sample rate * @see MPU6050_RA_SMPLRT_DIV */ uint8_t MPU6050::getRate() { I2Cdev::readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer); return buffer[0]; } /** Set gyroscope sample rate divider. * @param rate New sample rate divider * @see getRate() * @see MPU6050_RA_SMPLRT_DIV */ void MPU6050::setRate(uint8_t rate) { I2Cdev::writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate); } // CONFIG register /** Get external FSYNC configuration. * Configures the external Frame Synchronization (FSYNC) pin sampling. An * external signal connected to the FSYNC pin can be sampled by configuring * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short * strobes may be captured. The latched FSYNC signal will be sampled at the * Sampling Rate, as defined in register 25. After sampling, the latch will * reset to the current FSYNC signal state. * * The sampled value will be reported in place of the least significant bit in * a sensor data register determined by the value of EXT_SYNC_SET according to * the following table. * * <pre> * EXT_SYNC_SET | FSYNC Bit Location * -------------+------------------- * 0 | Input disabled * 1 | TEMP_OUT_L[0] * 2 | GYRO_XOUT_L[0] * 3 | GYRO_YOUT_L[0] * 4 | GYRO_ZOUT_L[0] * 5 | ACCEL_XOUT_L[0] * 6 | ACCEL_YOUT_L[0] * 7 | ACCEL_ZOUT_L[0] * </pre> * * @return FSYNC configuration value */ uint8_t MPU6050::getExternalFrameSync() { I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer); return buffer[0]; } /** Set external FSYNC configuration. * @see getExternalFrameSync() * @see MPU6050_RA_CONFIG * @param sync New FSYNC configuration value */ void MPU6050::setExternalFrameSync(uint8_t sync) { I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync); } /** Get digital low-pass filter configuration. * The DLPF_CFG parameter sets the digital low pass filter configuration. It * also determines the internal sampling rate used by the device as shown in * the table below. * * Note: The accelerometer output rate is 1kHz. This means that for a Sample * Rate greater than 1kHz, the same accelerometer sample may be output to the * FIFO, DMP, and sensor registers more than once. * * <pre> * | ACCELEROMETER | GYROSCOPE * DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate * ---------+-----------+--------+-----------+--------+------------- * 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz * 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz * 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz * 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz * 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz * 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz * 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz * 7 | -- Reserved -- | -- Reserved -- | Reserved * </pre> * * @return DLFP configuration * @see MPU6050_RA_CONFIG * @see MPU6050_CFG_DLPF_CFG_BIT * @see MPU6050_CFG_DLPF_CFG_LENGTH */ uint8_t MPU6050::getDLPFMode() { I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer); return buffer[0]; } /** Set digital low-pass filter configuration. * @param mode New DLFP configuration setting * @see getDLPFBandwidth() * @see MPU6050_DLPF_BW_256 * @see MPU6050_RA_CONFIG * @see MPU6050_CFG_DLPF_CFG_BIT * @see MPU6050_CFG_DLPF_CFG_LENGTH */ void MPU6050::setDLPFMode(uint8_t mode) { I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode); } // GYRO_CONFIG register /** Get full-scale gyroscope range. * The FS_SEL parameter allows setting the full-scale range of the gyro sensors, * as described in the table below. * * <pre> * 0 = +/- 250 degrees/sec * 1 = +/- 500 degrees/sec * 2 = +/- 1000 degrees/sec * 3 = +/- 2000 degrees/sec * </pre> * * @return Current full-scale gyroscope range setting * @see MPU6050_GYRO_FS_250 * @see MPU6050_RA_GYRO_CONFIG * @see MPU6050_GCONFIG_FS_SEL_BIT * @see MPU6050_GCONFIG_FS_SEL_LENGTH */ uint8_t MPU6050::getFullScaleGyroRange() { I2Cdev::readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer); return buffer[0]; } /** Set full-scale gyroscope range. * @param range New full-scale gyroscope range value * @see getFullScaleRange() * @see MPU6050_GYRO_FS_250 * @see MPU6050_RA_GYRO_CONFIG * @see MPU6050_GCONFIG_FS_SEL_BIT * @see MPU6050_GCONFIG_FS_SEL_LENGTH */ void MPU6050::setFullScaleGyroRange(uint8_t range) { I2Cdev::writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range); } // SELF TEST FACTORY TRIM VALUES /** Get self-test factory trim value for accelerometer X axis. * @return factory trim value * @see MPU6050_RA_SELF_TEST_X */ uint8_t MPU6050::getAccelXSelfTestFactoryTrim() { I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_X, &buffer[0]); I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_A, &buffer[1]); return (buffer[0]>>3) | ((buffer[1]>>4) & 0x03); } /** Get self-test factory trim value for accelerometer Y axis. * @return factory trim value * @see MPU6050_RA_SELF_TEST_Y */ uint8_t MPU6050::getAccelYSelfTestFactoryTrim() { I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_Y, &buffer[0]); I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_A, &buffer[1]); return (buffer[0]>>3) | ((buffer[1]>>2) & 0x03); } /** Get self-test factory trim value for accelerometer Z axis. * @return factory trim value * @see MPU6050_RA_SELF_TEST_Z */ uint8_t MPU6050::getAccelZSelfTestFactoryTrim() { I2Cdev::readBytes(devAddr, MPU6050_RA_SELF_TEST_Z, 2, buffer); return (buffer[0]>>3) | (buffer[1] & 0x03); } /** Get self-test factory trim value for gyro X axis. * @return factory trim value * @see MPU6050_RA_SELF_TEST_X */ uint8_t MPU6050::getGyroXSelfTestFactoryTrim() { I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_X, buffer); return (buffer[0] & 0x1F); } /** Get self-test factory trim value for gyro Y axis. * @return factory trim value * @see MPU6050_RA_SELF_TEST_Y */ uint8_t MPU6050::getGyroYSelfTestFactoryTrim() { I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_Y, buffer); return (buffer[0] & 0x1F); } /** Get self-test factory trim value for gyro Z axis. * @return factory trim value * @see MPU6050_RA_SELF_TEST_Z */ uint8_t MPU6050::getGyroZSelfTestFactoryTrim() { I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_Z, buffer); return (buffer[0] & 0x1F); } // ACCEL_CONFIG register /** Get self-test enabled setting for accelerometer X axis. * @return Self-test enabled value * @see MPU6050_RA_ACCEL_CONFIG */ bool MPU6050::getAccelXSelfTest() { I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer); return buffer[0]; } /** Get self-test enabled setting for accelerometer X axis. * @param enabled Self-test enabled value * @see MPU6050_RA_ACCEL_CONFIG */ void MPU6050::setAccelXSelfTest(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled); } /** Get self-test enabled value for accelerometer Y axis. * @return Self-test enabled value * @see MPU6050_RA_ACCEL_CONFIG */ bool MPU6050::getAccelYSelfTest() { I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer); return buffer[0]; } /** Get self-test enabled value for accelerometer Y axis. * @param enabled Self-test enabled value * @see MPU6050_RA_ACCEL_CONFIG */ void MPU6050::setAccelYSelfTest(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled); } /** Get self-test enabled value for accelerometer Z axis. * @return Self-test enabled value * @see MPU6050_RA_ACCEL_CONFIG */ bool MPU6050::getAccelZSelfTest() { I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer); return buffer[0]; } /** Set self-test enabled value for accelerometer Z axis. * @param enabled Self-test enabled value * @see MPU6050_RA_ACCEL_CONFIG */ void MPU6050::setAccelZSelfTest(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled); } /** Get full-scale accelerometer range. * The FS_SEL parameter allows setting the full-scale range of the accelerometer * sensors, as described in the table below. * * <pre> * 0 = +/- 2g * 1 = +/- 4g * 2 = +/- 8g * 3 = +/- 16g * </pre> * * @return Current full-scale accelerometer range setting * @see MPU6050_ACCEL_FS_2 * @see MPU6050_RA_ACCEL_CONFIG * @see MPU6050_ACONFIG_AFS_SEL_BIT * @see MPU6050_ACONFIG_AFS_SEL_LENGTH */ uint8_t MPU6050::getFullScaleAccelRange() { I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer); return buffer[0]; } /** Set full-scale accelerometer range. * @param range New full-scale accelerometer range setting * @see getFullScaleAccelRange() */ void MPU6050::setFullScaleAccelRange(uint8_t range) { I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range); } /** Get the high-pass filter configuration. * The DHPF is a filter module in the path leading to motion detectors (Free * Fall, Motion threshold, and Zero Motion). The high pass filter output is not * available to the data registers (see Figure in Section 8 of the MPU-6000/ * MPU-6050 Product Specification document). * * The high pass filter has three modes: * * <pre> * Reset: The filter output settles to zero within one sample. This * effectively disables the high pass filter. This mode may be toggled * to quickly settle the filter. * * On: The high pass filter will pass signals above the cut off frequency. * * Hold: When triggered, the filter holds the present sample. The filter * output will be the difference between the input sample and the held * sample. * </pre> * * <pre> * ACCEL_HPF | Filter Mode | Cut-off Frequency * ----------+-------------+------------------ * 0 | Reset | None * 1 | On | 5Hz * 2 | On | 2.5Hz * 3 | On | 1.25Hz * 4 | On | 0.63Hz * 7 | Hold | None * </pre> * * @return Current high-pass filter configuration * @see MPU6050_DHPF_RESET * @see MPU6050_RA_ACCEL_CONFIG */ uint8_t MPU6050::getDHPFMode() { I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer); return buffer[0]; } /** Set the high-pass filter configuration. * @param bandwidth New high-pass filter configuration * @see setDHPFMode() * @see MPU6050_DHPF_RESET * @see MPU6050_RA_ACCEL_CONFIG */ void MPU6050::setDHPFMode(uint8_t bandwidth) { I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth); } // FF_THR register /** Get free-fall event acceleration threshold. * This register configures the detection threshold for Free Fall event * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the * absolute value of the accelerometer measurements for the three axes are each * less than the detection threshold. This condition increments the Free Fall * duration counter (Register 30). The Free Fall interrupt is triggered when the * Free Fall duration counter reaches the time specified in FF_DUR. * * For more details on the Free Fall detection interrupt, see Section 8.2 of the * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and * 58 of this document. * * @return Current free-fall acceleration threshold value (LSB = 2mg) * @see MPU6050_RA_FF_THR */ uint8_t MPU6050::getFreefallDetectionThreshold() { I2Cdev::readByte(devAddr, MPU6050_RA_FF_THR, buffer); return buffer[0]; } /** Get free-fall event acceleration threshold. * @param threshold New free-fall acceleration threshold value (LSB = 2mg) * @see getFreefallDetectionThreshold() * @see MPU6050_RA_FF_THR */ void MPU6050::setFreefallDetectionThreshold(uint8_t threshold) { I2Cdev::writeByte(devAddr, MPU6050_RA_FF_THR, threshold); } // FF_DUR register /** Get free-fall event duration threshold. * This register configures the duration counter threshold for Free Fall event * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit * of 1 LSB = 1 ms. * * The Free Fall duration counter increments while the absolute value of the * accelerometer measurements are each less than the detection threshold * (Register 29). The Free Fall interrupt is triggered when the Free Fall * duration counter reaches the time specified in this register. * * For more details on the Free Fall detection interrupt, see Section 8.2 of * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56 * and 58 of this document. * * @return Current free-fall duration threshold value (LSB = 1ms) * @see MPU6050_RA_FF_DUR */ uint8_t MPU6050::getFreefallDetectionDuration() { I2Cdev::readByte(devAddr, MPU6050_RA_FF_DUR, buffer); return buffer[0]; } /** Get free-fall event duration threshold. * @param duration New free-fall duration threshold value (LSB = 1ms) * @see getFreefallDetectionDuration() * @see MPU6050_RA_FF_DUR */ void MPU6050::setFreefallDetectionDuration(uint8_t duration) { I2Cdev::writeByte(devAddr, MPU6050_RA_FF_DUR, duration); } // MOT_THR register /** Get motion detection event acceleration threshold. * This register configures the detection threshold for Motion interrupt * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the * absolute value of any of the accelerometer measurements exceeds this Motion * detection threshold. This condition increments the Motion detection duration * counter (Register 32). The Motion detection interrupt is triggered when the * Motion Detection counter reaches the time count specified in MOT_DUR * (Register 32). * * The Motion interrupt will indicate the axis and polarity of detected motion * in MOT_DETECT_STATUS (Register 97). * * For more details on the Motion detection interrupt, see Section 8.3 of the * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and * 58 of this document. * * @return Current motion detection acceleration threshold value (LSB = 2mg) * @see MPU6050_RA_MOT_THR */ uint8_t MPU6050::getMotionDetectionThreshold() { I2Cdev::readByte(devAddr, MPU6050_RA_MOT_THR, buffer); return buffer[0]; } /** Set motion detection event acceleration threshold. * @param threshold New motion detection acceleration threshold value (LSB = 2mg) * @see getMotionDetectionThreshold() * @see MPU6050_RA_MOT_THR */ void MPU6050::setMotionDetectionThreshold(uint8_t threshold) { I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_THR, threshold); } // MOT_DUR register /** Get motion detection event duration threshold. * This register configures the duration counter threshold for Motion interrupt * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit * of 1LSB = 1ms. The Motion detection duration counter increments when the * absolute value of any of the accelerometer measurements exceeds the Motion * detection threshold (Register 31). The Motion detection interrupt is * triggered when the Motion detection counter reaches the time count specified * in this register. * * For more details on the Motion detection interrupt, see Section 8.3 of the * MPU-6000/MPU-6050 Product Specification document. * * @return Current motion detection duration threshold value (LSB = 1ms) * @see MPU6050_RA_MOT_DUR */ uint8_t MPU6050::getMotionDetectionDuration() { I2Cdev::readByte(devAddr, MPU6050_RA_MOT_DUR, buffer); return buffer[0]; } /** Set motion detection event duration threshold. * @param duration New motion detection duration threshold value (LSB = 1ms) * @see getMotionDetectionDuration() * @see MPU6050_RA_MOT_DUR */ void MPU6050::setMotionDetectionDuration(uint8_t duration) { I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_DUR, duration); } // ZRMOT_THR register /** Get zero motion detection event acceleration threshold. * This register configures the detection threshold for Zero Motion interrupt * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when * the absolute value of the accelerometer measurements for the 3 axes are each * less than the detection threshold. This condition increments the Zero Motion * duration counter (Register 34). The Zero Motion interrupt is triggered when * the Zero Motion duration counter reaches the time count specified in * ZRMOT_DUR (Register 34). * * Unlike Free Fall or Motion detection, Zero Motion detection triggers an * interrupt both when Zero Motion is first detected and when Zero Motion is no * longer detected. * * When a zero motion event is detected, a Zero Motion Status will be indicated * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion * condition is detected, the status bit is set to 1. When a zero-motion-to- * motion condition is detected, the status bit is set to 0. * * For more details on the Zero Motion detection interrupt, see Section 8.4 of * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56 * and 58 of this document. * * @return Current zero motion detection acceleration threshold value (LSB = 2mg) * @see MPU6050_RA_ZRMOT_THR */ uint8_t MPU6050::getZeroMotionDetectionThreshold() { I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer); return buffer[0]; } /** Set zero motion detection event acceleration threshold. * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg) * @see getZeroMotionDetectionThreshold() * @see MPU6050_RA_ZRMOT_THR */ void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold) { I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold); } // ZRMOT_DUR register /** Get zero motion detection event duration threshold. * This register configures the duration counter threshold for Zero Motion * interrupt generation. The duration counter ticks at 16 Hz, therefore * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter * increments while the absolute value of the accelerometer measurements are * each less than the detection threshold (Register 33). The Zero Motion * interrupt is triggered when the Zero Motion duration counter reaches the time * count specified in this register. * * For more details on the Zero Motion detection interrupt, see Section 8.4 of * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56 * and 58 of this document. * * @return Current zero motion detection duration threshold value (LSB = 64ms) * @see MPU6050_RA_ZRMOT_DUR */ uint8_t MPU6050::getZeroMotionDetectionDuration() { I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer); return buffer[0]; } /** Set zero motion detection event duration threshold. * @param duration New zero motion detection duration threshold value (LSB = 1ms) * @see getZeroMotionDetectionDuration() * @see MPU6050_RA_ZRMOT_DUR */ void MPU6050::setZeroMotionDetectionDuration(uint8_t duration) { I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration); } // FIFO_EN register /** Get temperature FIFO enabled value. * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and * 66) to be written into the FIFO buffer. * @return Current temperature FIFO enabled value * @see MPU6050_RA_FIFO_EN */ bool MPU6050::getTempFIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set temperature FIFO enabled value. * @param enabled New temperature FIFO enabled value * @see getTempFIFOEnabled() * @see MPU6050_RA_FIFO_EN */ void MPU6050::setTempFIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled); } /** Get gyroscope X-axis FIFO enabled value. * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and * 68) to be written into the FIFO buffer. * @return Current gyroscope X-axis FIFO enabled value * @see MPU6050_RA_FIFO_EN */ bool MPU6050::getXGyroFIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set gyroscope X-axis FIFO enabled value. * @param enabled New gyroscope X-axis FIFO enabled value * @see getXGyroFIFOEnabled() * @see MPU6050_RA_FIFO_EN */ void MPU6050::setXGyroFIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled); } /** Get gyroscope Y-axis FIFO enabled value. * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and * 70) to be written into the FIFO buffer. * @return Current gyroscope Y-axis FIFO enabled value * @see MPU6050_RA_FIFO_EN */ bool MPU6050::getYGyroFIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set gyroscope Y-axis FIFO enabled value. * @param enabled New gyroscope Y-axis FIFO enabled value * @see getYGyroFIFOEnabled() * @see MPU6050_RA_FIFO_EN */ void MPU6050::setYGyroFIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled); } /** Get gyroscope Z-axis FIFO enabled value. * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and * 72) to be written into the FIFO buffer. * @return Current gyroscope Z-axis FIFO enabled value * @see MPU6050_RA_FIFO_EN */ bool MPU6050::getZGyroFIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set gyroscope Z-axis FIFO enabled value. * @param enabled New gyroscope Z-axis FIFO enabled value * @see getZGyroFIFOEnabled() * @see MPU6050_RA_FIFO_EN */ void MPU6050::setZGyroFIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled); } /** Get accelerometer FIFO enabled value. * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be * written into the FIFO buffer. * @return Current accelerometer FIFO enabled value * @see MPU6050_RA_FIFO_EN */ bool MPU6050::getAccelFIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set accelerometer FIFO enabled value. * @param enabled New accelerometer FIFO enabled value * @see getAccelFIFOEnabled() * @see MPU6050_RA_FIFO_EN */ void MPU6050::setAccelFIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled); } /** Get Slave 2 FIFO enabled value. * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96) * associated with Slave 2 to be written into the FIFO buffer. * @return Current Slave 2 FIFO enabled value * @see MPU6050_RA_FIFO_EN */ bool MPU6050::getSlave2FIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set Slave 2 FIFO enabled value. * @param enabled New Slave 2 FIFO enabled value * @see getSlave2FIFOEnabled() * @see MPU6050_RA_FIFO_EN */ void MPU6050::setSlave2FIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled); } /** Get Slave 1 FIFO enabled value. * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96) * associated with Slave 1 to be written into the FIFO buffer. * @return Current Slave 1 FIFO enabled value * @see MPU6050_RA_FIFO_EN */ bool MPU6050::getSlave1FIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set Slave 1 FIFO enabled value. * @param enabled New Slave 1 FIFO enabled value * @see getSlave1FIFOEnabled() * @see MPU6050_RA_FIFO_EN */ void MPU6050::setSlave1FIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled); } /** Get Slave 0 FIFO enabled value. * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96) * associated with Slave 0 to be written into the FIFO buffer. * @return Current Slave 0 FIFO enabled value * @see MPU6050_RA_FIFO_EN */ bool MPU6050::getSlave0FIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set Slave 0 FIFO enabled value. * @param enabled New Slave 0 FIFO enabled value * @see getSlave0FIFOEnabled() * @see MPU6050_RA_FIFO_EN */ void MPU6050::setSlave0FIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled); } // I2C_MST_CTRL register /** Get multi-master enabled value. * Multi-master capability allows multiple I2C masters to operate on the same * bus. In circuits where multi-master capability is required, set MULT_MST_EN * to 1. This will increase current drawn by approximately 30uA. * * In circuits where multi-master capability is required, the state of the I2C * bus must always be monitored by each separate I2C Master. Before an I2C * Master can assume arbitration of the bus, it must first confirm that no other * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the * MPU-60X0's bus arbitration detection logic is turned on, enabling it to * detect when the bus is available. * * @return Current multi-master enabled value * @see MPU6050_RA_I2C_MST_CTRL */ bool MPU6050::getMultiMasterEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer); return buffer[0]; } /** Set multi-master enabled value. * @param enabled New multi-master enabled value * @see getMultiMasterEnabled() * @see MPU6050_RA_I2C_MST_CTRL */ void MPU6050::setMultiMasterEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled); } /** Get wait-for-external-sensor-data enabled value. * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be * delayed until External Sensor data from the Slave Devices are loaded into the * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor * data (i.e. from gyro and accel) and external sensor data have been loaded to * their respective data registers (i.e. the data is synced) when the Data Ready * interrupt is triggered. * * @return Current wait-for-external-sensor-data enabled value * @see MPU6050_RA_I2C_MST_CTRL */ bool MPU6050::getWaitForExternalSensorEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer); return buffer[0]; } /** Set wait-for-external-sensor-data enabled value. * @param enabled New wait-for-external-sensor-data enabled value * @see getWaitForExternalSensorEnabled() * @see MPU6050_RA_I2C_MST_CTRL */ void MPU6050::setWaitForExternalSensorEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled); } /** Get Slave 3 FIFO enabled value. * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96) * associated with Slave 3 to be written into the FIFO buffer. * @return Current Slave 3 FIFO enabled value * @see MPU6050_RA_MST_CTRL */ bool MPU6050::getSlave3FIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set Slave 3 FIFO enabled value. * @param enabled New Slave 3 FIFO enabled value * @see getSlave3FIFOEnabled() * @see MPU6050_RA_MST_CTRL */ void MPU6050::setSlave3FIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled); } /** Get slave read/write transition enabled value. * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave * read to the next slave read. If the bit equals 0, there will be a restart * between reads. If the bit equals 1, there will be a stop followed by a start * of the following read. When a write transaction follows a read transaction, * the stop followed by a start of the successive write will be always used. * * @return Current slave read/write transition enabled value * @see MPU6050_RA_I2C_MST_CTRL */ bool MPU6050::getSlaveReadWriteTransitionEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer); return buffer[0]; } /** Set slave read/write transition enabled value. * @param enabled New slave read/write transition enabled value * @see getSlaveReadWriteTransitionEnabled() * @see MPU6050_RA_I2C_MST_CTRL */ void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled); } /** Get I2C master clock speed. * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to * the following table: * * <pre> * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider * ------------+------------------------+------------------- * 0 | 348kHz | 23 * 1 | 333kHz | 24 * 2 | 320kHz | 25 * 3 | 308kHz | 26 * 4 | 296kHz | 27 * 5 | 286kHz | 28 * 6 | 276kHz | 29 * 7 | 267kHz | 30 * 8 | 258kHz | 31 * 9 | 500kHz | 16 * 10 | 471kHz | 17 * 11 | 444kHz | 18 * 12 | 421kHz | 19 * 13 | 400kHz | 20 * 14 | 381kHz | 21 * 15 | 364kHz | 22 * </pre> * * @return Current I2C master clock speed * @see MPU6050_RA_I2C_MST_CTRL */ uint8_t MPU6050::getMasterClockSpeed() { I2Cdev::readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer); return buffer[0]; } /** Set I2C master clock speed. * @reparam speed Current I2C master clock speed * @see MPU6050_RA_I2C_MST_CTRL */ void MPU6050::setMasterClockSpeed(uint8_t speed) { I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed); } // I2C_SLV* registers (Slave 0-3) /** Get the I2C address of the specified slave (0-3). * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read * operation, and if it is cleared, then it's a write operation. The remaining * bits (6-0) are the 7-bit device address of the slave device. * * In read mode, the result of the read is placed in the lowest available * EXT_SENS_DATA register. For further information regarding the allocation of * read results, please refer to the EXT_SENS_DATA register description * (Registers 73 - 96). * * The MPU-6050 supports a total of five slaves, but Slave 4 has unique * characteristics, and so it has its own functions (getSlave4* and setSlave4*). * * I2C data transactions are performed at the Sample Rate, as defined in * Register 25. The user is responsible for ensuring that I2C data transactions * to and from each enabled Slave can be completed within a single period of the * Sample Rate. * * The I2C slave access rate can be reduced relative to the Sample Rate. This * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a * slave's access rate is reduced relative to the Sample Rate is determined by * I2C_MST_DELAY_CTRL (Register 103). * * The processing order for the slaves is fixed. The sequence followed for * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a * particular Slave is disabled it will be skipped. * * Each slave can either be accessed at the sample rate or at a reduced sample * rate. In a case where some slaves are accessed at the Sample Rate and some * slaves are accessed at the reduced rate, the sequence of accessing the slaves * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will * be skipped if their access rate dictates that they should not be accessed * during that particular cycle. For further information regarding the reduced * access rate, please refer to Register 52. Whether a slave is accessed at the * Sample Rate or at the reduced rate is determined by the Delay Enable bits in * Register 103. * * @param num Slave number (0-3) * @return Current address for specified slave * @see MPU6050_RA_I2C_SLV0_ADDR */ uint8_t MPU6050::getSlaveAddress(uint8_t num) { if (num > 3) return 0; I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer); return buffer[0]; } /** Set the I2C address of the specified slave (0-3). * @param num Slave number (0-3) * @param address New address for specified slave * @see getSlaveAddress() * @see MPU6050_RA_I2C_SLV0_ADDR */ void MPU6050::setSlaveAddress(uint8_t num, uint8_t address) { if (num > 3) return; I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address); } /** Get the active internal register for the specified slave (0-3). * Read/write operations for this slave will be done to whatever internal * register address is stored in this MPU register. * * The MPU-6050 supports a total of five slaves, but Slave 4 has unique * characteristics, and so it has its own functions. * * @param num Slave number (0-3) * @return Current active register for specified slave * @see MPU6050_RA_I2C_SLV0_REG */ uint8_t MPU6050::getSlaveRegister(uint8_t num) { if (num > 3) return 0; I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer); return buffer[0]; } /** Set the active internal register for the specified slave (0-3). * @param num Slave number (0-3) * @param reg New active register for specified slave * @see getSlaveRegister() * @see MPU6050_RA_I2C_SLV0_REG */ void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg) { if (num > 3) return; I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg); } /** Get the enabled value for the specified slave (0-3). * When set to 1, this bit enables Slave 0 for data transfer operations. When * cleared to 0, this bit disables Slave 0 from data transfer operations. * @param num Slave number (0-3) * @return Current enabled value for specified slave * @see MPU6050_RA_I2C_SLV0_CTRL */ bool MPU6050::getSlaveEnabled(uint8_t num) { if (num > 3) return 0; I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer); return buffer[0]; } /** Set the enabled value for the specified slave (0-3). * @param num Slave number (0-3) * @param enabled New enabled value for specified slave * @see getSlaveEnabled() * @see MPU6050_RA_I2C_SLV0_CTRL */ void MPU6050::setSlaveEnabled(uint8_t num, bool enabled) { if (num > 3) return; I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled); } /** Get word pair byte-swapping enabled for the specified slave (0-3). * When set to 1, this bit enables byte swapping. When byte swapping is enabled, * the high and low bytes of a word pair are swapped. Please refer to * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0, * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA * registers in the order they were transferred. * * @param num Slave number (0-3) * @return Current word pair byte-swapping enabled value for specified slave * @see MPU6050_RA_I2C_SLV0_CTRL */ bool MPU6050::getSlaveWordByteSwap(uint8_t num) { if (num > 3) return 0; I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer); return buffer[0]; } /** Set word pair byte-swapping enabled for the specified slave (0-3). * @param num Slave number (0-3) * @param enabled New word pair byte-swapping enabled value for specified slave * @see getSlaveWordByteSwap() * @see MPU6050_RA_I2C_SLV0_CTRL */ void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled) { if (num > 3) return; I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled); } /** Get write mode for the specified slave (0-3). * When set to 1, the transaction will read or write data only. When cleared to * 0, the transaction will write a register address prior to reading or writing * data. This should equal 0 when specifying the register address within the * Slave device to/from which the ensuing data transaction will take place. * * @param num Slave number (0-3) * @return Current write mode for specified slave (0 = register address + data, 1 = data only) * @see MPU6050_RA_I2C_SLV0_CTRL */ bool MPU6050::getSlaveWriteMode(uint8_t num) { if (num > 3) return 0; I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer); return buffer[0]; } /** Set write mode for the specified slave (0-3). * @param num Slave number (0-3) * @param mode New write mode for specified slave (0 = register address + data, 1 = data only) * @see getSlaveWriteMode() * @see MPU6050_RA_I2C_SLV0_CTRL */ void MPU6050::setSlaveWriteMode(uint8_t num, bool mode) { if (num > 3) return; I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode); } /** Get word pair grouping order offset for the specified slave (0-3). * This sets specifies the grouping order of word pairs received from registers. * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even, * then odd register addresses) are paired to form a word. When set to 1, bytes * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even * register addresses) are paired to form a word. * * @param num Slave number (0-3) * @return Current word pair grouping order offset for specified slave * @see MPU6050_RA_I2C_SLV0_CTRL */ bool MPU6050::getSlaveWordGroupOffset(uint8_t num) { if (num > 3) return 0; I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer); return buffer[0]; } /** Set word pair grouping order offset for the specified slave (0-3). * @param num Slave number (0-3) * @param enabled New word pair grouping order offset for specified slave * @see getSlaveWordGroupOffset() * @see MPU6050_RA_I2C_SLV0_CTRL */ void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled) { if (num > 3) return; I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled); } /** Get number of bytes to read for the specified slave (0-3). * Specifies the number of bytes transferred to and from Slave 0. Clearing this * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN. * @param num Slave number (0-3) * @return Number of bytes to read for specified slave * @see MPU6050_RA_I2C_SLV0_CTRL */ uint8_t MPU6050::getSlaveDataLength(uint8_t num) { if (num > 3) return 0; I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer); return buffer[0]; } /** Set number of bytes to read for the specified slave (0-3). * @param num Slave number (0-3) * @param length Number of bytes to read for specified slave * @see getSlaveDataLength() * @see MPU6050_RA_I2C_SLV0_CTRL */ void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length) { if (num > 3) return; I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length); } // I2C_SLV* registers (Slave 4) /** Get the I2C address of Slave 4. * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read * operation, and if it is cleared, then it's a write operation. The remaining * bits (6-0) are the 7-bit device address of the slave device. * * @return Current address for Slave 4 * @see getSlaveAddress() * @see MPU6050_RA_I2C_SLV4_ADDR */ uint8_t MPU6050::getSlave4Address() { I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer); return buffer[0]; } /** Set the I2C address of Slave 4. * @param address New address for Slave 4 * @see getSlave4Address() * @see MPU6050_RA_I2C_SLV4_ADDR */ void MPU6050::setSlave4Address(uint8_t address) { I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address); } /** Get the active internal register for the Slave 4. * Read/write operations for this slave will be done to whatever internal * register address is stored in this MPU register. * * @return Current active register for Slave 4 * @see MPU6050_RA_I2C_SLV4_REG */ uint8_t MPU6050::getSlave4Register() { I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer); return buffer[0]; } /** Set the active internal register for Slave 4. * @param reg New active register for Slave 4 * @see getSlave4Register() * @see MPU6050_RA_I2C_SLV4_REG */ void MPU6050::setSlave4Register(uint8_t reg) { I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg); } /** Set new byte to write to Slave 4. * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW * is set 1 (set to read), this register has no effect. * @param data New byte to write to Slave 4 * @see MPU6050_RA_I2C_SLV4_DO */ void MPU6050::setSlave4OutputByte(uint8_t data) { I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data); } /** Get the enabled value for the Slave 4. * When set to 1, this bit enables Slave 4 for data transfer operations. When * cleared to 0, this bit disables Slave 4 from data transfer operations. * @return Current enabled value for Slave 4 * @see MPU6050_RA_I2C_SLV4_CTRL */ bool MPU6050::getSlave4Enabled() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer); return buffer[0]; } /** Set the enabled value for Slave 4. * @param enabled New enabled value for Slave 4 * @see getSlave4Enabled() * @see MPU6050_RA_I2C_SLV4_CTRL */ void MPU6050::setSlave4Enabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled); } /** Get the enabled value for Slave 4 transaction interrupts. * When set to 1, this bit enables the generation of an interrupt signal upon * completion of a Slave 4 transaction. When cleared to 0, this bit disables the * generation of an interrupt signal upon completion of a Slave 4 transaction. * The interrupt status can be observed in Register 54. * * @return Current enabled value for Slave 4 transaction interrupts. * @see MPU6050_RA_I2C_SLV4_CTRL */ bool MPU6050::getSlave4InterruptEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer); return buffer[0]; } /** Set the enabled value for Slave 4 transaction interrupts. * @param enabled New enabled value for Slave 4 transaction interrupts. * @see getSlave4InterruptEnabled() * @see MPU6050_RA_I2C_SLV4_CTRL */ void MPU6050::setSlave4InterruptEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled); } /** Get write mode for Slave 4. * When set to 1, the transaction will read or write data only. When cleared to * 0, the transaction will write a register address prior to reading or writing * data. This should equal 0 when specifying the register address within the * Slave device to/from which the ensuing data transaction will take place. * * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only) * @see MPU6050_RA_I2C_SLV4_CTRL */ bool MPU6050::getSlave4WriteMode() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer); return buffer[0]; } /** Set write mode for the Slave 4. * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only) * @see getSlave4WriteMode() * @see MPU6050_RA_I2C_SLV4_CTRL */ void MPU6050::setSlave4WriteMode(bool mode) { I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode); } /** Get Slave 4 master delay value. * This configures the reduced access rate of I2C slaves relative to the Sample * Rate. When a slave's access rate is decreased relative to the Sample Rate, * the slave is accessed every: * * 1 / (1 + I2C_MST_DLY) samples * * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For * further information regarding the Sample Rate, please refer to register 25. * * @return Current Slave 4 master delay value * @see MPU6050_RA_I2C_SLV4_CTRL */ uint8_t MPU6050::getSlave4MasterDelay() { I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer); return buffer[0]; } /** Set Slave 4 master delay value. * @param delay New Slave 4 master delay value * @see getSlave4MasterDelay() * @see MPU6050_RA_I2C_SLV4_CTRL */ void MPU6050::setSlave4MasterDelay(uint8_t delay) { I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay); } /** Get last available byte read from Slave 4. * This register stores the data read from Slave 4. This field is populated * after a read transaction. * @return Last available byte read from to Slave 4 * @see MPU6050_RA_I2C_SLV4_DI */ uint8_t MPU6050::getSlate4InputByte() { I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer); return buffer[0]; } // I2C_MST_STATUS register /** Get FSYNC interrupt status. * This bit reflects the status of the FSYNC interrupt from an external device * into the MPU-60X0. This is used as a way to pass an external interrupt * through the MPU-60X0 to the host application processor. When set to 1, this * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG * (Register 55). * @return FSYNC interrupt status * @see MPU6050_RA_I2C_MST_STATUS */ bool MPU6050::getPassthroughStatus() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer); return buffer[0]; } /** Get Slave 4 transaction done status. * Automatically sets to 1 when a Slave 4 transaction has completed. This * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the * I2C_SLV4_CTRL register (Register 52). * @return Slave 4 transaction done status * @see MPU6050_RA_I2C_MST_STATUS */ bool MPU6050::getSlave4IsDone() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer); return buffer[0]; } /** Get master arbitration lost status. * This bit automatically sets to 1 when the I2C Master has lost arbitration of * the auxiliary I2C bus (an error condition). This triggers an interrupt if the * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted. * @return Master arbitration lost status * @see MPU6050_RA_I2C_MST_STATUS */ bool MPU6050::getLostArbitration() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer); return buffer[0]; } /** Get Slave 4 NACK status. * This bit automatically sets to 1 when the I2C Master receives a NACK in a * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN * bit in the INT_ENABLE register (Register 56) is asserted. * @return Slave 4 NACK interrupt status * @see MPU6050_RA_I2C_MST_STATUS */ bool MPU6050::getSlave4Nack() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer); return buffer[0]; } /** Get Slave 3 NACK status. * This bit automatically sets to 1 when the I2C Master receives a NACK in a * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN * bit in the INT_ENABLE register (Register 56) is asserted. * @return Slave 3 NACK interrupt status * @see MPU6050_RA_I2C_MST_STATUS */ bool MPU6050::getSlave3Nack() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer); return buffer[0]; } /** Get Slave 2 NACK status. * This bit automatically sets to 1 when the I2C Master receives a NACK in a * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN * bit in the INT_ENABLE register (Register 56) is asserted. * @return Slave 2 NACK interrupt status * @see MPU6050_RA_I2C_MST_STATUS */ bool MPU6050::getSlave2Nack() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer); return buffer[0]; } /** Get Slave 1 NACK status. * This bit automatically sets to 1 when the I2C Master receives a NACK in a * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN * bit in the INT_ENABLE register (Register 56) is asserted. * @return Slave 1 NACK interrupt status * @see MPU6050_RA_I2C_MST_STATUS */ bool MPU6050::getSlave1Nack() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer); return buffer[0]; } /** Get Slave 0 NACK status. * This bit automatically sets to 1 when the I2C Master receives a NACK in a * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN * bit in the INT_ENABLE register (Register 56) is asserted. * @return Slave 0 NACK interrupt status * @see MPU6050_RA_I2C_MST_STATUS */ bool MPU6050::getSlave0Nack() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer); return buffer[0]; } // INT_PIN_CFG register /** Get interrupt logic level mode. * Will be set 0 for active-high, 1 for active-low. * @return Current interrupt mode (0=active-high, 1=active-low) * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_INT_LEVEL_BIT */ bool MPU6050::getInterruptMode() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer); return buffer[0]; } /** Set interrupt logic level mode. * @param mode New interrupt mode (0=active-high, 1=active-low) * @see getInterruptMode() * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_INT_LEVEL_BIT */ void MPU6050::setInterruptMode(bool mode) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode); } /** Get interrupt drive mode. * Will be set 0 for push-pull, 1 for open-drain. * @return Current interrupt drive mode (0=push-pull, 1=open-drain) * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_INT_OPEN_BIT */ bool MPU6050::getInterruptDrive() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer); return buffer[0]; } /** Set interrupt drive mode. * @param drive New interrupt drive mode (0=push-pull, 1=open-drain) * @see getInterruptDrive() * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_INT_OPEN_BIT */ void MPU6050::setInterruptDrive(bool drive) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive); } /** Get interrupt latch mode. * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared. * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared) * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_LATCH_INT_EN_BIT */ bool MPU6050::getInterruptLatch() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer); return buffer[0]; } /** Set interrupt latch mode. * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared) * @see getInterruptLatch() * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_LATCH_INT_EN_BIT */ void MPU6050::setInterruptLatch(bool latch) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch); } /** Get interrupt latch clear mode. * Will be set 0 for status-read-only, 1 for any-register-read. * @return Current latch clear mode (0=status-read-only, 1=any-register-read) * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT */ bool MPU6050::getInterruptLatchClear() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer); return buffer[0]; } /** Set interrupt latch clear mode. * @param clear New latch clear mode (0=status-read-only, 1=any-register-read) * @see getInterruptLatchClear() * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT */ void MPU6050::setInterruptLatchClear(bool clear) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear); } /** Get FSYNC interrupt logic level mode. * @return Current FSYNC interrupt mode (0=active-high, 1=active-low) * @see getFSyncInterruptMode() * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT */ bool MPU6050::getFSyncInterruptLevel() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer); return buffer[0]; } /** Set FSYNC interrupt logic level mode. * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low) * @see getFSyncInterruptMode() * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT */ void MPU6050::setFSyncInterruptLevel(bool level) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level); } /** Get FSYNC pin interrupt enabled setting. * Will be set 0 for disabled, 1 for enabled. * @return Current interrupt enabled setting * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT */ bool MPU6050::getFSyncInterruptEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer); return buffer[0]; } /** Set FSYNC pin interrupt enabled setting. * @param enabled New FSYNC pin interrupt enabled setting * @see getFSyncInterruptEnabled() * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT */ void MPU6050::setFSyncInterruptEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled); } /** Get I2C bypass enabled status. * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to * 0, the host application processor will be able to directly access the * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host * application processor will not be able to directly access the auxiliary I2C * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106 * bit[5]). * @return Current I2C bypass enabled status * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT */ bool MPU6050::getI2CBypassEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer); return buffer[0]; } /** Set I2C bypass enabled status. * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to * 0, the host application processor will be able to directly access the * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host * application processor will not be able to directly access the auxiliary I2C * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106 * bit[5]). * @param enabled New I2C bypass enabled status * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT */ void MPU6050::setI2CBypassEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled); } /** Get reference clock output enabled status. * When this bit is equal to 1, a reference clock output is provided at the * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For * further information regarding CLKOUT, please refer to the MPU-60X0 Product * Specification document. * @return Current reference clock output enabled status * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_CLKOUT_EN_BIT */ bool MPU6050::getClockOutputEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer); return buffer[0]; } /** Set reference clock output enabled status. * When this bit is equal to 1, a reference clock output is provided at the * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For * further information regarding CLKOUT, please refer to the MPU-60X0 Product * Specification document. * @param enabled New reference clock output enabled status * @see MPU6050_RA_INT_PIN_CFG * @see MPU6050_INTCFG_CLKOUT_EN_BIT */ void MPU6050::setClockOutputEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled); } // INT_ENABLE register /** Get full interrupt enabled status. * Full register byte for all interrupts, for quick reading. Each bit will be * set 0 for disabled, 1 for enabled. * @return Current interrupt enabled status * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_FF_BIT **/ uint8_t MPU6050::getIntEnabled() { I2Cdev::readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer); return buffer[0]; } /** Set full interrupt enabled status. * Full register byte for all interrupts, for quick reading. Each bit should be * set 0 for disabled, 1 for enabled. * @param enabled New interrupt enabled status * @see getIntFreefallEnabled() * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_FF_BIT **/ void MPU6050::setIntEnabled(uint8_t enabled) { I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled); } /** Get Free Fall interrupt enabled status. * Will be set 0 for disabled, 1 for enabled. * @return Current interrupt enabled status * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_FF_BIT **/ bool MPU6050::getIntFreefallEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer); return buffer[0]; } /** Set Free Fall interrupt enabled status. * @param enabled New interrupt enabled status * @see getIntFreefallEnabled() * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_FF_BIT **/ void MPU6050::setIntFreefallEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled); } /** Get Motion Detection interrupt enabled status. * Will be set 0 for disabled, 1 for enabled. * @return Current interrupt enabled status * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_MOT_BIT **/ bool MPU6050::getIntMotionEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer); return buffer[0]; } /** Set Motion Detection interrupt enabled status. * @param enabled New interrupt enabled status * @see getIntMotionEnabled() * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_MOT_BIT **/ void MPU6050::setIntMotionEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled); } /** Get Zero Motion Detection interrupt enabled status. * Will be set 0 for disabled, 1 for enabled. * @return Current interrupt enabled status * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_ZMOT_BIT **/ bool MPU6050::getIntZeroMotionEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer); return buffer[0]; } /** Set Zero Motion Detection interrupt enabled status. * @param enabled New interrupt enabled status * @see getIntZeroMotionEnabled() * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_ZMOT_BIT **/ void MPU6050::setIntZeroMotionEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled); } /** Get FIFO Buffer Overflow interrupt enabled status. * Will be set 0 for disabled, 1 for enabled. * @return Current interrupt enabled status * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT **/ bool MPU6050::getIntFIFOBufferOverflowEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer); return buffer[0]; } /** Set FIFO Buffer Overflow interrupt enabled status. * @param enabled New interrupt enabled status * @see getIntFIFOBufferOverflowEnabled() * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT **/ void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled); } /** Get I2C Master interrupt enabled status. * This enables any of the I2C Master interrupt sources to generate an * interrupt. Will be set 0 for disabled, 1 for enabled. * @return Current interrupt enabled status * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT **/ bool MPU6050::getIntI2CMasterEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer); return buffer[0]; } /** Set I2C Master interrupt enabled status. * @param enabled New interrupt enabled status * @see getIntI2CMasterEnabled() * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT **/ void MPU6050::setIntI2CMasterEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled); } /** Get Data Ready interrupt enabled setting. * This event occurs each time a write operation to all of the sensor registers * has been completed. Will be set 0 for disabled, 1 for enabled. * @return Current interrupt enabled status * @see MPU6050_RA_INT_ENABLE * @see MPU6050_INTERRUPT_DATA_RDY_BIT */ bool MPU6050::getIntDataReadyEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer); return buffer[0]; } /** Set Data Ready interrupt enabled status. * @param enabled New interrupt enabled status * @see getIntDataReadyEnabled() * @see MPU6050_RA_INT_CFG * @see MPU6050_INTERRUPT_DATA_RDY_BIT */ void MPU6050::setIntDataReadyEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled); } // INT_STATUS register /** Get full set of interrupt status bits. * These bits clear to 0 after the register has been read. Very useful * for getting multiple INT statuses, since each single bit read clears * all of them because it has to read the whole byte. * @return Current interrupt status * @see MPU6050_RA_INT_STATUS */ uint8_t MPU6050::getIntStatus() { I2Cdev::readByte(devAddr, MPU6050_RA_INT_STATUS, buffer); return buffer[0]; } /** Get Free Fall interrupt status. * This bit automatically sets to 1 when a Free Fall interrupt has been * generated. The bit clears to 0 after the register has been read. * @return Current interrupt status * @see MPU6050_RA_INT_STATUS * @see MPU6050_INTERRUPT_FF_BIT */ bool MPU6050::getIntFreefallStatus() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer); return buffer[0]; } /** Get Motion Detection interrupt status. * This bit automatically sets to 1 when a Motion Detection interrupt has been * generated. The bit clears to 0 after the register has been read. * @return Current interrupt status * @see MPU6050_RA_INT_STATUS * @see MPU6050_INTERRUPT_MOT_BIT */ bool MPU6050::getIntMotionStatus() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer); return buffer[0]; } /** Get Zero Motion Detection interrupt status. * This bit automatically sets to 1 when a Zero Motion Detection interrupt has * been generated. The bit clears to 0 after the register has been read. * @return Current interrupt status * @see MPU6050_RA_INT_STATUS * @see MPU6050_INTERRUPT_ZMOT_BIT */ bool MPU6050::getIntZeroMotionStatus() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer); return buffer[0]; } /** Get FIFO Buffer Overflow interrupt status. * This bit automatically sets to 1 when a Free Fall interrupt has been * generated. The bit clears to 0 after the register has been read. * @return Current interrupt status * @see MPU6050_RA_INT_STATUS * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT */ bool MPU6050::getIntFIFOBufferOverflowStatus() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer); return buffer[0]; } /** Get I2C Master interrupt status. * This bit automatically sets to 1 when an I2C Master interrupt has been * generated. For a list of I2C Master interrupts, please refer to Register 54. * The bit clears to 0 after the register has been read. * @return Current interrupt status * @see MPU6050_RA_INT_STATUS * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT */ bool MPU6050::getIntI2CMasterStatus() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer); return buffer[0]; } /** Get Data Ready interrupt status. * This bit automatically sets to 1 when a Data Ready interrupt has been * generated. The bit clears to 0 after the register has been read. * @return Current interrupt status * @see MPU6050_RA_INT_STATUS * @see MPU6050_INTERRUPT_DATA_RDY_BIT */ bool MPU6050::getIntDataReadyStatus() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer); return buffer[0]; } // ACCEL_*OUT_* registers /** Get raw 9-axis motion sensor readings (accel/gyro/compass). * FUNCTION NOT FULLY IMPLEMENTED YET. * @param ax 16-bit signed integer container for accelerometer X-axis value * @param ay 16-bit signed integer container for accelerometer Y-axis value * @param az 16-bit signed integer container for accelerometer Z-axis value * @param gx 16-bit signed integer container for gyroscope X-axis value * @param gy 16-bit signed integer container for gyroscope Y-axis value * @param gz 16-bit signed integer container for gyroscope Z-axis value * @param mx 16-bit signed integer container for magnetometer X-axis value * @param my 16-bit signed integer container for magnetometer Y-axis value * @param mz 16-bit signed integer container for magnetometer Z-axis value * @see getMotion6() * @see getAcceleration() * @see getRotation() * @see MPU6050_RA_ACCEL_XOUT_H */ void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz) { getMotion6(ax, ay, az, gx, gy, gz); // TODO: magnetometer integration } /** Get raw 6-axis motion sensor readings (accel/gyro). * Retrieves all currently available motion sensor values. * @param ax 16-bit signed integer container for accelerometer X-axis value * @param ay 16-bit signed integer container for accelerometer Y-axis value * @param az 16-bit signed integer container for accelerometer Z-axis value * @param gx 16-bit signed integer container for gyroscope X-axis value * @param gy 16-bit signed integer container for gyroscope Y-axis value * @param gz 16-bit signed integer container for gyroscope Z-axis value * @see getAcceleration() * @see getRotation() * @see MPU6050_RA_ACCEL_XOUT_H */ void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz) { I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer); *ax = (((int16_t)buffer[0]) << 8) | buffer[1]; *ay = (((int16_t)buffer[2]) << 8) | buffer[3]; *az = (((int16_t)buffer[4]) << 8) | buffer[5]; *gx = (((int16_t)buffer[8]) << 8) | buffer[9]; *gy = (((int16_t)buffer[10]) << 8) | buffer[11]; *gz = (((int16_t)buffer[12]) << 8) | buffer[13]; } /** Get 3-axis accelerometer readings. * These registers store the most recent accelerometer measurements. * Accelerometer measurements are written to these registers at the Sample Rate * as defined in Register 25. * * The accelerometer measurement registers, along with the temperature * measurement registers, gyroscope measurement registers, and external sensor * data registers, are composed of two sets of registers: an internal register * set and a user-facing read register set. * * The data within the accelerometer sensors' internal register set is always * updated at the Sample Rate. Meanwhile, the user-facing read register set * duplicates the internal register set's data values whenever the serial * interface is idle. This guarantees that a burst read of sensor registers will * read measurements from the same sampling instant. Note that if burst reads * are not used, the user is responsible for ensuring a set of single byte reads * correspond to a single sampling instant by checking the Data Ready interrupt. * * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS * (Register 28). For each full scale setting, the accelerometers' sensitivity * per LSB in ACCEL_xOUT is shown in the table below: * * <pre> * AFS_SEL | Full Scale Range | LSB Sensitivity * --------+------------------+---------------- * 0 | +/- 2g | 8192 LSB/mg * 1 | +/- 4g | 4096 LSB/mg * 2 | +/- 8g | 2048 LSB/mg * 3 | +/- 16g | 1024 LSB/mg * </pre> * * @param x 16-bit signed integer container for X-axis acceleration * @param y 16-bit signed integer container for Y-axis acceleration * @param z 16-bit signed integer container for Z-axis acceleration * @see MPU6050_RA_GYRO_XOUT_H */ void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z) { I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer); *x = (((int16_t)buffer[0]) << 8) | buffer[1]; *y = (((int16_t)buffer[2]) << 8) | buffer[3]; *z = (((int16_t)buffer[4]) << 8) | buffer[5]; } /** Get X-axis accelerometer reading. * @return X-axis acceleration measurement in 16-bit 2's complement format * @see getMotion6() * @see MPU6050_RA_ACCEL_XOUT_H */ int16_t MPU6050::getAccelerationX() { I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } /** Get Y-axis accelerometer reading. * @return Y-axis acceleration measurement in 16-bit 2's complement format * @see getMotion6() * @see MPU6050_RA_ACCEL_YOUT_H */ int16_t MPU6050::getAccelerationY() { I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } /** Get Z-axis accelerometer reading. * @return Z-axis acceleration measurement in 16-bit 2's complement format * @see getMotion6() * @see MPU6050_RA_ACCEL_ZOUT_H */ int16_t MPU6050::getAccelerationZ() { I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } // TEMP_OUT_* registers /** Get current internal temperature. * @return Temperature reading in 16-bit 2's complement format * @see MPU6050_RA_TEMP_OUT_H */ int16_t MPU6050::getTemperature() { I2Cdev::readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } // GYRO_*OUT_* registers /** Get 3-axis gyroscope readings. * These gyroscope measurement registers, along with the accelerometer * measurement registers, temperature measurement registers, and external sensor * data registers, are composed of two sets of registers: an internal register * set and a user-facing read register set. * The data within the gyroscope sensors' internal register set is always * updated at the Sample Rate. Meanwhile, the user-facing read register set * duplicates the internal register set's data values whenever the serial * interface is idle. This guarantees that a burst read of sensor registers will * read measurements from the same sampling instant. Note that if burst reads * are not used, the user is responsible for ensuring a set of single byte reads * correspond to a single sampling instant by checking the Data Ready interrupt. * * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL * (Register 27). For each full scale setting, the gyroscopes' sensitivity per * LSB in GYRO_xOUT is shown in the table below: * * <pre> * FS_SEL | Full Scale Range | LSB Sensitivity * -------+--------------------+---------------- * 0 | +/- 250 degrees/s | 131 LSB/deg/s * 1 | +/- 500 degrees/s | 65.5 LSB/deg/s * 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s * 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s * </pre> * * @param x 16-bit signed integer container for X-axis rotation * @param y 16-bit signed integer container for Y-axis rotation * @param z 16-bit signed integer container for Z-axis rotation * @see getMotion6() * @see MPU6050_RA_GYRO_XOUT_H */ void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z) { I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer); *x = (((int16_t)buffer[0]) << 8) | buffer[1]; *y = (((int16_t)buffer[2]) << 8) | buffer[3]; *z = (((int16_t)buffer[4]) << 8) | buffer[5]; } /** Get X-axis gyroscope reading. * @return X-axis rotation measurement in 16-bit 2's complement format * @see getMotion6() * @see MPU6050_RA_GYRO_XOUT_H */ int16_t MPU6050::getRotationX() { I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } /** Get Y-axis gyroscope reading. * @return Y-axis rotation measurement in 16-bit 2's complement format * @see getMotion6() * @see MPU6050_RA_GYRO_YOUT_H */ int16_t MPU6050::getRotationY() { I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } /** Get Z-axis gyroscope reading. * @return Z-axis rotation measurement in 16-bit 2's complement format * @see getMotion6() * @see MPU6050_RA_GYRO_ZOUT_H */ int16_t MPU6050::getRotationZ() { I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } // EXT_SENS_DATA_* registers /** Read single byte from external sensor data register. * These registers store data read from external sensors by the Slave 0, 1, 2, * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in * I2C_SLV4_DI (Register 53). * * External sensor data is written to these registers at the Sample Rate as * defined in Register 25. This access rate can be reduced by using the Slave * Delay Enable registers (Register 103). * * External sensor data registers, along with the gyroscope measurement * registers, accelerometer measurement registers, and temperature measurement * registers, are composed of two sets of registers: an internal register set * and a user-facing read register set. * * The data within the external sensors' internal register set is always updated * at the Sample Rate (or the reduced access rate) whenever the serial interface * is idle. This guarantees that a burst read of sensor registers will read * measurements from the same sampling instant. Note that if burst reads are not * used, the user is responsible for ensuring a set of single byte reads * correspond to a single sampling instant by checking the Data Ready interrupt. * * Data is placed in these external sensor data registers according to * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39, * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as * defined in Register 25) or delayed rate (if specified in Register 52 and * 103). During each Sample cycle, slave reads are performed in order of Slave * number. If all slaves are enabled with more than zero bytes to be read, the * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3. * * Each enabled slave will have EXT_SENS_DATA registers associated with it by * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may * change the higher numbered slaves' associated registers. Furthermore, if * fewer total bytes are being read from the external sensors as a result of * such a change, then the data remaining in the registers which no longer have * an associated slave device (i.e. high numbered registers) will remain in * these previously allocated registers unless reset. * * If the sum of the read lengths of all SLVx transactions exceed the number of * available EXT_SENS_DATA registers, the excess bytes will be dropped. There * are 24 EXT_SENS_DATA registers and hence the total read lengths between all * the slaves cannot be greater than 24 or some bytes will be lost. * * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further * information regarding the characteristics of Slave 4, please refer to * Registers 49 to 53. * * EXAMPLE: * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00 * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05 * will be associated with Slave 1. If Slave 2 is enabled as well, registers * starting from EXT_SENS_DATA_06 will be allocated to Slave 2. * * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3 * instead. * * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE: * If a slave is disabled at any time, the space initially allocated to the * slave in the EXT_SENS_DATA register, will remain associated with that slave. * This is to avoid dynamic adjustment of the register allocation. * * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106). * * This above is also true if one of the slaves gets NACKed and stops * functioning. * * @param position Starting position (0-23) * @return Byte read from register */ uint8_t MPU6050::getExternalSensorByte(int position) { I2Cdev::readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer); return buffer[0]; } /** Read word (2 bytes) from external sensor data registers. * @param position Starting position (0-21) * @return Word read from register * @see getExternalSensorByte() */ uint16_t MPU6050::getExternalSensorWord(int position) { I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer); return (((uint16_t)buffer[0]) << 8) | buffer[1]; } /** Read double word (4 bytes) from external sensor data registers. * @param position Starting position (0-20) * @return Double word read from registers * @see getExternalSensorByte() */ uint32_t MPU6050::getExternalSensorDWord(int position) { I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer); return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3]; } // MOT_DETECT_STATUS register /** Get full motion detection status register content (all bits). * @return Motion detection status byte * @see MPU6050_RA_MOT_DETECT_STATUS */ uint8_t MPU6050::getMotionStatus() { I2Cdev::readByte(devAddr, MPU6050_RA_MOT_DETECT_STATUS, buffer); return buffer[0]; } /** Get X-axis negative motion detection interrupt status. * @return Motion detection status * @see MPU6050_RA_MOT_DETECT_STATUS * @see MPU6050_MOTION_MOT_XNEG_BIT */ bool MPU6050::getXNegMotionDetected() { I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer); return buffer[0]; } /** Get X-axis positive motion detection interrupt status. * @return Motion detection status * @see MPU6050_RA_MOT_DETECT_STATUS * @see MPU6050_MOTION_MOT_XPOS_BIT */ bool MPU6050::getXPosMotionDetected() { I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer); return buffer[0]; } /** Get Y-axis negative motion detection interrupt status. * @return Motion detection status * @see MPU6050_RA_MOT_DETECT_STATUS * @see MPU6050_MOTION_MOT_YNEG_BIT */ bool MPU6050::getYNegMotionDetected() { I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer); return buffer[0]; } /** Get Y-axis positive motion detection interrupt status. * @return Motion detection status * @see MPU6050_RA_MOT_DETECT_STATUS * @see MPU6050_MOTION_MOT_YPOS_BIT */ bool MPU6050::getYPosMotionDetected() { I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer); return buffer[0]; } /** Get Z-axis negative motion detection interrupt status. * @return Motion detection status * @see MPU6050_RA_MOT_DETECT_STATUS * @see MPU6050_MOTION_MOT_ZNEG_BIT */ bool MPU6050::getZNegMotionDetected() { I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer); return buffer[0]; } /** Get Z-axis positive motion detection interrupt status. * @return Motion detection status * @see MPU6050_RA_MOT_DETECT_STATUS * @see MPU6050_MOTION_MOT_ZPOS_BIT */ bool MPU6050::getZPosMotionDetected() { I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer); return buffer[0]; } /** Get zero motion detection interrupt status. * @return Motion detection status * @see MPU6050_RA_MOT_DETECT_STATUS * @see MPU6050_MOTION_MOT_ZRMOT_BIT */ bool MPU6050::getZeroMotionDetected() { I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer); return buffer[0]; } // I2C_SLV*_DO register /** Write byte to Data Output container for specified slave. * This register holds the output data written into Slave when Slave is set to * write mode. For further information regarding Slave control, please * refer to Registers 37 to 39 and immediately following. * @param num Slave number (0-3) * @param data Byte to write * @see MPU6050_RA_I2C_SLV0_DO */ void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data) { if (num > 3) return; I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data); } // I2C_MST_DELAY_CTRL register /** Get external data shadow delay enabled status. * This register is used to specify the timing of external sensor data * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external * sensor data is delayed until all data has been received. * @return Current external data shadow delay enabled status. * @see MPU6050_RA_I2C_MST_DELAY_CTRL * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT */ bool MPU6050::getExternalShadowDelayEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer); return buffer[0]; } /** Set external data shadow delay enabled status. * @param enabled New external data shadow delay enabled status. * @see getExternalShadowDelayEnabled() * @see MPU6050_RA_I2C_MST_DELAY_CTRL * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT */ void MPU6050::setExternalShadowDelayEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled); } /** Get slave delay enabled status. * When a particular slave delay is enabled, the rate of access for the that * slave device is reduced. When a slave's access rate is decreased relative to * the Sample Rate, the slave is accessed every: * * 1 / (1 + I2C_MST_DLY) Samples * * This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25) * and DLPF_CFG (register 26). * * For further information regarding I2C_MST_DLY, please refer to register 52. * For further information regarding the Sample Rate, please refer to register 25. * * @param num Slave number (0-4) * @return Current slave delay enabled status. * @see MPU6050_RA_I2C_MST_DELAY_CTRL * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT */ bool MPU6050::getSlaveDelayEnabled(uint8_t num) { // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc. if (num > 4) return 0; I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer); return buffer[0]; } /** Set slave delay enabled status. * @param num Slave number (0-4) * @param enabled New slave delay enabled status. * @see MPU6050_RA_I2C_MST_DELAY_CTRL * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT */ void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled); } // SIGNAL_PATH_RESET register /** Reset gyroscope signal path. * The reset will revert the signal path analog to digital converters and * filters to their power up configurations. * @see MPU6050_RA_SIGNAL_PATH_RESET * @see MPU6050_PATHRESET_GYRO_RESET_BIT */ void MPU6050::resetGyroscopePath() { I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true); } /** Reset accelerometer signal path. * The reset will revert the signal path analog to digital converters and * filters to their power up configurations. * @see MPU6050_RA_SIGNAL_PATH_RESET * @see MPU6050_PATHRESET_ACCEL_RESET_BIT */ void MPU6050::resetAccelerometerPath() { I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true); } /** Reset temperature sensor signal path. * The reset will revert the signal path analog to digital converters and * filters to their power up configurations. * @see MPU6050_RA_SIGNAL_PATH_RESET * @see MPU6050_PATHRESET_TEMP_RESET_BIT */ void MPU6050::resetTemperaturePath() { I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true); } // MOT_DETECT_CTRL register /** Get accelerometer power-on delay. * The accelerometer data path provides samples to the sensor registers, Motion * detection, Zero Motion detection, and Free Fall detection modules. The * signal path contains filters which must be flushed on wake-up with new * samples before the detection modules begin operations. The default wake-up * delay, of 4ms can be lengthened by up to 3ms. This additional delay is * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select * any value above zero unless instructed otherwise by InvenSense. Please refer * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for * further information regarding the detection modules. * @return Current accelerometer power-on delay * @see MPU6050_RA_MOT_DETECT_CTRL * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT */ uint8_t MPU6050::getAccelerometerPowerOnDelay() { I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer); return buffer[0]; } /** Set accelerometer power-on delay. * @param delay New accelerometer power-on delay (0-3) * @see getAccelerometerPowerOnDelay() * @see MPU6050_RA_MOT_DETECT_CTRL * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT */ void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay) { I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay); } /** Get Free Fall detection counter decrement configuration. * Detection is registered by the Free Fall detection module after accelerometer * measurements meet their respective threshold conditions over a specified * number of samples. When the threshold conditions are met, the corresponding * detection counter increments by 1. The user may control the rate at which the * detection counter decrements when the threshold condition is not met by * configuring FF_COUNT. The decrement rate can be set according to the * following table: * * <pre> * FF_COUNT | Counter Decrement * ---------+------------------ * 0 | Reset * 1 | 1 * 2 | 2 * 3 | 4 * </pre> * * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will * reset the counter to 0. For further information on Free Fall detection, * please refer to Registers 29 to 32. * * @return Current decrement configuration * @see MPU6050_RA_MOT_DETECT_CTRL * @see MPU6050_DETECT_FF_COUNT_BIT */ uint8_t MPU6050::getFreefallDetectionCounterDecrement() { I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer); return buffer[0]; } /** Set Free Fall detection counter decrement configuration. * @param decrement New decrement configuration value * @see getFreefallDetectionCounterDecrement() * @see MPU6050_RA_MOT_DETECT_CTRL * @see MPU6050_DETECT_FF_COUNT_BIT */ void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement) { I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement); } /** Get Motion detection counter decrement configuration. * Detection is registered by the Motion detection module after accelerometer * measurements meet their respective threshold conditions over a specified * number of samples. When the threshold conditions are met, the corresponding * detection counter increments by 1. The user may control the rate at which the * detection counter decrements when the threshold condition is not met by * configuring MOT_COUNT. The decrement rate can be set according to the * following table: * * <pre> * MOT_COUNT | Counter Decrement * ----------+------------------ * 0 | Reset * 1 | 1 * 2 | 2 * 3 | 4 * </pre> * * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will * reset the counter to 0. For further information on Motion detection, * please refer to Registers 29 to 32. * */ uint8_t MPU6050::getMotionDetectionCounterDecrement() { I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer); return buffer[0]; } /** Set Motion detection counter decrement configuration. * @param decrement New decrement configuration value * @see getMotionDetectionCounterDecrement() * @see MPU6050_RA_MOT_DETECT_CTRL * @see MPU6050_DETECT_MOT_COUNT_BIT */ void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement) { I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement); } // USER_CTRL register /** Get FIFO enabled status. * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer * cannot be written to or read from while disabled. The FIFO buffer's state * does not change unless the MPU-60X0 is power cycled. * @return Current FIFO enabled status * @see MPU6050_RA_USER_CTRL * @see MPU6050_USERCTRL_FIFO_EN_BIT */ bool MPU6050::getFIFOEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer); return buffer[0]; } /** Set FIFO enabled status. * @param enabled New FIFO enabled status * @see getFIFOEnabled() * @see MPU6050_RA_USER_CTRL * @see MPU6050_USERCTRL_FIFO_EN_BIT */ void MPU6050::setFIFOEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled); } /** Get I2C Master Mode enabled status. * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the * external sensor slave devices on the auxiliary I2C bus. When this bit is * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically * driven by the primary I2C bus (SDA and SCL). This is a precondition to * enabling Bypass Mode. For further information regarding Bypass Mode, please * refer to Register 55. * @return Current I2C Master Mode enabled status * @see MPU6050_RA_USER_CTRL * @see MPU6050_USERCTRL_I2C_MST_EN_BIT */ bool MPU6050::getI2CMasterModeEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer); return buffer[0]; } /** Set I2C Master Mode enabled status. * @param enabled New I2C Master Mode enabled status * @see getI2CMasterModeEnabled() * @see MPU6050_RA_USER_CTRL * @see MPU6050_USERCTRL_I2C_MST_EN_BIT */ void MPU6050::setI2CMasterModeEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled); } /** Switch from I2C to SPI mode (MPU-6000 only) * If this is set, the primary SPI interface will be enabled in place of the * disabled primary I2C interface. */ void MPU6050::switchSPIEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled); } /** Reset the FIFO. * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This * bit automatically clears to 0 after the reset has been triggered. * @see MPU6050_RA_USER_CTRL * @see MPU6050_USERCTRL_FIFO_RESET_BIT */ void MPU6050::resetFIFO() { I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true); } /** Reset the I2C Master. * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0. * This bit automatically clears to 0 after the reset has been triggered. * @see MPU6050_RA_USER_CTRL * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT */ void MPU6050::resetI2CMaster() { I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true); } /** Reset all sensor registers and signal paths. * When set to 1, this bit resets the signal paths for all sensors (gyroscopes, * accelerometers, and temperature sensor). This operation will also clear the * sensor registers. This bit automatically clears to 0 after the reset has been * triggered. * * When resetting only the signal path (and not the sensor registers), please * use Register 104, SIGNAL_PATH_RESET. * * @see MPU6050_RA_USER_CTRL * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT */ void MPU6050::resetSensors() { I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true); } // PWR_MGMT_1 register /** Trigger a full device reset. * A small delay of ~50ms may be desirable after triggering a reset. * @see MPU6050_RA_PWR_MGMT_1 * @see MPU6050_PWR1_DEVICE_RESET_BIT */ void MPU6050::reset() { I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true); } /** Get sleep mode status. * Setting the SLEEP bit in the register puts the device into very low power * sleep mode. In this mode, only the serial interface and internal registers * remain active, allowing for a very low standby current. Clearing this bit * puts the device back into normal mode. To save power, the individual standby * selections for each of the gyros should be used if any gyro axis is not used * by the application. * @return Current sleep mode enabled status * @see MPU6050_RA_PWR_MGMT_1 * @see MPU6050_PWR1_SLEEP_BIT */ bool MPU6050::getSleepEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer); return buffer[0]; } /** Set sleep mode status. * @param enabled New sleep mode enabled status * @see getSleepEnabled() * @see MPU6050_RA_PWR_MGMT_1 * @see MPU6050_PWR1_SLEEP_BIT */ void MPU6050::setSleepEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled); } /** Get wake cycle enabled status. * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle * between sleep mode and waking up to take a single sample of data from active * sensors at a rate determined by LP_WAKE_CTRL (register 108). * @return Current sleep mode enabled status * @see MPU6050_RA_PWR_MGMT_1 * @see MPU6050_PWR1_CYCLE_BIT */ bool MPU6050::getWakeCycleEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer); return buffer[0]; } /** Set wake cycle enabled status. * @param enabled New sleep mode enabled status * @see getWakeCycleEnabled() * @see MPU6050_RA_PWR_MGMT_1 * @see MPU6050_PWR1_CYCLE_BIT */ void MPU6050::setWakeCycleEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled); } /** Get temperature sensor enabled status. * Control the usage of the internal temperature sensor. * * Note: this register stores the *disabled* value, but for consistency with the * rest of the code, the function is named and used with standard true/false * values to indicate whether the sensor is enabled or disabled, respectively. * * @return Current temperature sensor enabled status * @see MPU6050_RA_PWR_MGMT_1 * @see MPU6050_PWR1_TEMP_DIS_BIT */ bool MPU6050::getTempSensorEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer); return buffer[0] == 0; // 1 is actually disabled here } /** Set temperature sensor enabled status. * Note: this register stores the *disabled* value, but for consistency with the * rest of the code, the function is named and used with standard true/false * values to indicate whether the sensor is enabled or disabled, respectively. * * @param enabled New temperature sensor enabled status * @see getTempSensorEnabled() * @see MPU6050_RA_PWR_MGMT_1 * @see MPU6050_PWR1_TEMP_DIS_BIT */ void MPU6050::setTempSensorEnabled(bool enabled) { // 1 is actually disabled here I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled); } /** Get clock source setting. * @return Current clock source setting * @see MPU6050_RA_PWR_MGMT_1 * @see MPU6050_PWR1_CLKSEL_BIT * @see MPU6050_PWR1_CLKSEL_LENGTH */ uint8_t MPU6050::getClockSource() { I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer); return buffer[0]; } /** Set clock source setting. * An internal 8MHz oscillator, gyroscope based clock, or external sources can * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator * or an external source is chosen as the clock source, the MPU-60X0 can operate * in low power modes with the gyroscopes disabled. * * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator. * However, it is highly recommended that the device be configured to use one of * the gyroscopes (or an external clock source) as the clock reference for * improved stability. The clock source can be selected according to the following table: * * <pre> * CLK_SEL | Clock Source * --------+-------------------------------------- * 0 | Internal oscillator * 1 | PLL with X Gyro reference * 2 | PLL with Y Gyro reference * 3 | PLL with Z Gyro reference * 4 | PLL with external 32.768kHz reference * 5 | PLL with external 19.2MHz reference * 6 | Reserved * 7 | Stops the clock and keeps the timing generator in reset * </pre> * * @param source New clock source setting * @see getClockSource() * @see MPU6050_RA_PWR_MGMT_1 * @see MPU6050_PWR1_CLKSEL_BIT * @see MPU6050_PWR1_CLKSEL_LENGTH */ void MPU6050::setClockSource(uint8_t source) { I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source); } // PWR_MGMT_2 register /** Get wake frequency in Accel-Only Low Power Mode. * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode, * the device will power off all devices except for the primary I2C interface, * waking only the accelerometer at fixed intervals to take a single * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL * as shown below: * * <pre> * LP_WAKE_CTRL | Wake-up Frequency * -------------+------------------ * 0 | 1.25 Hz * 1 | 2.5 Hz * 2 | 5 Hz * 3 | 10 Hz * </pre> * * For further information regarding the MPU-60X0's power modes, please refer to * Register 107. * * @return Current wake frequency * @see MPU6050_RA_PWR_MGMT_2 */ uint8_t MPU6050::getWakeFrequency() { I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer); return buffer[0]; } /** Set wake frequency in Accel-Only Low Power Mode. * @param frequency New wake frequency * @see MPU6050_RA_PWR_MGMT_2 */ void MPU6050::setWakeFrequency(uint8_t frequency) { I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency); } /** Get X-axis accelerometer standby enabled status. * If enabled, the X-axis will not gather or report data (or use power). * @return Current X-axis standby enabled status * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_XA_BIT */ bool MPU6050::getStandbyXAccelEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer); return buffer[0]; } /** Set X-axis accelerometer standby enabled status. * @param New X-axis standby enabled status * @see getStandbyXAccelEnabled() * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_XA_BIT */ void MPU6050::setStandbyXAccelEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled); } /** Get Y-axis accelerometer standby enabled status. * If enabled, the Y-axis will not gather or report data (or use power). * @return Current Y-axis standby enabled status * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_YA_BIT */ bool MPU6050::getStandbyYAccelEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer); return buffer[0]; } /** Set Y-axis accelerometer standby enabled status. * @param New Y-axis standby enabled status * @see getStandbyYAccelEnabled() * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_YA_BIT */ void MPU6050::setStandbyYAccelEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled); } /** Get Z-axis accelerometer standby enabled status. * If enabled, the Z-axis will not gather or report data (or use power). * @return Current Z-axis standby enabled status * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_ZA_BIT */ bool MPU6050::getStandbyZAccelEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer); return buffer[0]; } /** Set Z-axis accelerometer standby enabled status. * @param New Z-axis standby enabled status * @see getStandbyZAccelEnabled() * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_ZA_BIT */ void MPU6050::setStandbyZAccelEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled); } /** Get X-axis gyroscope standby enabled status. * If enabled, the X-axis will not gather or report data (or use power). * @return Current X-axis standby enabled status * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_XG_BIT */ bool MPU6050::getStandbyXGyroEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer); return buffer[0]; } /** Set X-axis gyroscope standby enabled status. * @param New X-axis standby enabled status * @see getStandbyXGyroEnabled() * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_XG_BIT */ void MPU6050::setStandbyXGyroEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled); } /** Get Y-axis gyroscope standby enabled status. * If enabled, the Y-axis will not gather or report data (or use power). * @return Current Y-axis standby enabled status * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_YG_BIT */ bool MPU6050::getStandbyYGyroEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer); return buffer[0]; } /** Set Y-axis gyroscope standby enabled status. * @param New Y-axis standby enabled status * @see getStandbyYGyroEnabled() * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_YG_BIT */ void MPU6050::setStandbyYGyroEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled); } /** Get Z-axis gyroscope standby enabled status. * If enabled, the Z-axis will not gather or report data (or use power). * @return Current Z-axis standby enabled status * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_ZG_BIT */ bool MPU6050::getStandbyZGyroEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer); return buffer[0]; } /** Set Z-axis gyroscope standby enabled status. * @param New Z-axis standby enabled status * @see getStandbyZGyroEnabled() * @see MPU6050_RA_PWR_MGMT_2 * @see MPU6050_PWR2_STBY_ZG_BIT */ void MPU6050::setStandbyZGyroEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled); } // FIFO_COUNT* registers /** Get current FIFO buffer size. * This value indicates the number of bytes stored in the FIFO buffer. This * number is in turn the number of bytes that can be read from the FIFO buffer * and it is directly proportional to the number of samples available given the * set of sensor data bound to be stored in the FIFO (register 35 and 36). * @return Current FIFO buffer size */ uint16_t MPU6050::getFIFOCount() { I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer); return (((uint16_t)buffer[0]) << 8) | buffer[1]; } // FIFO_R_W register /** Get byte from FIFO buffer. * This register is used to read and write data from the FIFO buffer. Data is * written to the FIFO in order of register number (from lowest to highest). If * all the FIFO enable flags (see below) are enabled and all External Sensor * Data registers (Registers 73 to 96) are associated with a Slave device, the * contents of registers 59 through 96 will be written in order at the Sample * Rate. * * The contents of the sensor data registers (Registers 59 to 96) are written * into the FIFO buffer when their corresponding FIFO enable flags are set to 1 * in FIFO_EN (Register 35). An additional flag for the sensor data registers * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36). * * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is * automatically set to 1. This bit is located in INT_STATUS (Register 58). * When the FIFO buffer has overflowed, the oldest data will be lost and new * data will be written to the FIFO. * * If the FIFO buffer is empty, reading this register will return the last byte * that was previously read from the FIFO until new data is available. The user * should check FIFO_COUNT to ensure that the FIFO buffer is not read when * empty. * * @return Byte from FIFO buffer */ uint8_t MPU6050::getFIFOByte() { I2Cdev::readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer); return buffer[0]; } void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length) { if(length > 0){ I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data); } else { *data = 0; } } /** Write byte to FIFO buffer. * @see getFIFOByte() * @see MPU6050_RA_FIFO_R_W */ void MPU6050::setFIFOByte(uint8_t data) { I2Cdev::writeByte(devAddr, MPU6050_RA_FIFO_R_W, data); } // WHO_AM_I register /** Get Device ID. * This register is used to verify the identity of the device (0b110100, 0x34). * @return Device ID (6 bits only! should be 0x34) * @see MPU6050_RA_WHO_AM_I * @see MPU6050_WHO_AM_I_BIT * @see MPU6050_WHO_AM_I_LENGTH */ uint8_t MPU6050::getDeviceID() { I2Cdev::readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer); return buffer[0]; } /** Set Device ID. * Write a new ID into the WHO_AM_I register (no idea why this should ever be * necessary though). * @param id New device ID to set. * @see getDeviceID() * @see MPU6050_RA_WHO_AM_I * @see MPU6050_WHO_AM_I_BIT * @see MPU6050_WHO_AM_I_LENGTH */ void MPU6050::setDeviceID(uint8_t id) { I2Cdev::writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id); } // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ======== // XG_OFFS_TC register uint8_t MPU6050::getOTPBankValid() { I2Cdev::readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer); return buffer[0]; } void MPU6050::setOTPBankValid(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled); } int8_t MPU6050::getXGyroOffsetTC() { I2Cdev::readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer); return buffer[0]; } void MPU6050::setXGyroOffsetTC(int8_t offset) { I2Cdev::writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset); } // YG_OFFS_TC register int8_t MPU6050::getYGyroOffsetTC() { I2Cdev::readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer); return buffer[0]; } void MPU6050::setYGyroOffsetTC(int8_t offset) { I2Cdev::writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset); } // ZG_OFFS_TC register int8_t MPU6050::getZGyroOffsetTC() { I2Cdev::readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer); return buffer[0]; } void MPU6050::setZGyroOffsetTC(int8_t offset) { I2Cdev::writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset); } // X_FINE_GAIN register int8_t MPU6050::getXFineGain() { I2Cdev::readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer); return buffer[0]; } void MPU6050::setXFineGain(int8_t gain) { I2Cdev::writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain); } // Y_FINE_GAIN register int8_t MPU6050::getYFineGain() { I2Cdev::readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer); return buffer[0]; } void MPU6050::setYFineGain(int8_t gain) { I2Cdev::writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain); } // Z_FINE_GAIN register int8_t MPU6050::getZFineGain() { I2Cdev::readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer); return buffer[0]; } void MPU6050::setZFineGain(int8_t gain) { I2Cdev::writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain); } // XA_OFFS_* registers int16_t MPU6050::getXAccelOffset() { I2Cdev::readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } void MPU6050::setXAccelOffset(int16_t offset) { I2Cdev::writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset); } // YA_OFFS_* register int16_t MPU6050::getYAccelOffset() { I2Cdev::readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } void MPU6050::setYAccelOffset(int16_t offset) { I2Cdev::writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset); } // ZA_OFFS_* register int16_t MPU6050::getZAccelOffset() { I2Cdev::readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } void MPU6050::setZAccelOffset(int16_t offset) { I2Cdev::writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset); } // XG_OFFS_USR* registers int16_t MPU6050::getXGyroOffset() { I2Cdev::readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } void MPU6050::setXGyroOffset(int16_t offset) { I2Cdev::writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset); } // YG_OFFS_USR* register int16_t MPU6050::getYGyroOffset() { I2Cdev::readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } void MPU6050::setYGyroOffset(int16_t offset) { I2Cdev::writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset); } // ZG_OFFS_USR* register int16_t MPU6050::getZGyroOffset() { I2Cdev::readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer); return (((int16_t)buffer[0]) << 8) | buffer[1]; } void MPU6050::setZGyroOffset(int16_t offset) { I2Cdev::writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset); } // INT_ENABLE register (DMP functions) bool MPU6050::getIntPLLReadyEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer); return buffer[0]; } void MPU6050::setIntPLLReadyEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled); } bool MPU6050::getIntDMPEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer); return buffer[0]; } void MPU6050::setIntDMPEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled); } // DMP_INT_STATUS bool MPU6050::getDMPInt5Status() { I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer); return buffer[0]; } bool MPU6050::getDMPInt4Status() { I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer); return buffer[0]; } bool MPU6050::getDMPInt3Status() { I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer); return buffer[0]; } bool MPU6050::getDMPInt2Status() { I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer); return buffer[0]; } bool MPU6050::getDMPInt1Status() { I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer); return buffer[0]; } bool MPU6050::getDMPInt0Status() { I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer); return buffer[0]; } // INT_STATUS register (DMP functions) bool MPU6050::getIntPLLReadyStatus() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer); return buffer[0]; } bool MPU6050::getIntDMPStatus() { I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer); return buffer[0]; } // USER_CTRL register (DMP functions) bool MPU6050::getDMPEnabled() { I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer); return buffer[0]; } void MPU6050::setDMPEnabled(bool enabled) { I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled); } void MPU6050::resetDMP() { I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true); } // BANK_SEL register void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank) { bank &= 0x1F; if (userBank) bank |= 0x20; if (prefetchEnabled) bank |= 0x40; I2Cdev::writeByte(devAddr, MPU6050_RA_BANK_SEL, bank); } // MEM_START_ADDR register void MPU6050::setMemoryStartAddress(uint8_t address) { I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address); } // MEM_R_W register uint8_t MPU6050::readMemoryByte() { I2Cdev::readByte(devAddr, MPU6050_RA_MEM_R_W, buffer); return buffer[0]; } void MPU6050::writeMemoryByte(uint8_t data) { I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_R_W, data); } void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address) { setMemoryBank(bank); setMemoryStartAddress(address); uint8_t chunkSize; for (uint16_t i = 0; i < dataSize;) { // determine correct chunk size according to bank position and data size chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE; // make sure we don't go past the data size if (i + chunkSize > dataSize) chunkSize = dataSize - i; // make sure this chunk doesn't go past the bank boundary (256 bytes) if (chunkSize > 256 - address) chunkSize = 256 - address; // read the chunk of data as specified I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i); // increase byte index by [chunkSize] i += chunkSize; // uint8_t automatically wraps to 0 at 256 address += chunkSize; // if we aren't done, update bank (if necessary) and address if (i < dataSize) { if (address == 0) bank++; setMemoryBank(bank); setMemoryStartAddress(address); } } } bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem) { setMemoryBank(bank); setMemoryStartAddress(address); uint8_t chunkSize; uint8_t *verifyBuffer; uint8_t *progBuffer=0; uint16_t i; uint8_t j; if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE); if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE); for (i = 0; i < dataSize;) { // determine correct chunk size according to bank position and data size chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE; // make sure we don't go past the data size if (i + chunkSize > dataSize) chunkSize = dataSize - i; // make sure this chunk doesn't go past the bank boundary (256 bytes) if (chunkSize > 256 - address) chunkSize = 256 - address; if (useProgMem) { // write the chunk of data as specified for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j); } else { // write the chunk of data as specified progBuffer = (uint8_t *)data + i; } I2Cdev::writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer); // verify data if needed if (verify && verifyBuffer) { setMemoryBank(bank); setMemoryStartAddress(address); I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer); if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) { /*Serial.print("Block write verification error, bank "); Serial.print(bank, DEC); Serial.print(", address "); Serial.print(address, DEC); Serial.print("!\nExpected:"); for (j = 0; j < chunkSize; j++) { Serial.print(" 0x"); if (progBuffer[j] < 16) Serial.print("0"); Serial.print(progBuffer[j], HEX); } Serial.print("\nReceived:"); for (uint8_t j = 0; j < chunkSize; j++) { Serial.print(" 0x"); if (verifyBuffer[i + j] < 16) Serial.print("0"); Serial.print(verifyBuffer[i + j], HEX); } Serial.print("\n");*/ free(verifyBuffer); if (useProgMem) free(progBuffer); return false; // uh oh. } } // increase byte index by [chunkSize] i += chunkSize; // uint8_t automatically wraps to 0 at 256 address += chunkSize; // if we aren't done, update bank (if necessary) and address if (i < dataSize) { if (address == 0) bank++; setMemoryBank(bank); setMemoryStartAddress(address); } } if (verify) free(verifyBuffer); if (useProgMem) free(progBuffer); return true; } bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify) { return writeMemoryBlock(data, dataSize, bank, address, verify, true); } bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem) { uint8_t *progBuffer = 0; uint8_t success, special; uint16_t i, j; if (useProgMem) { progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary } // config set data is a long string of blocks with the following structure: // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]] uint8_t bank, offset, length; for (i = 0; i < dataSize;) { if (useProgMem) { bank = pgm_read_byte(data + i++); offset = pgm_read_byte(data + i++); length = pgm_read_byte(data + i++); } else { bank = data[i++]; offset = data[i++]; length = data[i++]; } // write data or perform special action if (length > 0) { // regular block of data to write /*Serial.print("Writing config block to bank "); Serial.print(bank); Serial.print(", offset "); Serial.print(offset); Serial.print(", length="); Serial.println(length);*/ if (useProgMem) { if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length); for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j); } else { progBuffer = (uint8_t *)data + i; } success = writeMemoryBlock(progBuffer, length, bank, offset, true); i += length; } else { // special instruction // NOTE: this kind of behavior (what and when to do certain things) // is totally undocumented. This code is in here based on observed // behavior only, and exactly why (or even whether) it has to be here // is anybody's guess for now. if (useProgMem) { special = pgm_read_byte(data + i++); } else { special = data[i++]; } /*Serial.print("Special command code "); Serial.print(special, HEX); Serial.println(" found...");*/ if (special == 0x01) { // enable DMP-related interrupts //setIntZeroMotionEnabled(true); //setIntFIFOBufferOverflowEnabled(true); //setIntDMPEnabled(true); I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation success = true; } else { // unknown special command success = false; } } if (!success) { if (useProgMem) free(progBuffer); return false; // uh oh } } if (useProgMem) free(progBuffer); return true; } bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize) { return writeDMPConfigurationSet(data, dataSize, true); } // DMP_CFG_1 register uint8_t MPU6050::getDMPConfig1() { I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer); return buffer[0]; } void MPU6050::setDMPConfig1(uint8_t config) { I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config); } // DMP_CFG_2 register uint8_t MPU6050::getDMPConfig2() { I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer); return buffer[0]; } void MPU6050::setDMPConfig2(uint8_t config) { I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config); }