This one compatable with brobot V3, V4, Lab6 Part 3. first commit to BroBot

Dependencies:   I2Cdev

Dependents:   robotcode

Fork of MPU6050_V3 by Carter Sharer

Committer:
csharer
Date:
Fri Nov 11 19:20:34 2016 +0000
Revision:
12:67002f623f48
Parent:
7:d5845b617139
fixed

Who changed what in which revision?

UserRevisionLine numberNew contents of line
garfieldsg 0:662207e34fba 1 #include "MPU6050.h"
garfieldsg 0:662207e34fba 2
garfieldsg 0:662207e34fba 3 /** Default constructor, uses default I2C address.
garfieldsg 0:662207e34fba 4 * @see MPU6050_DEFAULT_ADDRESS
garfieldsg 0:662207e34fba 5 */
syundo0730 6:f38dfe62d74c 6 MPU6050::MPU6050() {
garfieldsg 0:662207e34fba 7 devAddr = MPU6050_DEFAULT_ADDRESS;
garfieldsg 0:662207e34fba 8 }
garfieldsg 0:662207e34fba 9
garfieldsg 0:662207e34fba 10 /** Specific address constructor.
garfieldsg 0:662207e34fba 11 * @param address I2C address
garfieldsg 0:662207e34fba 12 * @see MPU6050_DEFAULT_ADDRESS
garfieldsg 0:662207e34fba 13 * @see MPU6050_ADDRESS_AD0_LOW
garfieldsg 0:662207e34fba 14 * @see MPU6050_ADDRESS_AD0_HIGH
garfieldsg 0:662207e34fba 15 */
syundo0730 6:f38dfe62d74c 16 MPU6050::MPU6050(uint8_t address) {
garfieldsg 0:662207e34fba 17 devAddr = address;
garfieldsg 0:662207e34fba 18 }
garfieldsg 0:662207e34fba 19
garfieldsg 0:662207e34fba 20 /** Power on and prepare for general usage.
garfieldsg 0:662207e34fba 21 * This will activate the device and take it out of sleep mode (which must be done
garfieldsg 0:662207e34fba 22 * after start-up). This function also sets both the accelerometer and the gyroscope
garfieldsg 0:662207e34fba 23 * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
garfieldsg 0:662207e34fba 24 * the clock source to use the X Gyro for reference, which is slightly better than
garfieldsg 0:662207e34fba 25 * the default internal clock source.
garfieldsg 0:662207e34fba 26 */
syundo0730 6:f38dfe62d74c 27 void MPU6050::initialize() {
garfieldsg 0:662207e34fba 28 setClockSource(MPU6050_CLOCK_PLL_XGYRO);
garfieldsg 0:662207e34fba 29 setFullScaleGyroRange(MPU6050_GYRO_FS_250);
garfieldsg 0:662207e34fba 30 setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
garfieldsg 0:662207e34fba 31 setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
garfieldsg 0:662207e34fba 32 }
garfieldsg 0:662207e34fba 33
garfieldsg 0:662207e34fba 34 /** Verify the I2C connection.
garfieldsg 0:662207e34fba 35 * Make sure the device is connected and responds as expected.
garfieldsg 0:662207e34fba 36 * @return True if connection is valid, false otherwise
garfieldsg 0:662207e34fba 37 */
syundo0730 6:f38dfe62d74c 38 bool MPU6050::testConnection() {
syundo0730 6:f38dfe62d74c 39 return getDeviceID() == 0x34;
garfieldsg 0:662207e34fba 40 }
garfieldsg 0:662207e34fba 41
garfieldsg 0:662207e34fba 42 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
garfieldsg 0:662207e34fba 43
garfieldsg 0:662207e34fba 44 /** Get the auxiliary I2C supply voltage level.
garfieldsg 0:662207e34fba 45 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
garfieldsg 0:662207e34fba 46 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
garfieldsg 0:662207e34fba 47 * the MPU-6000, which does not have a VLOGIC pin.
garfieldsg 0:662207e34fba 48 * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
garfieldsg 0:662207e34fba 49 */
syundo0730 6:f38dfe62d74c 50 uint8_t MPU6050::getAuxVDDIOLevel() {
syundo0730 7:d5845b617139 51 I2Cdev::readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
garfieldsg 0:662207e34fba 52 return buffer[0];
garfieldsg 0:662207e34fba 53 }
garfieldsg 0:662207e34fba 54 /** Set the auxiliary I2C supply voltage level.
garfieldsg 0:662207e34fba 55 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
garfieldsg 0:662207e34fba 56 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
garfieldsg 0:662207e34fba 57 * the MPU-6000, which does not have a VLOGIC pin.
garfieldsg 0:662207e34fba 58 * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
garfieldsg 0:662207e34fba 59 */
syundo0730 6:f38dfe62d74c 60 void MPU6050::setAuxVDDIOLevel(uint8_t level) {
syundo0730 7:d5845b617139 61 I2Cdev::writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
garfieldsg 0:662207e34fba 62 }
garfieldsg 0:662207e34fba 63
garfieldsg 0:662207e34fba 64 // SMPLRT_DIV register
garfieldsg 0:662207e34fba 65
garfieldsg 0:662207e34fba 66 /** Get gyroscope output rate divider.
garfieldsg 0:662207e34fba 67 * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
garfieldsg 0:662207e34fba 68 * Motion detection, and Free Fall detection are all based on the Sample Rate.
garfieldsg 0:662207e34fba 69 * The Sample Rate is generated by dividing the gyroscope output rate by
garfieldsg 0:662207e34fba 70 * SMPLRT_DIV:
garfieldsg 0:662207e34fba 71 *
garfieldsg 0:662207e34fba 72 * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
garfieldsg 0:662207e34fba 73 *
garfieldsg 0:662207e34fba 74 * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
garfieldsg 0:662207e34fba 75 * 7), and 1kHz when the DLPF is enabled (see Register 26).
garfieldsg 0:662207e34fba 76 *
garfieldsg 0:662207e34fba 77 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
garfieldsg 0:662207e34fba 78 * Rate greater than 1kHz, the same accelerometer sample may be output to the
garfieldsg 0:662207e34fba 79 * FIFO, DMP, and sensor registers more than once.
garfieldsg 0:662207e34fba 80 *
garfieldsg 0:662207e34fba 81 * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
garfieldsg 0:662207e34fba 82 * of the MPU-6000/MPU-6050 Product Specification document.
garfieldsg 0:662207e34fba 83 *
garfieldsg 0:662207e34fba 84 * @return Current sample rate
garfieldsg 0:662207e34fba 85 * @see MPU6050_RA_SMPLRT_DIV
garfieldsg 0:662207e34fba 86 */
syundo0730 6:f38dfe62d74c 87 uint8_t MPU6050::getRate() {
syundo0730 7:d5845b617139 88 I2Cdev::readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
garfieldsg 0:662207e34fba 89 return buffer[0];
garfieldsg 0:662207e34fba 90 }
garfieldsg 0:662207e34fba 91 /** Set gyroscope sample rate divider.
garfieldsg 0:662207e34fba 92 * @param rate New sample rate divider
garfieldsg 0:662207e34fba 93 * @see getRate()
garfieldsg 0:662207e34fba 94 * @see MPU6050_RA_SMPLRT_DIV
garfieldsg 0:662207e34fba 95 */
syundo0730 6:f38dfe62d74c 96 void MPU6050::setRate(uint8_t rate) {
syundo0730 7:d5845b617139 97 I2Cdev::writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
garfieldsg 0:662207e34fba 98 }
garfieldsg 0:662207e34fba 99
garfieldsg 0:662207e34fba 100 // CONFIG register
garfieldsg 0:662207e34fba 101
garfieldsg 0:662207e34fba 102 /** Get external FSYNC configuration.
garfieldsg 0:662207e34fba 103 * Configures the external Frame Synchronization (FSYNC) pin sampling. An
garfieldsg 0:662207e34fba 104 * external signal connected to the FSYNC pin can be sampled by configuring
garfieldsg 0:662207e34fba 105 * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
garfieldsg 0:662207e34fba 106 * strobes may be captured. The latched FSYNC signal will be sampled at the
garfieldsg 0:662207e34fba 107 * Sampling Rate, as defined in register 25. After sampling, the latch will
garfieldsg 0:662207e34fba 108 * reset to the current FSYNC signal state.
garfieldsg 0:662207e34fba 109 *
garfieldsg 0:662207e34fba 110 * The sampled value will be reported in place of the least significant bit in
garfieldsg 0:662207e34fba 111 * a sensor data register determined by the value of EXT_SYNC_SET according to
garfieldsg 0:662207e34fba 112 * the following table.
garfieldsg 0:662207e34fba 113 *
garfieldsg 0:662207e34fba 114 * <pre>
garfieldsg 0:662207e34fba 115 * EXT_SYNC_SET | FSYNC Bit Location
garfieldsg 0:662207e34fba 116 * -------------+-------------------
garfieldsg 0:662207e34fba 117 * 0 | Input disabled
garfieldsg 0:662207e34fba 118 * 1 | TEMP_OUT_L[0]
garfieldsg 0:662207e34fba 119 * 2 | GYRO_XOUT_L[0]
garfieldsg 0:662207e34fba 120 * 3 | GYRO_YOUT_L[0]
garfieldsg 0:662207e34fba 121 * 4 | GYRO_ZOUT_L[0]
garfieldsg 0:662207e34fba 122 * 5 | ACCEL_XOUT_L[0]
garfieldsg 0:662207e34fba 123 * 6 | ACCEL_YOUT_L[0]
garfieldsg 0:662207e34fba 124 * 7 | ACCEL_ZOUT_L[0]
garfieldsg 0:662207e34fba 125 * </pre>
garfieldsg 0:662207e34fba 126 *
garfieldsg 0:662207e34fba 127 * @return FSYNC configuration value
garfieldsg 0:662207e34fba 128 */
syundo0730 6:f38dfe62d74c 129 uint8_t MPU6050::getExternalFrameSync() {
syundo0730 7:d5845b617139 130 I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
garfieldsg 0:662207e34fba 131 return buffer[0];
garfieldsg 0:662207e34fba 132 }
garfieldsg 0:662207e34fba 133 /** Set external FSYNC configuration.
garfieldsg 0:662207e34fba 134 * @see getExternalFrameSync()
garfieldsg 0:662207e34fba 135 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 136 * @param sync New FSYNC configuration value
garfieldsg 0:662207e34fba 137 */
syundo0730 6:f38dfe62d74c 138 void MPU6050::setExternalFrameSync(uint8_t sync) {
syundo0730 7:d5845b617139 139 I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
garfieldsg 0:662207e34fba 140 }
garfieldsg 0:662207e34fba 141 /** Get digital low-pass filter configuration.
garfieldsg 0:662207e34fba 142 * The DLPF_CFG parameter sets the digital low pass filter configuration. It
garfieldsg 0:662207e34fba 143 * also determines the internal sampling rate used by the device as shown in
garfieldsg 0:662207e34fba 144 * the table below.
garfieldsg 0:662207e34fba 145 *
garfieldsg 0:662207e34fba 146 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
garfieldsg 0:662207e34fba 147 * Rate greater than 1kHz, the same accelerometer sample may be output to the
garfieldsg 0:662207e34fba 148 * FIFO, DMP, and sensor registers more than once.
garfieldsg 0:662207e34fba 149 *
garfieldsg 0:662207e34fba 150 * <pre>
garfieldsg 0:662207e34fba 151 * | ACCELEROMETER | GYROSCOPE
garfieldsg 0:662207e34fba 152 * DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
garfieldsg 0:662207e34fba 153 * ---------+-----------+--------+-----------+--------+-------------
garfieldsg 0:662207e34fba 154 * 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
garfieldsg 0:662207e34fba 155 * 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
garfieldsg 0:662207e34fba 156 * 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
garfieldsg 0:662207e34fba 157 * 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
garfieldsg 0:662207e34fba 158 * 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
garfieldsg 0:662207e34fba 159 * 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
garfieldsg 0:662207e34fba 160 * 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
garfieldsg 0:662207e34fba 161 * 7 | -- Reserved -- | -- Reserved -- | Reserved
garfieldsg 0:662207e34fba 162 * </pre>
garfieldsg 0:662207e34fba 163 *
garfieldsg 0:662207e34fba 164 * @return DLFP configuration
garfieldsg 0:662207e34fba 165 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 166 * @see MPU6050_CFG_DLPF_CFG_BIT
garfieldsg 0:662207e34fba 167 * @see MPU6050_CFG_DLPF_CFG_LENGTH
garfieldsg 0:662207e34fba 168 */
syundo0730 6:f38dfe62d74c 169 uint8_t MPU6050::getDLPFMode() {
syundo0730 7:d5845b617139 170 I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
garfieldsg 0:662207e34fba 171 return buffer[0];
garfieldsg 0:662207e34fba 172 }
garfieldsg 0:662207e34fba 173 /** Set digital low-pass filter configuration.
garfieldsg 0:662207e34fba 174 * @param mode New DLFP configuration setting
garfieldsg 0:662207e34fba 175 * @see getDLPFBandwidth()
garfieldsg 0:662207e34fba 176 * @see MPU6050_DLPF_BW_256
garfieldsg 0:662207e34fba 177 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 178 * @see MPU6050_CFG_DLPF_CFG_BIT
garfieldsg 0:662207e34fba 179 * @see MPU6050_CFG_DLPF_CFG_LENGTH
garfieldsg 0:662207e34fba 180 */
syundo0730 6:f38dfe62d74c 181 void MPU6050::setDLPFMode(uint8_t mode) {
syundo0730 7:d5845b617139 182 I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
garfieldsg 0:662207e34fba 183 }
garfieldsg 0:662207e34fba 184
garfieldsg 0:662207e34fba 185 // GYRO_CONFIG register
garfieldsg 0:662207e34fba 186
garfieldsg 0:662207e34fba 187 /** Get full-scale gyroscope range.
garfieldsg 0:662207e34fba 188 * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
garfieldsg 0:662207e34fba 189 * as described in the table below.
garfieldsg 0:662207e34fba 190 *
garfieldsg 0:662207e34fba 191 * <pre>
garfieldsg 0:662207e34fba 192 * 0 = +/- 250 degrees/sec
garfieldsg 0:662207e34fba 193 * 1 = +/- 500 degrees/sec
garfieldsg 0:662207e34fba 194 * 2 = +/- 1000 degrees/sec
garfieldsg 0:662207e34fba 195 * 3 = +/- 2000 degrees/sec
garfieldsg 0:662207e34fba 196 * </pre>
garfieldsg 0:662207e34fba 197 *
garfieldsg 0:662207e34fba 198 * @return Current full-scale gyroscope range setting
garfieldsg 0:662207e34fba 199 * @see MPU6050_GYRO_FS_250
garfieldsg 0:662207e34fba 200 * @see MPU6050_RA_GYRO_CONFIG
garfieldsg 0:662207e34fba 201 * @see MPU6050_GCONFIG_FS_SEL_BIT
garfieldsg 0:662207e34fba 202 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
garfieldsg 0:662207e34fba 203 */
syundo0730 6:f38dfe62d74c 204 uint8_t MPU6050::getFullScaleGyroRange() {
syundo0730 7:d5845b617139 205 I2Cdev::readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 206 return buffer[0];
garfieldsg 0:662207e34fba 207 }
garfieldsg 0:662207e34fba 208 /** Set full-scale gyroscope range.
garfieldsg 0:662207e34fba 209 * @param range New full-scale gyroscope range value
garfieldsg 0:662207e34fba 210 * @see getFullScaleRange()
garfieldsg 0:662207e34fba 211 * @see MPU6050_GYRO_FS_250
garfieldsg 0:662207e34fba 212 * @see MPU6050_RA_GYRO_CONFIG
garfieldsg 0:662207e34fba 213 * @see MPU6050_GCONFIG_FS_SEL_BIT
garfieldsg 0:662207e34fba 214 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
garfieldsg 0:662207e34fba 215 */
syundo0730 6:f38dfe62d74c 216 void MPU6050::setFullScaleGyroRange(uint8_t range) {
syundo0730 7:d5845b617139 217 I2Cdev::writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
syundo0730 7:d5845b617139 218 }
syundo0730 7:d5845b617139 219
syundo0730 7:d5845b617139 220 // SELF TEST FACTORY TRIM VALUES
syundo0730 7:d5845b617139 221
syundo0730 7:d5845b617139 222 /** Get self-test factory trim value for accelerometer X axis.
syundo0730 7:d5845b617139 223 * @return factory trim value
syundo0730 7:d5845b617139 224 * @see MPU6050_RA_SELF_TEST_X
syundo0730 7:d5845b617139 225 */
syundo0730 7:d5845b617139 226 uint8_t MPU6050::getAccelXSelfTestFactoryTrim() {
syundo0730 7:d5845b617139 227 I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_X, &buffer[0]);
syundo0730 7:d5845b617139 228 I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_A, &buffer[1]);
syundo0730 7:d5845b617139 229 return (buffer[0]>>3) | ((buffer[1]>>4) & 0x03);
syundo0730 7:d5845b617139 230 }
syundo0730 7:d5845b617139 231
syundo0730 7:d5845b617139 232 /** Get self-test factory trim value for accelerometer Y axis.
syundo0730 7:d5845b617139 233 * @return factory trim value
syundo0730 7:d5845b617139 234 * @see MPU6050_RA_SELF_TEST_Y
syundo0730 7:d5845b617139 235 */
syundo0730 7:d5845b617139 236 uint8_t MPU6050::getAccelYSelfTestFactoryTrim() {
syundo0730 7:d5845b617139 237 I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_Y, &buffer[0]);
syundo0730 7:d5845b617139 238 I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_A, &buffer[1]);
syundo0730 7:d5845b617139 239 return (buffer[0]>>3) | ((buffer[1]>>2) & 0x03);
syundo0730 7:d5845b617139 240 }
syundo0730 7:d5845b617139 241
syundo0730 7:d5845b617139 242 /** Get self-test factory trim value for accelerometer Z axis.
syundo0730 7:d5845b617139 243 * @return factory trim value
syundo0730 7:d5845b617139 244 * @see MPU6050_RA_SELF_TEST_Z
syundo0730 7:d5845b617139 245 */
syundo0730 7:d5845b617139 246 uint8_t MPU6050::getAccelZSelfTestFactoryTrim() {
syundo0730 7:d5845b617139 247 I2Cdev::readBytes(devAddr, MPU6050_RA_SELF_TEST_Z, 2, buffer);
syundo0730 7:d5845b617139 248 return (buffer[0]>>3) | (buffer[1] & 0x03);
syundo0730 7:d5845b617139 249 }
syundo0730 7:d5845b617139 250
syundo0730 7:d5845b617139 251 /** Get self-test factory trim value for gyro X axis.
syundo0730 7:d5845b617139 252 * @return factory trim value
syundo0730 7:d5845b617139 253 * @see MPU6050_RA_SELF_TEST_X
syundo0730 7:d5845b617139 254 */
syundo0730 7:d5845b617139 255 uint8_t MPU6050::getGyroXSelfTestFactoryTrim() {
syundo0730 7:d5845b617139 256 I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_X, buffer);
syundo0730 7:d5845b617139 257 return (buffer[0] & 0x1F);
syundo0730 7:d5845b617139 258 }
syundo0730 7:d5845b617139 259
syundo0730 7:d5845b617139 260 /** Get self-test factory trim value for gyro Y axis.
syundo0730 7:d5845b617139 261 * @return factory trim value
syundo0730 7:d5845b617139 262 * @see MPU6050_RA_SELF_TEST_Y
syundo0730 7:d5845b617139 263 */
syundo0730 7:d5845b617139 264 uint8_t MPU6050::getGyroYSelfTestFactoryTrim() {
syundo0730 7:d5845b617139 265 I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_Y, buffer);
syundo0730 7:d5845b617139 266 return (buffer[0] & 0x1F);
syundo0730 7:d5845b617139 267 }
syundo0730 7:d5845b617139 268
syundo0730 7:d5845b617139 269 /** Get self-test factory trim value for gyro Z axis.
syundo0730 7:d5845b617139 270 * @return factory trim value
syundo0730 7:d5845b617139 271 * @see MPU6050_RA_SELF_TEST_Z
syundo0730 7:d5845b617139 272 */
syundo0730 7:d5845b617139 273 uint8_t MPU6050::getGyroZSelfTestFactoryTrim() {
syundo0730 7:d5845b617139 274 I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_Z, buffer);
syundo0730 7:d5845b617139 275 return (buffer[0] & 0x1F);
garfieldsg 0:662207e34fba 276 }
garfieldsg 0:662207e34fba 277
garfieldsg 0:662207e34fba 278 // ACCEL_CONFIG register
garfieldsg 0:662207e34fba 279
garfieldsg 0:662207e34fba 280 /** Get self-test enabled setting for accelerometer X axis.
garfieldsg 0:662207e34fba 281 * @return Self-test enabled value
garfieldsg 0:662207e34fba 282 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 283 */
syundo0730 6:f38dfe62d74c 284 bool MPU6050::getAccelXSelfTest() {
syundo0730 7:d5845b617139 285 I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 286 return buffer[0];
garfieldsg 0:662207e34fba 287 }
garfieldsg 0:662207e34fba 288 /** Get self-test enabled setting for accelerometer X axis.
garfieldsg 0:662207e34fba 289 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 290 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 291 */
syundo0730 6:f38dfe62d74c 292 void MPU6050::setAccelXSelfTest(bool enabled) {
syundo0730 7:d5845b617139 293 I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 294 }
garfieldsg 0:662207e34fba 295 /** Get self-test enabled value for accelerometer Y axis.
garfieldsg 0:662207e34fba 296 * @return Self-test enabled value
garfieldsg 0:662207e34fba 297 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 298 */
syundo0730 6:f38dfe62d74c 299 bool MPU6050::getAccelYSelfTest() {
syundo0730 7:d5845b617139 300 I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 301 return buffer[0];
garfieldsg 0:662207e34fba 302 }
garfieldsg 0:662207e34fba 303 /** Get self-test enabled value for accelerometer Y axis.
garfieldsg 0:662207e34fba 304 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 305 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 306 */
syundo0730 6:f38dfe62d74c 307 void MPU6050::setAccelYSelfTest(bool enabled) {
syundo0730 7:d5845b617139 308 I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 309 }
garfieldsg 0:662207e34fba 310 /** Get self-test enabled value for accelerometer Z axis.
garfieldsg 0:662207e34fba 311 * @return Self-test enabled value
garfieldsg 0:662207e34fba 312 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 313 */
syundo0730 6:f38dfe62d74c 314 bool MPU6050::getAccelZSelfTest() {
syundo0730 7:d5845b617139 315 I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 316 return buffer[0];
garfieldsg 0:662207e34fba 317 }
garfieldsg 0:662207e34fba 318 /** Set self-test enabled value for accelerometer Z axis.
garfieldsg 0:662207e34fba 319 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 320 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 321 */
syundo0730 6:f38dfe62d74c 322 void MPU6050::setAccelZSelfTest(bool enabled) {
syundo0730 7:d5845b617139 323 I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 324 }
garfieldsg 0:662207e34fba 325 /** Get full-scale accelerometer range.
garfieldsg 0:662207e34fba 326 * The FS_SEL parameter allows setting the full-scale range of the accelerometer
garfieldsg 0:662207e34fba 327 * sensors, as described in the table below.
garfieldsg 0:662207e34fba 328 *
garfieldsg 0:662207e34fba 329 * <pre>
garfieldsg 0:662207e34fba 330 * 0 = +/- 2g
garfieldsg 0:662207e34fba 331 * 1 = +/- 4g
garfieldsg 0:662207e34fba 332 * 2 = +/- 8g
garfieldsg 0:662207e34fba 333 * 3 = +/- 16g
garfieldsg 0:662207e34fba 334 * </pre>
garfieldsg 0:662207e34fba 335 *
garfieldsg 0:662207e34fba 336 * @return Current full-scale accelerometer range setting
garfieldsg 0:662207e34fba 337 * @see MPU6050_ACCEL_FS_2
garfieldsg 0:662207e34fba 338 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 339 * @see MPU6050_ACONFIG_AFS_SEL_BIT
garfieldsg 0:662207e34fba 340 * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
garfieldsg 0:662207e34fba 341 */
syundo0730 6:f38dfe62d74c 342 uint8_t MPU6050::getFullScaleAccelRange() {
syundo0730 7:d5845b617139 343 I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 344 return buffer[0];
garfieldsg 0:662207e34fba 345 }
garfieldsg 0:662207e34fba 346 /** Set full-scale accelerometer range.
garfieldsg 0:662207e34fba 347 * @param range New full-scale accelerometer range setting
garfieldsg 0:662207e34fba 348 * @see getFullScaleAccelRange()
garfieldsg 0:662207e34fba 349 */
syundo0730 6:f38dfe62d74c 350 void MPU6050::setFullScaleAccelRange(uint8_t range) {
syundo0730 7:d5845b617139 351 I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
garfieldsg 0:662207e34fba 352 }
garfieldsg 0:662207e34fba 353 /** Get the high-pass filter configuration.
garfieldsg 0:662207e34fba 354 * The DHPF is a filter module in the path leading to motion detectors (Free
garfieldsg 0:662207e34fba 355 * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
garfieldsg 0:662207e34fba 356 * available to the data registers (see Figure in Section 8 of the MPU-6000/
garfieldsg 0:662207e34fba 357 * MPU-6050 Product Specification document).
garfieldsg 0:662207e34fba 358 *
garfieldsg 0:662207e34fba 359 * The high pass filter has three modes:
garfieldsg 0:662207e34fba 360 *
garfieldsg 0:662207e34fba 361 * <pre>
garfieldsg 0:662207e34fba 362 * Reset: The filter output settles to zero within one sample. This
garfieldsg 0:662207e34fba 363 * effectively disables the high pass filter. This mode may be toggled
garfieldsg 0:662207e34fba 364 * to quickly settle the filter.
garfieldsg 0:662207e34fba 365 *
garfieldsg 0:662207e34fba 366 * On: The high pass filter will pass signals above the cut off frequency.
garfieldsg 0:662207e34fba 367 *
garfieldsg 0:662207e34fba 368 * Hold: When triggered, the filter holds the present sample. The filter
garfieldsg 0:662207e34fba 369 * output will be the difference between the input sample and the held
garfieldsg 0:662207e34fba 370 * sample.
garfieldsg 0:662207e34fba 371 * </pre>
garfieldsg 0:662207e34fba 372 *
garfieldsg 0:662207e34fba 373 * <pre>
garfieldsg 0:662207e34fba 374 * ACCEL_HPF | Filter Mode | Cut-off Frequency
garfieldsg 0:662207e34fba 375 * ----------+-------------+------------------
garfieldsg 0:662207e34fba 376 * 0 | Reset | None
garfieldsg 0:662207e34fba 377 * 1 | On | 5Hz
garfieldsg 0:662207e34fba 378 * 2 | On | 2.5Hz
garfieldsg 0:662207e34fba 379 * 3 | On | 1.25Hz
garfieldsg 0:662207e34fba 380 * 4 | On | 0.63Hz
garfieldsg 0:662207e34fba 381 * 7 | Hold | None
garfieldsg 0:662207e34fba 382 * </pre>
garfieldsg 0:662207e34fba 383 *
garfieldsg 0:662207e34fba 384 * @return Current high-pass filter configuration
garfieldsg 0:662207e34fba 385 * @see MPU6050_DHPF_RESET
garfieldsg 0:662207e34fba 386 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 387 */
syundo0730 6:f38dfe62d74c 388 uint8_t MPU6050::getDHPFMode() {
syundo0730 7:d5845b617139 389 I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
garfieldsg 0:662207e34fba 390 return buffer[0];
garfieldsg 0:662207e34fba 391 }
garfieldsg 0:662207e34fba 392 /** Set the high-pass filter configuration.
garfieldsg 0:662207e34fba 393 * @param bandwidth New high-pass filter configuration
garfieldsg 0:662207e34fba 394 * @see setDHPFMode()
garfieldsg 0:662207e34fba 395 * @see MPU6050_DHPF_RESET
garfieldsg 0:662207e34fba 396 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 397 */
syundo0730 6:f38dfe62d74c 398 void MPU6050::setDHPFMode(uint8_t bandwidth) {
syundo0730 7:d5845b617139 399 I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
garfieldsg 0:662207e34fba 400 }
garfieldsg 0:662207e34fba 401
garfieldsg 0:662207e34fba 402 // FF_THR register
garfieldsg 0:662207e34fba 403
garfieldsg 0:662207e34fba 404 /** Get free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 405 * This register configures the detection threshold for Free Fall event
garfieldsg 0:662207e34fba 406 * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
garfieldsg 0:662207e34fba 407 * absolute value of the accelerometer measurements for the three axes are each
garfieldsg 0:662207e34fba 408 * less than the detection threshold. This condition increments the Free Fall
garfieldsg 0:662207e34fba 409 * duration counter (Register 30). The Free Fall interrupt is triggered when the
garfieldsg 0:662207e34fba 410 * Free Fall duration counter reaches the time specified in FF_DUR.
garfieldsg 0:662207e34fba 411 *
garfieldsg 0:662207e34fba 412 * For more details on the Free Fall detection interrupt, see Section 8.2 of the
garfieldsg 0:662207e34fba 413 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
garfieldsg 0:662207e34fba 414 * 58 of this document.
garfieldsg 0:662207e34fba 415 *
garfieldsg 0:662207e34fba 416 * @return Current free-fall acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 417 * @see MPU6050_RA_FF_THR
garfieldsg 0:662207e34fba 418 */
syundo0730 6:f38dfe62d74c 419 uint8_t MPU6050::getFreefallDetectionThreshold() {
syundo0730 7:d5845b617139 420 I2Cdev::readByte(devAddr, MPU6050_RA_FF_THR, buffer);
garfieldsg 0:662207e34fba 421 return buffer[0];
garfieldsg 0:662207e34fba 422 }
garfieldsg 0:662207e34fba 423 /** Get free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 424 * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 425 * @see getFreefallDetectionThreshold()
garfieldsg 0:662207e34fba 426 * @see MPU6050_RA_FF_THR
garfieldsg 0:662207e34fba 427 */
syundo0730 6:f38dfe62d74c 428 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold) {
syundo0730 7:d5845b617139 429 I2Cdev::writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
garfieldsg 0:662207e34fba 430 }
garfieldsg 0:662207e34fba 431
garfieldsg 0:662207e34fba 432 // FF_DUR register
garfieldsg 0:662207e34fba 433
garfieldsg 0:662207e34fba 434 /** Get free-fall event duration threshold.
garfieldsg 0:662207e34fba 435 * This register configures the duration counter threshold for Free Fall event
garfieldsg 0:662207e34fba 436 * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
garfieldsg 0:662207e34fba 437 * of 1 LSB = 1 ms.
garfieldsg 0:662207e34fba 438 *
garfieldsg 0:662207e34fba 439 * The Free Fall duration counter increments while the absolute value of the
garfieldsg 0:662207e34fba 440 * accelerometer measurements are each less than the detection threshold
garfieldsg 0:662207e34fba 441 * (Register 29). The Free Fall interrupt is triggered when the Free Fall
garfieldsg 0:662207e34fba 442 * duration counter reaches the time specified in this register.
garfieldsg 0:662207e34fba 443 *
garfieldsg 0:662207e34fba 444 * For more details on the Free Fall detection interrupt, see Section 8.2 of
garfieldsg 0:662207e34fba 445 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
garfieldsg 0:662207e34fba 446 * and 58 of this document.
garfieldsg 0:662207e34fba 447 *
garfieldsg 0:662207e34fba 448 * @return Current free-fall duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 449 * @see MPU6050_RA_FF_DUR
garfieldsg 0:662207e34fba 450 */
syundo0730 6:f38dfe62d74c 451 uint8_t MPU6050::getFreefallDetectionDuration() {
syundo0730 7:d5845b617139 452 I2Cdev::readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
garfieldsg 0:662207e34fba 453 return buffer[0];
garfieldsg 0:662207e34fba 454 }
garfieldsg 0:662207e34fba 455 /** Get free-fall event duration threshold.
garfieldsg 0:662207e34fba 456 * @param duration New free-fall duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 457 * @see getFreefallDetectionDuration()
garfieldsg 0:662207e34fba 458 * @see MPU6050_RA_FF_DUR
garfieldsg 0:662207e34fba 459 */
syundo0730 6:f38dfe62d74c 460 void MPU6050::setFreefallDetectionDuration(uint8_t duration) {
syundo0730 7:d5845b617139 461 I2Cdev::writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
garfieldsg 0:662207e34fba 462 }
garfieldsg 0:662207e34fba 463
garfieldsg 0:662207e34fba 464 // MOT_THR register
garfieldsg 0:662207e34fba 465
garfieldsg 0:662207e34fba 466 /** Get motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 467 * This register configures the detection threshold for Motion interrupt
garfieldsg 0:662207e34fba 468 * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
garfieldsg 0:662207e34fba 469 * absolute value of any of the accelerometer measurements exceeds this Motion
garfieldsg 0:662207e34fba 470 * detection threshold. This condition increments the Motion detection duration
garfieldsg 0:662207e34fba 471 * counter (Register 32). The Motion detection interrupt is triggered when the
garfieldsg 0:662207e34fba 472 * Motion Detection counter reaches the time count specified in MOT_DUR
garfieldsg 0:662207e34fba 473 * (Register 32).
garfieldsg 0:662207e34fba 474 *
garfieldsg 0:662207e34fba 475 * The Motion interrupt will indicate the axis and polarity of detected motion
garfieldsg 0:662207e34fba 476 * in MOT_DETECT_STATUS (Register 97).
garfieldsg 0:662207e34fba 477 *
garfieldsg 0:662207e34fba 478 * For more details on the Motion detection interrupt, see Section 8.3 of the
garfieldsg 0:662207e34fba 479 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
garfieldsg 0:662207e34fba 480 * 58 of this document.
garfieldsg 0:662207e34fba 481 *
garfieldsg 0:662207e34fba 482 * @return Current motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 483 * @see MPU6050_RA_MOT_THR
garfieldsg 0:662207e34fba 484 */
syundo0730 6:f38dfe62d74c 485 uint8_t MPU6050::getMotionDetectionThreshold() {
syundo0730 7:d5845b617139 486 I2Cdev::readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
garfieldsg 0:662207e34fba 487 return buffer[0];
garfieldsg 0:662207e34fba 488 }
syundo0730 7:d5845b617139 489 /** Set motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 490 * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 491 * @see getMotionDetectionThreshold()
garfieldsg 0:662207e34fba 492 * @see MPU6050_RA_MOT_THR
garfieldsg 0:662207e34fba 493 */
syundo0730 6:f38dfe62d74c 494 void MPU6050::setMotionDetectionThreshold(uint8_t threshold) {
syundo0730 7:d5845b617139 495 I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
garfieldsg 0:662207e34fba 496 }
garfieldsg 0:662207e34fba 497
garfieldsg 0:662207e34fba 498 // MOT_DUR register
garfieldsg 0:662207e34fba 499
garfieldsg 0:662207e34fba 500 /** Get motion detection event duration threshold.
garfieldsg 0:662207e34fba 501 * This register configures the duration counter threshold for Motion interrupt
garfieldsg 0:662207e34fba 502 * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
garfieldsg 0:662207e34fba 503 * of 1LSB = 1ms. The Motion detection duration counter increments when the
garfieldsg 0:662207e34fba 504 * absolute value of any of the accelerometer measurements exceeds the Motion
garfieldsg 0:662207e34fba 505 * detection threshold (Register 31). The Motion detection interrupt is
garfieldsg 0:662207e34fba 506 * triggered when the Motion detection counter reaches the time count specified
garfieldsg 0:662207e34fba 507 * in this register.
garfieldsg 0:662207e34fba 508 *
garfieldsg 0:662207e34fba 509 * For more details on the Motion detection interrupt, see Section 8.3 of the
garfieldsg 0:662207e34fba 510 * MPU-6000/MPU-6050 Product Specification document.
garfieldsg 0:662207e34fba 511 *
garfieldsg 0:662207e34fba 512 * @return Current motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 513 * @see MPU6050_RA_MOT_DUR
garfieldsg 0:662207e34fba 514 */
syundo0730 6:f38dfe62d74c 515 uint8_t MPU6050::getMotionDetectionDuration() {
syundo0730 7:d5845b617139 516 I2Cdev::readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
garfieldsg 0:662207e34fba 517 return buffer[0];
garfieldsg 0:662207e34fba 518 }
garfieldsg 0:662207e34fba 519 /** Set motion detection event duration threshold.
garfieldsg 0:662207e34fba 520 * @param duration New motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 521 * @see getMotionDetectionDuration()
garfieldsg 0:662207e34fba 522 * @see MPU6050_RA_MOT_DUR
garfieldsg 0:662207e34fba 523 */
syundo0730 6:f38dfe62d74c 524 void MPU6050::setMotionDetectionDuration(uint8_t duration) {
syundo0730 7:d5845b617139 525 I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
garfieldsg 0:662207e34fba 526 }
garfieldsg 0:662207e34fba 527
garfieldsg 0:662207e34fba 528 // ZRMOT_THR register
garfieldsg 0:662207e34fba 529
garfieldsg 0:662207e34fba 530 /** Get zero motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 531 * This register configures the detection threshold for Zero Motion interrupt
garfieldsg 0:662207e34fba 532 * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
garfieldsg 0:662207e34fba 533 * the absolute value of the accelerometer measurements for the 3 axes are each
garfieldsg 0:662207e34fba 534 * less than the detection threshold. This condition increments the Zero Motion
garfieldsg 0:662207e34fba 535 * duration counter (Register 34). The Zero Motion interrupt is triggered when
garfieldsg 0:662207e34fba 536 * the Zero Motion duration counter reaches the time count specified in
garfieldsg 0:662207e34fba 537 * ZRMOT_DUR (Register 34).
garfieldsg 0:662207e34fba 538 *
garfieldsg 0:662207e34fba 539 * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
garfieldsg 0:662207e34fba 540 * interrupt both when Zero Motion is first detected and when Zero Motion is no
garfieldsg 0:662207e34fba 541 * longer detected.
garfieldsg 0:662207e34fba 542 *
garfieldsg 0:662207e34fba 543 * When a zero motion event is detected, a Zero Motion Status will be indicated
garfieldsg 0:662207e34fba 544 * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
garfieldsg 0:662207e34fba 545 * condition is detected, the status bit is set to 1. When a zero-motion-to-
garfieldsg 0:662207e34fba 546 * motion condition is detected, the status bit is set to 0.
garfieldsg 0:662207e34fba 547 *
garfieldsg 0:662207e34fba 548 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
garfieldsg 0:662207e34fba 549 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
garfieldsg 0:662207e34fba 550 * and 58 of this document.
garfieldsg 0:662207e34fba 551 *
garfieldsg 0:662207e34fba 552 * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 553 * @see MPU6050_RA_ZRMOT_THR
garfieldsg 0:662207e34fba 554 */
syundo0730 6:f38dfe62d74c 555 uint8_t MPU6050::getZeroMotionDetectionThreshold() {
syundo0730 7:d5845b617139 556 I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
garfieldsg 0:662207e34fba 557 return buffer[0];
garfieldsg 0:662207e34fba 558 }
garfieldsg 0:662207e34fba 559 /** Set zero motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 560 * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 561 * @see getZeroMotionDetectionThreshold()
garfieldsg 0:662207e34fba 562 * @see MPU6050_RA_ZRMOT_THR
garfieldsg 0:662207e34fba 563 */
syundo0730 6:f38dfe62d74c 564 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold) {
syundo0730 7:d5845b617139 565 I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
garfieldsg 0:662207e34fba 566 }
garfieldsg 0:662207e34fba 567
garfieldsg 0:662207e34fba 568 // ZRMOT_DUR register
garfieldsg 0:662207e34fba 569
garfieldsg 0:662207e34fba 570 /** Get zero motion detection event duration threshold.
garfieldsg 0:662207e34fba 571 * This register configures the duration counter threshold for Zero Motion
garfieldsg 0:662207e34fba 572 * interrupt generation. The duration counter ticks at 16 Hz, therefore
garfieldsg 0:662207e34fba 573 * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
garfieldsg 0:662207e34fba 574 * increments while the absolute value of the accelerometer measurements are
garfieldsg 0:662207e34fba 575 * each less than the detection threshold (Register 33). The Zero Motion
garfieldsg 0:662207e34fba 576 * interrupt is triggered when the Zero Motion duration counter reaches the time
garfieldsg 0:662207e34fba 577 * count specified in this register.
garfieldsg 0:662207e34fba 578 *
garfieldsg 0:662207e34fba 579 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
garfieldsg 0:662207e34fba 580 * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
garfieldsg 0:662207e34fba 581 * and 58 of this document.
garfieldsg 0:662207e34fba 582 *
garfieldsg 0:662207e34fba 583 * @return Current zero motion detection duration threshold value (LSB = 64ms)
garfieldsg 0:662207e34fba 584 * @see MPU6050_RA_ZRMOT_DUR
garfieldsg 0:662207e34fba 585 */
syundo0730 6:f38dfe62d74c 586 uint8_t MPU6050::getZeroMotionDetectionDuration() {
syundo0730 7:d5845b617139 587 I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
garfieldsg 0:662207e34fba 588 return buffer[0];
garfieldsg 0:662207e34fba 589 }
garfieldsg 0:662207e34fba 590 /** Set zero motion detection event duration threshold.
garfieldsg 0:662207e34fba 591 * @param duration New zero motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 592 * @see getZeroMotionDetectionDuration()
garfieldsg 0:662207e34fba 593 * @see MPU6050_RA_ZRMOT_DUR
garfieldsg 0:662207e34fba 594 */
syundo0730 6:f38dfe62d74c 595 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration) {
syundo0730 7:d5845b617139 596 I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
garfieldsg 0:662207e34fba 597 }
garfieldsg 0:662207e34fba 598
garfieldsg 0:662207e34fba 599 // FIFO_EN register
garfieldsg 0:662207e34fba 600
garfieldsg 0:662207e34fba 601 /** Get temperature FIFO enabled value.
garfieldsg 0:662207e34fba 602 * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
garfieldsg 0:662207e34fba 603 * 66) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 604 * @return Current temperature FIFO enabled value
garfieldsg 0:662207e34fba 605 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 606 */
syundo0730 6:f38dfe62d74c 607 bool MPU6050::getTempFIFOEnabled() {
syundo0730 7:d5845b617139 608 I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 609 return buffer[0];
garfieldsg 0:662207e34fba 610 }
garfieldsg 0:662207e34fba 611 /** Set temperature FIFO enabled value.
garfieldsg 0:662207e34fba 612 * @param enabled New temperature FIFO enabled value
garfieldsg 0:662207e34fba 613 * @see getTempFIFOEnabled()
garfieldsg 0:662207e34fba 614 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 615 */
syundo0730 6:f38dfe62d74c 616 void MPU6050::setTempFIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 617 I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 618 }
garfieldsg 0:662207e34fba 619 /** Get gyroscope X-axis FIFO enabled value.
garfieldsg 0:662207e34fba 620 * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
garfieldsg 0:662207e34fba 621 * 68) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 622 * @return Current gyroscope X-axis FIFO enabled value
garfieldsg 0:662207e34fba 623 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 624 */
syundo0730 6:f38dfe62d74c 625 bool MPU6050::getXGyroFIFOEnabled() {
syundo0730 7:d5845b617139 626 I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 627 return buffer[0];
garfieldsg 0:662207e34fba 628 }
garfieldsg 0:662207e34fba 629 /** Set gyroscope X-axis FIFO enabled value.
garfieldsg 0:662207e34fba 630 * @param enabled New gyroscope X-axis FIFO enabled value
garfieldsg 0:662207e34fba 631 * @see getXGyroFIFOEnabled()
garfieldsg 0:662207e34fba 632 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 633 */
syundo0730 6:f38dfe62d74c 634 void MPU6050::setXGyroFIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 635 I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 636 }
garfieldsg 0:662207e34fba 637 /** Get gyroscope Y-axis FIFO enabled value.
garfieldsg 0:662207e34fba 638 * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
garfieldsg 0:662207e34fba 639 * 70) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 640 * @return Current gyroscope Y-axis FIFO enabled value
garfieldsg 0:662207e34fba 641 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 642 */
syundo0730 6:f38dfe62d74c 643 bool MPU6050::getYGyroFIFOEnabled() {
syundo0730 7:d5845b617139 644 I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 645 return buffer[0];
garfieldsg 0:662207e34fba 646 }
garfieldsg 0:662207e34fba 647 /** Set gyroscope Y-axis FIFO enabled value.
garfieldsg 0:662207e34fba 648 * @param enabled New gyroscope Y-axis FIFO enabled value
garfieldsg 0:662207e34fba 649 * @see getYGyroFIFOEnabled()
garfieldsg 0:662207e34fba 650 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 651 */
syundo0730 6:f38dfe62d74c 652 void MPU6050::setYGyroFIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 653 I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 654 }
garfieldsg 0:662207e34fba 655 /** Get gyroscope Z-axis FIFO enabled value.
garfieldsg 0:662207e34fba 656 * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
garfieldsg 0:662207e34fba 657 * 72) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 658 * @return Current gyroscope Z-axis FIFO enabled value
garfieldsg 0:662207e34fba 659 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 660 */
syundo0730 6:f38dfe62d74c 661 bool MPU6050::getZGyroFIFOEnabled() {
syundo0730 7:d5845b617139 662 I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 663 return buffer[0];
garfieldsg 0:662207e34fba 664 }
garfieldsg 0:662207e34fba 665 /** Set gyroscope Z-axis FIFO enabled value.
garfieldsg 0:662207e34fba 666 * @param enabled New gyroscope Z-axis FIFO enabled value
garfieldsg 0:662207e34fba 667 * @see getZGyroFIFOEnabled()
garfieldsg 0:662207e34fba 668 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 669 */
syundo0730 6:f38dfe62d74c 670 void MPU6050::setZGyroFIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 671 I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 672 }
garfieldsg 0:662207e34fba 673 /** Get accelerometer FIFO enabled value.
garfieldsg 0:662207e34fba 674 * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
garfieldsg 0:662207e34fba 675 * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
garfieldsg 0:662207e34fba 676 * written into the FIFO buffer.
garfieldsg 0:662207e34fba 677 * @return Current accelerometer FIFO enabled value
garfieldsg 0:662207e34fba 678 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 679 */
syundo0730 6:f38dfe62d74c 680 bool MPU6050::getAccelFIFOEnabled() {
syundo0730 7:d5845b617139 681 I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 682 return buffer[0];
garfieldsg 0:662207e34fba 683 }
garfieldsg 0:662207e34fba 684 /** Set accelerometer FIFO enabled value.
garfieldsg 0:662207e34fba 685 * @param enabled New accelerometer FIFO enabled value
garfieldsg 0:662207e34fba 686 * @see getAccelFIFOEnabled()
garfieldsg 0:662207e34fba 687 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 688 */
syundo0730 6:f38dfe62d74c 689 void MPU6050::setAccelFIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 690 I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 691 }
garfieldsg 0:662207e34fba 692 /** Get Slave 2 FIFO enabled value.
garfieldsg 0:662207e34fba 693 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 694 * associated with Slave 2 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 695 * @return Current Slave 2 FIFO enabled value
garfieldsg 0:662207e34fba 696 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 697 */
syundo0730 6:f38dfe62d74c 698 bool MPU6050::getSlave2FIFOEnabled() {
syundo0730 7:d5845b617139 699 I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 700 return buffer[0];
garfieldsg 0:662207e34fba 701 }
garfieldsg 0:662207e34fba 702 /** Set Slave 2 FIFO enabled value.
garfieldsg 0:662207e34fba 703 * @param enabled New Slave 2 FIFO enabled value
garfieldsg 0:662207e34fba 704 * @see getSlave2FIFOEnabled()
garfieldsg 0:662207e34fba 705 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 706 */
syundo0730 6:f38dfe62d74c 707 void MPU6050::setSlave2FIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 708 I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 709 }
garfieldsg 0:662207e34fba 710 /** Get Slave 1 FIFO enabled value.
garfieldsg 0:662207e34fba 711 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 712 * associated with Slave 1 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 713 * @return Current Slave 1 FIFO enabled value
garfieldsg 0:662207e34fba 714 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 715 */
syundo0730 6:f38dfe62d74c 716 bool MPU6050::getSlave1FIFOEnabled() {
syundo0730 7:d5845b617139 717 I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 718 return buffer[0];
garfieldsg 0:662207e34fba 719 }
garfieldsg 0:662207e34fba 720 /** Set Slave 1 FIFO enabled value.
garfieldsg 0:662207e34fba 721 * @param enabled New Slave 1 FIFO enabled value
garfieldsg 0:662207e34fba 722 * @see getSlave1FIFOEnabled()
garfieldsg 0:662207e34fba 723 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 724 */
syundo0730 6:f38dfe62d74c 725 void MPU6050::setSlave1FIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 726 I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 727 }
garfieldsg 0:662207e34fba 728 /** Get Slave 0 FIFO enabled value.
garfieldsg 0:662207e34fba 729 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 730 * associated with Slave 0 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 731 * @return Current Slave 0 FIFO enabled value
garfieldsg 0:662207e34fba 732 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 733 */
syundo0730 6:f38dfe62d74c 734 bool MPU6050::getSlave0FIFOEnabled() {
syundo0730 7:d5845b617139 735 I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 736 return buffer[0];
garfieldsg 0:662207e34fba 737 }
garfieldsg 0:662207e34fba 738 /** Set Slave 0 FIFO enabled value.
garfieldsg 0:662207e34fba 739 * @param enabled New Slave 0 FIFO enabled value
garfieldsg 0:662207e34fba 740 * @see getSlave0FIFOEnabled()
garfieldsg 0:662207e34fba 741 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 742 */
syundo0730 6:f38dfe62d74c 743 void MPU6050::setSlave0FIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 744 I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 745 }
garfieldsg 0:662207e34fba 746
garfieldsg 0:662207e34fba 747 // I2C_MST_CTRL register
garfieldsg 0:662207e34fba 748
garfieldsg 0:662207e34fba 749 /** Get multi-master enabled value.
garfieldsg 0:662207e34fba 750 * Multi-master capability allows multiple I2C masters to operate on the same
garfieldsg 0:662207e34fba 751 * bus. In circuits where multi-master capability is required, set MULT_MST_EN
garfieldsg 0:662207e34fba 752 * to 1. This will increase current drawn by approximately 30uA.
garfieldsg 0:662207e34fba 753 *
garfieldsg 0:662207e34fba 754 * In circuits where multi-master capability is required, the state of the I2C
garfieldsg 0:662207e34fba 755 * bus must always be monitored by each separate I2C Master. Before an I2C
garfieldsg 0:662207e34fba 756 * Master can assume arbitration of the bus, it must first confirm that no other
garfieldsg 0:662207e34fba 757 * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
garfieldsg 0:662207e34fba 758 * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
garfieldsg 0:662207e34fba 759 * detect when the bus is available.
garfieldsg 0:662207e34fba 760 *
garfieldsg 0:662207e34fba 761 * @return Current multi-master enabled value
garfieldsg 0:662207e34fba 762 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 763 */
syundo0730 6:f38dfe62d74c 764 bool MPU6050::getMultiMasterEnabled() {
syundo0730 7:d5845b617139 765 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
garfieldsg 0:662207e34fba 766 return buffer[0];
garfieldsg 0:662207e34fba 767 }
garfieldsg 0:662207e34fba 768 /** Set multi-master enabled value.
garfieldsg 0:662207e34fba 769 * @param enabled New multi-master enabled value
garfieldsg 0:662207e34fba 770 * @see getMultiMasterEnabled()
garfieldsg 0:662207e34fba 771 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 772 */
syundo0730 6:f38dfe62d74c 773 void MPU6050::setMultiMasterEnabled(bool enabled) {
syundo0730 7:d5845b617139 774 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
garfieldsg 0:662207e34fba 775 }
garfieldsg 0:662207e34fba 776 /** Get wait-for-external-sensor-data enabled value.
garfieldsg 0:662207e34fba 777 * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
garfieldsg 0:662207e34fba 778 * delayed until External Sensor data from the Slave Devices are loaded into the
garfieldsg 0:662207e34fba 779 * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
garfieldsg 0:662207e34fba 780 * data (i.e. from gyro and accel) and external sensor data have been loaded to
garfieldsg 0:662207e34fba 781 * their respective data registers (i.e. the data is synced) when the Data Ready
garfieldsg 0:662207e34fba 782 * interrupt is triggered.
garfieldsg 0:662207e34fba 783 *
garfieldsg 0:662207e34fba 784 * @return Current wait-for-external-sensor-data enabled value
garfieldsg 0:662207e34fba 785 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 786 */
syundo0730 6:f38dfe62d74c 787 bool MPU6050::getWaitForExternalSensorEnabled() {
syundo0730 7:d5845b617139 788 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
garfieldsg 0:662207e34fba 789 return buffer[0];
garfieldsg 0:662207e34fba 790 }
garfieldsg 0:662207e34fba 791 /** Set wait-for-external-sensor-data enabled value.
garfieldsg 0:662207e34fba 792 * @param enabled New wait-for-external-sensor-data enabled value
garfieldsg 0:662207e34fba 793 * @see getWaitForExternalSensorEnabled()
garfieldsg 0:662207e34fba 794 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 795 */
syundo0730 6:f38dfe62d74c 796 void MPU6050::setWaitForExternalSensorEnabled(bool enabled) {
syundo0730 7:d5845b617139 797 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
garfieldsg 0:662207e34fba 798 }
garfieldsg 0:662207e34fba 799 /** Get Slave 3 FIFO enabled value.
garfieldsg 0:662207e34fba 800 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 801 * associated with Slave 3 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 802 * @return Current Slave 3 FIFO enabled value
garfieldsg 0:662207e34fba 803 * @see MPU6050_RA_MST_CTRL
garfieldsg 0:662207e34fba 804 */
syundo0730 6:f38dfe62d74c 805 bool MPU6050::getSlave3FIFOEnabled() {
syundo0730 7:d5845b617139 806 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 807 return buffer[0];
garfieldsg 0:662207e34fba 808 }
garfieldsg 0:662207e34fba 809 /** Set Slave 3 FIFO enabled value.
garfieldsg 0:662207e34fba 810 * @param enabled New Slave 3 FIFO enabled value
garfieldsg 0:662207e34fba 811 * @see getSlave3FIFOEnabled()
garfieldsg 0:662207e34fba 812 * @see MPU6050_RA_MST_CTRL
garfieldsg 0:662207e34fba 813 */
syundo0730 6:f38dfe62d74c 814 void MPU6050::setSlave3FIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 815 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 816 }
garfieldsg 0:662207e34fba 817 /** Get slave read/write transition enabled value.
garfieldsg 0:662207e34fba 818 * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
garfieldsg 0:662207e34fba 819 * read to the next slave read. If the bit equals 0, there will be a restart
garfieldsg 0:662207e34fba 820 * between reads. If the bit equals 1, there will be a stop followed by a start
garfieldsg 0:662207e34fba 821 * of the following read. When a write transaction follows a read transaction,
garfieldsg 0:662207e34fba 822 * the stop followed by a start of the successive write will be always used.
garfieldsg 0:662207e34fba 823 *
garfieldsg 0:662207e34fba 824 * @return Current slave read/write transition enabled value
garfieldsg 0:662207e34fba 825 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 826 */
syundo0730 6:f38dfe62d74c 827 bool MPU6050::getSlaveReadWriteTransitionEnabled() {
syundo0730 7:d5845b617139 828 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
garfieldsg 0:662207e34fba 829 return buffer[0];
garfieldsg 0:662207e34fba 830 }
garfieldsg 0:662207e34fba 831 /** Set slave read/write transition enabled value.
garfieldsg 0:662207e34fba 832 * @param enabled New slave read/write transition enabled value
garfieldsg 0:662207e34fba 833 * @see getSlaveReadWriteTransitionEnabled()
garfieldsg 0:662207e34fba 834 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 835 */
syundo0730 6:f38dfe62d74c 836 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled) {
syundo0730 7:d5845b617139 837 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
garfieldsg 0:662207e34fba 838 }
garfieldsg 0:662207e34fba 839 /** Get I2C master clock speed.
garfieldsg 0:662207e34fba 840 * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
garfieldsg 0:662207e34fba 841 * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
garfieldsg 0:662207e34fba 842 * the following table:
garfieldsg 0:662207e34fba 843 *
garfieldsg 0:662207e34fba 844 * <pre>
garfieldsg 0:662207e34fba 845 * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
garfieldsg 0:662207e34fba 846 * ------------+------------------------+-------------------
garfieldsg 0:662207e34fba 847 * 0 | 348kHz | 23
garfieldsg 0:662207e34fba 848 * 1 | 333kHz | 24
garfieldsg 0:662207e34fba 849 * 2 | 320kHz | 25
garfieldsg 0:662207e34fba 850 * 3 | 308kHz | 26
garfieldsg 0:662207e34fba 851 * 4 | 296kHz | 27
garfieldsg 0:662207e34fba 852 * 5 | 286kHz | 28
garfieldsg 0:662207e34fba 853 * 6 | 276kHz | 29
garfieldsg 0:662207e34fba 854 * 7 | 267kHz | 30
garfieldsg 0:662207e34fba 855 * 8 | 258kHz | 31
garfieldsg 0:662207e34fba 856 * 9 | 500kHz | 16
garfieldsg 0:662207e34fba 857 * 10 | 471kHz | 17
garfieldsg 0:662207e34fba 858 * 11 | 444kHz | 18
garfieldsg 0:662207e34fba 859 * 12 | 421kHz | 19
garfieldsg 0:662207e34fba 860 * 13 | 400kHz | 20
garfieldsg 0:662207e34fba 861 * 14 | 381kHz | 21
garfieldsg 0:662207e34fba 862 * 15 | 364kHz | 22
garfieldsg 0:662207e34fba 863 * </pre>
garfieldsg 0:662207e34fba 864 *
garfieldsg 0:662207e34fba 865 * @return Current I2C master clock speed
garfieldsg 0:662207e34fba 866 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 867 */
syundo0730 6:f38dfe62d74c 868 uint8_t MPU6050::getMasterClockSpeed() {
syundo0730 7:d5845b617139 869 I2Cdev::readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
garfieldsg 0:662207e34fba 870 return buffer[0];
garfieldsg 0:662207e34fba 871 }
garfieldsg 0:662207e34fba 872 /** Set I2C master clock speed.
garfieldsg 0:662207e34fba 873 * @reparam speed Current I2C master clock speed
garfieldsg 0:662207e34fba 874 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 875 */
syundo0730 6:f38dfe62d74c 876 void MPU6050::setMasterClockSpeed(uint8_t speed) {
syundo0730 7:d5845b617139 877 I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
garfieldsg 0:662207e34fba 878 }
garfieldsg 0:662207e34fba 879
garfieldsg 0:662207e34fba 880 // I2C_SLV* registers (Slave 0-3)
garfieldsg 0:662207e34fba 881
garfieldsg 0:662207e34fba 882 /** Get the I2C address of the specified slave (0-3).
garfieldsg 0:662207e34fba 883 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
garfieldsg 0:662207e34fba 884 * operation, and if it is cleared, then it's a write operation. The remaining
garfieldsg 0:662207e34fba 885 * bits (6-0) are the 7-bit device address of the slave device.
garfieldsg 0:662207e34fba 886 *
syundo0730 7:d5845b617139 887 * In read mode, the result of the read is placed in the lowest available
garfieldsg 0:662207e34fba 888 * EXT_SENS_DATA register. For further information regarding the allocation of
garfieldsg 0:662207e34fba 889 * read results, please refer to the EXT_SENS_DATA register description
garfieldsg 0:662207e34fba 890 * (Registers 73 - 96).
garfieldsg 0:662207e34fba 891 *
garfieldsg 0:662207e34fba 892 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
garfieldsg 0:662207e34fba 893 * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
garfieldsg 0:662207e34fba 894 *
garfieldsg 0:662207e34fba 895 * I2C data transactions are performed at the Sample Rate, as defined in
garfieldsg 0:662207e34fba 896 * Register 25. The user is responsible for ensuring that I2C data transactions
garfieldsg 0:662207e34fba 897 * to and from each enabled Slave can be completed within a single period of the
garfieldsg 0:662207e34fba 898 * Sample Rate.
garfieldsg 0:662207e34fba 899 *
garfieldsg 0:662207e34fba 900 * The I2C slave access rate can be reduced relative to the Sample Rate. This
garfieldsg 0:662207e34fba 901 * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
garfieldsg 0:662207e34fba 902 * slave's access rate is reduced relative to the Sample Rate is determined by
garfieldsg 0:662207e34fba 903 * I2C_MST_DELAY_CTRL (Register 103).
garfieldsg 0:662207e34fba 904 *
garfieldsg 0:662207e34fba 905 * The processing order for the slaves is fixed. The sequence followed for
garfieldsg 0:662207e34fba 906 * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
garfieldsg 0:662207e34fba 907 * particular Slave is disabled it will be skipped.
garfieldsg 0:662207e34fba 908 *
garfieldsg 0:662207e34fba 909 * Each slave can either be accessed at the sample rate or at a reduced sample
garfieldsg 0:662207e34fba 910 * rate. In a case where some slaves are accessed at the Sample Rate and some
garfieldsg 0:662207e34fba 911 * slaves are accessed at the reduced rate, the sequence of accessing the slaves
garfieldsg 0:662207e34fba 912 * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
garfieldsg 0:662207e34fba 913 * be skipped if their access rate dictates that they should not be accessed
garfieldsg 0:662207e34fba 914 * during that particular cycle. For further information regarding the reduced
garfieldsg 0:662207e34fba 915 * access rate, please refer to Register 52. Whether a slave is accessed at the
garfieldsg 0:662207e34fba 916 * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
garfieldsg 0:662207e34fba 917 * Register 103.
garfieldsg 0:662207e34fba 918 *
garfieldsg 0:662207e34fba 919 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 920 * @return Current address for specified slave
garfieldsg 0:662207e34fba 921 * @see MPU6050_RA_I2C_SLV0_ADDR
garfieldsg 0:662207e34fba 922 */
syundo0730 6:f38dfe62d74c 923 uint8_t MPU6050::getSlaveAddress(uint8_t num) {
garfieldsg 0:662207e34fba 924 if (num > 3) return 0;
syundo0730 7:d5845b617139 925 I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
garfieldsg 0:662207e34fba 926 return buffer[0];
garfieldsg 0:662207e34fba 927 }
garfieldsg 0:662207e34fba 928 /** Set the I2C address of the specified slave (0-3).
garfieldsg 0:662207e34fba 929 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 930 * @param address New address for specified slave
garfieldsg 0:662207e34fba 931 * @see getSlaveAddress()
garfieldsg 0:662207e34fba 932 * @see MPU6050_RA_I2C_SLV0_ADDR
garfieldsg 0:662207e34fba 933 */
syundo0730 6:f38dfe62d74c 934 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address) {
garfieldsg 0:662207e34fba 935 if (num > 3) return;
syundo0730 7:d5845b617139 936 I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
garfieldsg 0:662207e34fba 937 }
garfieldsg 0:662207e34fba 938 /** Get the active internal register for the specified slave (0-3).
garfieldsg 0:662207e34fba 939 * Read/write operations for this slave will be done to whatever internal
garfieldsg 0:662207e34fba 940 * register address is stored in this MPU register.
garfieldsg 0:662207e34fba 941 *
garfieldsg 0:662207e34fba 942 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
garfieldsg 0:662207e34fba 943 * characteristics, and so it has its own functions.
garfieldsg 0:662207e34fba 944 *
garfieldsg 0:662207e34fba 945 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 946 * @return Current active register for specified slave
garfieldsg 0:662207e34fba 947 * @see MPU6050_RA_I2C_SLV0_REG
garfieldsg 0:662207e34fba 948 */
syundo0730 6:f38dfe62d74c 949 uint8_t MPU6050::getSlaveRegister(uint8_t num) {
garfieldsg 0:662207e34fba 950 if (num > 3) return 0;
syundo0730 7:d5845b617139 951 I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
garfieldsg 0:662207e34fba 952 return buffer[0];
garfieldsg 0:662207e34fba 953 }
garfieldsg 0:662207e34fba 954 /** Set the active internal register for the specified slave (0-3).
garfieldsg 0:662207e34fba 955 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 956 * @param reg New active register for specified slave
garfieldsg 0:662207e34fba 957 * @see getSlaveRegister()
garfieldsg 0:662207e34fba 958 * @see MPU6050_RA_I2C_SLV0_REG
garfieldsg 0:662207e34fba 959 */
syundo0730 6:f38dfe62d74c 960 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg) {
garfieldsg 0:662207e34fba 961 if (num > 3) return;
syundo0730 7:d5845b617139 962 I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
garfieldsg 0:662207e34fba 963 }
garfieldsg 0:662207e34fba 964 /** Get the enabled value for the specified slave (0-3).
garfieldsg 0:662207e34fba 965 * When set to 1, this bit enables Slave 0 for data transfer operations. When
garfieldsg 0:662207e34fba 966 * cleared to 0, this bit disables Slave 0 from data transfer operations.
garfieldsg 0:662207e34fba 967 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 968 * @return Current enabled value for specified slave
garfieldsg 0:662207e34fba 969 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 970 */
syundo0730 6:f38dfe62d74c 971 bool MPU6050::getSlaveEnabled(uint8_t num) {
garfieldsg 0:662207e34fba 972 if (num > 3) return 0;
syundo0730 7:d5845b617139 973 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
garfieldsg 0:662207e34fba 974 return buffer[0];
garfieldsg 0:662207e34fba 975 }
garfieldsg 0:662207e34fba 976 /** Set the enabled value for the specified slave (0-3).
garfieldsg 0:662207e34fba 977 * @param num Slave number (0-3)
syundo0730 6:f38dfe62d74c 978 * @param enabled New enabled value for specified slave
garfieldsg 0:662207e34fba 979 * @see getSlaveEnabled()
garfieldsg 0:662207e34fba 980 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 981 */
syundo0730 6:f38dfe62d74c 982 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled) {
garfieldsg 0:662207e34fba 983 if (num > 3) return;
syundo0730 7:d5845b617139 984 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
garfieldsg 0:662207e34fba 985 }
garfieldsg 0:662207e34fba 986 /** Get word pair byte-swapping enabled for the specified slave (0-3).
garfieldsg 0:662207e34fba 987 * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
garfieldsg 0:662207e34fba 988 * the high and low bytes of a word pair are swapped. Please refer to
garfieldsg 0:662207e34fba 989 * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
garfieldsg 0:662207e34fba 990 * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
garfieldsg 0:662207e34fba 991 * registers in the order they were transferred.
garfieldsg 0:662207e34fba 992 *
garfieldsg 0:662207e34fba 993 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 994 * @return Current word pair byte-swapping enabled value for specified slave
garfieldsg 0:662207e34fba 995 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 996 */
syundo0730 6:f38dfe62d74c 997 bool MPU6050::getSlaveWordByteSwap(uint8_t num) {
garfieldsg 0:662207e34fba 998 if (num > 3) return 0;
syundo0730 7:d5845b617139 999 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
garfieldsg 0:662207e34fba 1000 return buffer[0];
garfieldsg 0:662207e34fba 1001 }
garfieldsg 0:662207e34fba 1002 /** Set word pair byte-swapping enabled for the specified slave (0-3).
garfieldsg 0:662207e34fba 1003 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1004 * @param enabled New word pair byte-swapping enabled value for specified slave
garfieldsg 0:662207e34fba 1005 * @see getSlaveWordByteSwap()
garfieldsg 0:662207e34fba 1006 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1007 */
syundo0730 6:f38dfe62d74c 1008 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled) {
garfieldsg 0:662207e34fba 1009 if (num > 3) return;
syundo0730 7:d5845b617139 1010 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
garfieldsg 0:662207e34fba 1011 }
garfieldsg 0:662207e34fba 1012 /** Get write mode for the specified slave (0-3).
garfieldsg 0:662207e34fba 1013 * When set to 1, the transaction will read or write data only. When cleared to
garfieldsg 0:662207e34fba 1014 * 0, the transaction will write a register address prior to reading or writing
garfieldsg 0:662207e34fba 1015 * data. This should equal 0 when specifying the register address within the
garfieldsg 0:662207e34fba 1016 * Slave device to/from which the ensuing data transaction will take place.
garfieldsg 0:662207e34fba 1017 *
garfieldsg 0:662207e34fba 1018 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1019 * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1020 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1021 */
syundo0730 6:f38dfe62d74c 1022 bool MPU6050::getSlaveWriteMode(uint8_t num) {
garfieldsg 0:662207e34fba 1023 if (num > 3) return 0;
syundo0730 7:d5845b617139 1024 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 1025 return buffer[0];
garfieldsg 0:662207e34fba 1026 }
garfieldsg 0:662207e34fba 1027 /** Set write mode for the specified slave (0-3).
garfieldsg 0:662207e34fba 1028 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1029 * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1030 * @see getSlaveWriteMode()
garfieldsg 0:662207e34fba 1031 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1032 */
syundo0730 6:f38dfe62d74c 1033 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode) {
garfieldsg 0:662207e34fba 1034 if (num > 3) return;
syundo0730 7:d5845b617139 1035 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
garfieldsg 0:662207e34fba 1036 }
garfieldsg 0:662207e34fba 1037 /** Get word pair grouping order offset for the specified slave (0-3).
garfieldsg 0:662207e34fba 1038 * This sets specifies the grouping order of word pairs received from registers.
garfieldsg 0:662207e34fba 1039 * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
garfieldsg 0:662207e34fba 1040 * then odd register addresses) are paired to form a word. When set to 1, bytes
garfieldsg 0:662207e34fba 1041 * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
garfieldsg 0:662207e34fba 1042 * register addresses) are paired to form a word.
garfieldsg 0:662207e34fba 1043 *
garfieldsg 0:662207e34fba 1044 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1045 * @return Current word pair grouping order offset for specified slave
garfieldsg 0:662207e34fba 1046 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1047 */
syundo0730 6:f38dfe62d74c 1048 bool MPU6050::getSlaveWordGroupOffset(uint8_t num) {
garfieldsg 0:662207e34fba 1049 if (num > 3) return 0;
syundo0730 7:d5845b617139 1050 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
garfieldsg 0:662207e34fba 1051 return buffer[0];
garfieldsg 0:662207e34fba 1052 }
garfieldsg 0:662207e34fba 1053 /** Set word pair grouping order offset for the specified slave (0-3).
garfieldsg 0:662207e34fba 1054 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1055 * @param enabled New word pair grouping order offset for specified slave
garfieldsg 0:662207e34fba 1056 * @see getSlaveWordGroupOffset()
garfieldsg 0:662207e34fba 1057 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1058 */
syundo0730 6:f38dfe62d74c 1059 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled) {
garfieldsg 0:662207e34fba 1060 if (num > 3) return;
syundo0730 7:d5845b617139 1061 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
garfieldsg 0:662207e34fba 1062 }
garfieldsg 0:662207e34fba 1063 /** Get number of bytes to read for the specified slave (0-3).
garfieldsg 0:662207e34fba 1064 * Specifies the number of bytes transferred to and from Slave 0. Clearing this
garfieldsg 0:662207e34fba 1065 * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
garfieldsg 0:662207e34fba 1066 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1067 * @return Number of bytes to read for specified slave
garfieldsg 0:662207e34fba 1068 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1069 */
syundo0730 6:f38dfe62d74c 1070 uint8_t MPU6050::getSlaveDataLength(uint8_t num) {
garfieldsg 0:662207e34fba 1071 if (num > 3) return 0;
syundo0730 7:d5845b617139 1072 I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
garfieldsg 0:662207e34fba 1073 return buffer[0];
garfieldsg 0:662207e34fba 1074 }
garfieldsg 0:662207e34fba 1075 /** Set number of bytes to read for the specified slave (0-3).
garfieldsg 0:662207e34fba 1076 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1077 * @param length Number of bytes to read for specified slave
garfieldsg 0:662207e34fba 1078 * @see getSlaveDataLength()
garfieldsg 0:662207e34fba 1079 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1080 */
syundo0730 6:f38dfe62d74c 1081 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length) {
garfieldsg 0:662207e34fba 1082 if (num > 3) return;
syundo0730 7:d5845b617139 1083 I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
garfieldsg 0:662207e34fba 1084 }
garfieldsg 0:662207e34fba 1085
garfieldsg 0:662207e34fba 1086 // I2C_SLV* registers (Slave 4)
garfieldsg 0:662207e34fba 1087
garfieldsg 0:662207e34fba 1088 /** Get the I2C address of Slave 4.
garfieldsg 0:662207e34fba 1089 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
garfieldsg 0:662207e34fba 1090 * operation, and if it is cleared, then it's a write operation. The remaining
garfieldsg 0:662207e34fba 1091 * bits (6-0) are the 7-bit device address of the slave device.
garfieldsg 0:662207e34fba 1092 *
garfieldsg 0:662207e34fba 1093 * @return Current address for Slave 4
garfieldsg 0:662207e34fba 1094 * @see getSlaveAddress()
garfieldsg 0:662207e34fba 1095 * @see MPU6050_RA_I2C_SLV4_ADDR
garfieldsg 0:662207e34fba 1096 */
syundo0730 6:f38dfe62d74c 1097 uint8_t MPU6050::getSlave4Address() {
syundo0730 7:d5845b617139 1098 I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
garfieldsg 0:662207e34fba 1099 return buffer[0];
garfieldsg 0:662207e34fba 1100 }
garfieldsg 0:662207e34fba 1101 /** Set the I2C address of Slave 4.
garfieldsg 0:662207e34fba 1102 * @param address New address for Slave 4
garfieldsg 0:662207e34fba 1103 * @see getSlave4Address()
garfieldsg 0:662207e34fba 1104 * @see MPU6050_RA_I2C_SLV4_ADDR
garfieldsg 0:662207e34fba 1105 */
syundo0730 6:f38dfe62d74c 1106 void MPU6050::setSlave4Address(uint8_t address) {
syundo0730 7:d5845b617139 1107 I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
garfieldsg 0:662207e34fba 1108 }
garfieldsg 0:662207e34fba 1109 /** Get the active internal register for the Slave 4.
garfieldsg 0:662207e34fba 1110 * Read/write operations for this slave will be done to whatever internal
garfieldsg 0:662207e34fba 1111 * register address is stored in this MPU register.
garfieldsg 0:662207e34fba 1112 *
garfieldsg 0:662207e34fba 1113 * @return Current active register for Slave 4
garfieldsg 0:662207e34fba 1114 * @see MPU6050_RA_I2C_SLV4_REG
garfieldsg 0:662207e34fba 1115 */
syundo0730 6:f38dfe62d74c 1116 uint8_t MPU6050::getSlave4Register() {
syundo0730 7:d5845b617139 1117 I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
garfieldsg 0:662207e34fba 1118 return buffer[0];
garfieldsg 0:662207e34fba 1119 }
garfieldsg 0:662207e34fba 1120 /** Set the active internal register for Slave 4.
garfieldsg 0:662207e34fba 1121 * @param reg New active register for Slave 4
garfieldsg 0:662207e34fba 1122 * @see getSlave4Register()
garfieldsg 0:662207e34fba 1123 * @see MPU6050_RA_I2C_SLV4_REG
garfieldsg 0:662207e34fba 1124 */
syundo0730 6:f38dfe62d74c 1125 void MPU6050::setSlave4Register(uint8_t reg) {
syundo0730 7:d5845b617139 1126 I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
garfieldsg 0:662207e34fba 1127 }
garfieldsg 0:662207e34fba 1128 /** Set new byte to write to Slave 4.
garfieldsg 0:662207e34fba 1129 * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
garfieldsg 0:662207e34fba 1130 * is set 1 (set to read), this register has no effect.
garfieldsg 0:662207e34fba 1131 * @param data New byte to write to Slave 4
garfieldsg 0:662207e34fba 1132 * @see MPU6050_RA_I2C_SLV4_DO
garfieldsg 0:662207e34fba 1133 */
syundo0730 6:f38dfe62d74c 1134 void MPU6050::setSlave4OutputByte(uint8_t data) {
syundo0730 7:d5845b617139 1135 I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
garfieldsg 0:662207e34fba 1136 }
garfieldsg 0:662207e34fba 1137 /** Get the enabled value for the Slave 4.
garfieldsg 0:662207e34fba 1138 * When set to 1, this bit enables Slave 4 for data transfer operations. When
garfieldsg 0:662207e34fba 1139 * cleared to 0, this bit disables Slave 4 from data transfer operations.
garfieldsg 0:662207e34fba 1140 * @return Current enabled value for Slave 4
garfieldsg 0:662207e34fba 1141 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1142 */
syundo0730 6:f38dfe62d74c 1143 bool MPU6050::getSlave4Enabled() {
syundo0730 7:d5845b617139 1144 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1145 return buffer[0];
garfieldsg 0:662207e34fba 1146 }
garfieldsg 0:662207e34fba 1147 /** Set the enabled value for Slave 4.
garfieldsg 0:662207e34fba 1148 * @param enabled New enabled value for Slave 4
garfieldsg 0:662207e34fba 1149 * @see getSlave4Enabled()
garfieldsg 0:662207e34fba 1150 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1151 */
syundo0730 6:f38dfe62d74c 1152 void MPU6050::setSlave4Enabled(bool enabled) {
syundo0730 7:d5845b617139 1153 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1154 }
garfieldsg 0:662207e34fba 1155 /** Get the enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1156 * When set to 1, this bit enables the generation of an interrupt signal upon
garfieldsg 0:662207e34fba 1157 * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
garfieldsg 0:662207e34fba 1158 * generation of an interrupt signal upon completion of a Slave 4 transaction.
garfieldsg 0:662207e34fba 1159 * The interrupt status can be observed in Register 54.
garfieldsg 0:662207e34fba 1160 *
garfieldsg 0:662207e34fba 1161 * @return Current enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1162 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1163 */
syundo0730 6:f38dfe62d74c 1164 bool MPU6050::getSlave4InterruptEnabled() {
syundo0730 7:d5845b617139 1165 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1166 return buffer[0];
garfieldsg 0:662207e34fba 1167 }
garfieldsg 0:662207e34fba 1168 /** Set the enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1169 * @param enabled New enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1170 * @see getSlave4InterruptEnabled()
garfieldsg 0:662207e34fba 1171 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1172 */
syundo0730 6:f38dfe62d74c 1173 void MPU6050::setSlave4InterruptEnabled(bool enabled) {
syundo0730 7:d5845b617139 1174 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1175 }
garfieldsg 0:662207e34fba 1176 /** Get write mode for Slave 4.
garfieldsg 0:662207e34fba 1177 * When set to 1, the transaction will read or write data only. When cleared to
garfieldsg 0:662207e34fba 1178 * 0, the transaction will write a register address prior to reading or writing
garfieldsg 0:662207e34fba 1179 * data. This should equal 0 when specifying the register address within the
garfieldsg 0:662207e34fba 1180 * Slave device to/from which the ensuing data transaction will take place.
garfieldsg 0:662207e34fba 1181 *
garfieldsg 0:662207e34fba 1182 * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1183 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1184 */
syundo0730 6:f38dfe62d74c 1185 bool MPU6050::getSlave4WriteMode() {
syundo0730 7:d5845b617139 1186 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 1187 return buffer[0];
garfieldsg 0:662207e34fba 1188 }
garfieldsg 0:662207e34fba 1189 /** Set write mode for the Slave 4.
garfieldsg 0:662207e34fba 1190 * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1191 * @see getSlave4WriteMode()
garfieldsg 0:662207e34fba 1192 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1193 */
syundo0730 6:f38dfe62d74c 1194 void MPU6050::setSlave4WriteMode(bool mode) {
syundo0730 7:d5845b617139 1195 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
garfieldsg 0:662207e34fba 1196 }
garfieldsg 0:662207e34fba 1197 /** Get Slave 4 master delay value.
garfieldsg 0:662207e34fba 1198 * This configures the reduced access rate of I2C slaves relative to the Sample
garfieldsg 0:662207e34fba 1199 * Rate. When a slave's access rate is decreased relative to the Sample Rate,
garfieldsg 0:662207e34fba 1200 * the slave is accessed every:
garfieldsg 0:662207e34fba 1201 *
garfieldsg 0:662207e34fba 1202 * 1 / (1 + I2C_MST_DLY) samples
garfieldsg 0:662207e34fba 1203 *
garfieldsg 0:662207e34fba 1204 * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
garfieldsg 0:662207e34fba 1205 * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
garfieldsg 0:662207e34fba 1206 * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
garfieldsg 0:662207e34fba 1207 * further information regarding the Sample Rate, please refer to register 25.
garfieldsg 0:662207e34fba 1208 *
garfieldsg 0:662207e34fba 1209 * @return Current Slave 4 master delay value
garfieldsg 0:662207e34fba 1210 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1211 */
syundo0730 6:f38dfe62d74c 1212 uint8_t MPU6050::getSlave4MasterDelay() {
syundo0730 7:d5845b617139 1213 I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
garfieldsg 0:662207e34fba 1214 return buffer[0];
garfieldsg 0:662207e34fba 1215 }
garfieldsg 0:662207e34fba 1216 /** Set Slave 4 master delay value.
garfieldsg 0:662207e34fba 1217 * @param delay New Slave 4 master delay value
garfieldsg 0:662207e34fba 1218 * @see getSlave4MasterDelay()
garfieldsg 0:662207e34fba 1219 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1220 */
syundo0730 6:f38dfe62d74c 1221 void MPU6050::setSlave4MasterDelay(uint8_t delay) {
syundo0730 7:d5845b617139 1222 I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
garfieldsg 0:662207e34fba 1223 }
garfieldsg 0:662207e34fba 1224 /** Get last available byte read from Slave 4.
garfieldsg 0:662207e34fba 1225 * This register stores the data read from Slave 4. This field is populated
garfieldsg 0:662207e34fba 1226 * after a read transaction.
garfieldsg 0:662207e34fba 1227 * @return Last available byte read from to Slave 4
garfieldsg 0:662207e34fba 1228 * @see MPU6050_RA_I2C_SLV4_DI
garfieldsg 0:662207e34fba 1229 */
syundo0730 6:f38dfe62d74c 1230 uint8_t MPU6050::getSlate4InputByte() {
syundo0730 7:d5845b617139 1231 I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
garfieldsg 0:662207e34fba 1232 return buffer[0];
garfieldsg 0:662207e34fba 1233 }
garfieldsg 0:662207e34fba 1234
garfieldsg 0:662207e34fba 1235 // I2C_MST_STATUS register
garfieldsg 0:662207e34fba 1236
garfieldsg 0:662207e34fba 1237 /** Get FSYNC interrupt status.
garfieldsg 0:662207e34fba 1238 * This bit reflects the status of the FSYNC interrupt from an external device
garfieldsg 0:662207e34fba 1239 * into the MPU-60X0. This is used as a way to pass an external interrupt
garfieldsg 0:662207e34fba 1240 * through the MPU-60X0 to the host application processor. When set to 1, this
garfieldsg 0:662207e34fba 1241 * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
garfieldsg 0:662207e34fba 1242 * (Register 55).
garfieldsg 0:662207e34fba 1243 * @return FSYNC interrupt status
garfieldsg 0:662207e34fba 1244 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1245 */
syundo0730 6:f38dfe62d74c 1246 bool MPU6050::getPassthroughStatus() {
syundo0730 7:d5845b617139 1247 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
garfieldsg 0:662207e34fba 1248 return buffer[0];
garfieldsg 0:662207e34fba 1249 }
garfieldsg 0:662207e34fba 1250 /** Get Slave 4 transaction done status.
garfieldsg 0:662207e34fba 1251 * Automatically sets to 1 when a Slave 4 transaction has completed. This
garfieldsg 0:662207e34fba 1252 * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
garfieldsg 0:662207e34fba 1253 * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
garfieldsg 0:662207e34fba 1254 * I2C_SLV4_CTRL register (Register 52).
garfieldsg 0:662207e34fba 1255 * @return Slave 4 transaction done status
garfieldsg 0:662207e34fba 1256 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1257 */
syundo0730 6:f38dfe62d74c 1258 bool MPU6050::getSlave4IsDone() {
syundo0730 7:d5845b617139 1259 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
garfieldsg 0:662207e34fba 1260 return buffer[0];
garfieldsg 0:662207e34fba 1261 }
garfieldsg 0:662207e34fba 1262 /** Get master arbitration lost status.
garfieldsg 0:662207e34fba 1263 * This bit automatically sets to 1 when the I2C Master has lost arbitration of
garfieldsg 0:662207e34fba 1264 * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
garfieldsg 0:662207e34fba 1265 * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1266 * @return Master arbitration lost status
garfieldsg 0:662207e34fba 1267 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1268 */
syundo0730 6:f38dfe62d74c 1269 bool MPU6050::getLostArbitration() {
syundo0730 7:d5845b617139 1270 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
garfieldsg 0:662207e34fba 1271 return buffer[0];
garfieldsg 0:662207e34fba 1272 }
garfieldsg 0:662207e34fba 1273 /** Get Slave 4 NACK status.
garfieldsg 0:662207e34fba 1274 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1275 * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1276 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1277 * @return Slave 4 NACK interrupt status
garfieldsg 0:662207e34fba 1278 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1279 */
syundo0730 6:f38dfe62d74c 1280 bool MPU6050::getSlave4Nack() {
syundo0730 7:d5845b617139 1281 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1282 return buffer[0];
garfieldsg 0:662207e34fba 1283 }
garfieldsg 0:662207e34fba 1284 /** Get Slave 3 NACK status.
garfieldsg 0:662207e34fba 1285 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1286 * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1287 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1288 * @return Slave 3 NACK interrupt status
garfieldsg 0:662207e34fba 1289 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1290 */
syundo0730 6:f38dfe62d74c 1291 bool MPU6050::getSlave3Nack() {
syundo0730 7:d5845b617139 1292 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1293 return buffer[0];
garfieldsg 0:662207e34fba 1294 }
garfieldsg 0:662207e34fba 1295 /** Get Slave 2 NACK status.
garfieldsg 0:662207e34fba 1296 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1297 * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1298 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1299 * @return Slave 2 NACK interrupt status
garfieldsg 0:662207e34fba 1300 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1301 */
syundo0730 6:f38dfe62d74c 1302 bool MPU6050::getSlave2Nack() {
syundo0730 7:d5845b617139 1303 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1304 return buffer[0];
garfieldsg 0:662207e34fba 1305 }
garfieldsg 0:662207e34fba 1306 /** Get Slave 1 NACK status.
garfieldsg 0:662207e34fba 1307 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1308 * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1309 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1310 * @return Slave 1 NACK interrupt status
garfieldsg 0:662207e34fba 1311 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1312 */
syundo0730 6:f38dfe62d74c 1313 bool MPU6050::getSlave1Nack() {
syundo0730 7:d5845b617139 1314 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1315 return buffer[0];
garfieldsg 0:662207e34fba 1316 }
garfieldsg 0:662207e34fba 1317 /** Get Slave 0 NACK status.
garfieldsg 0:662207e34fba 1318 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1319 * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1320 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1321 * @return Slave 0 NACK interrupt status
garfieldsg 0:662207e34fba 1322 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1323 */
syundo0730 6:f38dfe62d74c 1324 bool MPU6050::getSlave0Nack() {
syundo0730 7:d5845b617139 1325 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1326 return buffer[0];
garfieldsg 0:662207e34fba 1327 }
garfieldsg 0:662207e34fba 1328
garfieldsg 0:662207e34fba 1329 // INT_PIN_CFG register
garfieldsg 0:662207e34fba 1330
garfieldsg 0:662207e34fba 1331 /** Get interrupt logic level mode.
garfieldsg 0:662207e34fba 1332 * Will be set 0 for active-high, 1 for active-low.
garfieldsg 0:662207e34fba 1333 * @return Current interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1334 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1335 * @see MPU6050_INTCFG_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1336 */
syundo0730 6:f38dfe62d74c 1337 bool MPU6050::getInterruptMode() {
syundo0730 7:d5845b617139 1338 I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
garfieldsg 0:662207e34fba 1339 return buffer[0];
garfieldsg 0:662207e34fba 1340 }
garfieldsg 0:662207e34fba 1341 /** Set interrupt logic level mode.
garfieldsg 0:662207e34fba 1342 * @param mode New interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1343 * @see getInterruptMode()
garfieldsg 0:662207e34fba 1344 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1345 * @see MPU6050_INTCFG_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1346 */
syundo0730 6:f38dfe62d74c 1347 void MPU6050::setInterruptMode(bool mode) {
syundo0730 7:d5845b617139 1348 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
garfieldsg 0:662207e34fba 1349 }
garfieldsg 0:662207e34fba 1350 /** Get interrupt drive mode.
garfieldsg 0:662207e34fba 1351 * Will be set 0 for push-pull, 1 for open-drain.
garfieldsg 0:662207e34fba 1352 * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
garfieldsg 0:662207e34fba 1353 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1354 * @see MPU6050_INTCFG_INT_OPEN_BIT
garfieldsg 0:662207e34fba 1355 */
syundo0730 6:f38dfe62d74c 1356 bool MPU6050::getInterruptDrive() {
syundo0730 7:d5845b617139 1357 I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
garfieldsg 0:662207e34fba 1358 return buffer[0];
garfieldsg 0:662207e34fba 1359 }
garfieldsg 0:662207e34fba 1360 /** Set interrupt drive mode.
garfieldsg 0:662207e34fba 1361 * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
garfieldsg 0:662207e34fba 1362 * @see getInterruptDrive()
garfieldsg 0:662207e34fba 1363 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1364 * @see MPU6050_INTCFG_INT_OPEN_BIT
garfieldsg 0:662207e34fba 1365 */
syundo0730 6:f38dfe62d74c 1366 void MPU6050::setInterruptDrive(bool drive) {
syundo0730 7:d5845b617139 1367 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
garfieldsg 0:662207e34fba 1368 }
garfieldsg 0:662207e34fba 1369 /** Get interrupt latch mode.
garfieldsg 0:662207e34fba 1370 * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
garfieldsg 0:662207e34fba 1371 * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
garfieldsg 0:662207e34fba 1372 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1373 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
garfieldsg 0:662207e34fba 1374 */
syundo0730 6:f38dfe62d74c 1375 bool MPU6050::getInterruptLatch() {
syundo0730 7:d5845b617139 1376 I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1377 return buffer[0];
garfieldsg 0:662207e34fba 1378 }
garfieldsg 0:662207e34fba 1379 /** Set interrupt latch mode.
garfieldsg 0:662207e34fba 1380 * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
garfieldsg 0:662207e34fba 1381 * @see getInterruptLatch()
garfieldsg 0:662207e34fba 1382 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1383 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
garfieldsg 0:662207e34fba 1384 */
syundo0730 6:f38dfe62d74c 1385 void MPU6050::setInterruptLatch(bool latch) {
syundo0730 7:d5845b617139 1386 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
garfieldsg 0:662207e34fba 1387 }
garfieldsg 0:662207e34fba 1388 /** Get interrupt latch clear mode.
garfieldsg 0:662207e34fba 1389 * Will be set 0 for status-read-only, 1 for any-register-read.
garfieldsg 0:662207e34fba 1390 * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
garfieldsg 0:662207e34fba 1391 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1392 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
garfieldsg 0:662207e34fba 1393 */
syundo0730 6:f38dfe62d74c 1394 bool MPU6050::getInterruptLatchClear() {
syundo0730 7:d5845b617139 1395 I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
garfieldsg 0:662207e34fba 1396 return buffer[0];
garfieldsg 0:662207e34fba 1397 }
garfieldsg 0:662207e34fba 1398 /** Set interrupt latch clear mode.
garfieldsg 0:662207e34fba 1399 * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
garfieldsg 0:662207e34fba 1400 * @see getInterruptLatchClear()
garfieldsg 0:662207e34fba 1401 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1402 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
garfieldsg 0:662207e34fba 1403 */
syundo0730 6:f38dfe62d74c 1404 void MPU6050::setInterruptLatchClear(bool clear) {
syundo0730 7:d5845b617139 1405 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
garfieldsg 0:662207e34fba 1406 }
garfieldsg 0:662207e34fba 1407 /** Get FSYNC interrupt logic level mode.
garfieldsg 0:662207e34fba 1408 * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1409 * @see getFSyncInterruptMode()
garfieldsg 0:662207e34fba 1410 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1411 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1412 */
syundo0730 6:f38dfe62d74c 1413 bool MPU6050::getFSyncInterruptLevel() {
syundo0730 7:d5845b617139 1414 I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
garfieldsg 0:662207e34fba 1415 return buffer[0];
garfieldsg 0:662207e34fba 1416 }
garfieldsg 0:662207e34fba 1417 /** Set FSYNC interrupt logic level mode.
garfieldsg 0:662207e34fba 1418 * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1419 * @see getFSyncInterruptMode()
garfieldsg 0:662207e34fba 1420 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1421 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1422 */
syundo0730 6:f38dfe62d74c 1423 void MPU6050::setFSyncInterruptLevel(bool level) {
syundo0730 7:d5845b617139 1424 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
garfieldsg 0:662207e34fba 1425 }
garfieldsg 0:662207e34fba 1426 /** Get FSYNC pin interrupt enabled setting.
garfieldsg 0:662207e34fba 1427 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1428 * @return Current interrupt enabled setting
garfieldsg 0:662207e34fba 1429 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1430 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
garfieldsg 0:662207e34fba 1431 */
syundo0730 6:f38dfe62d74c 1432 bool MPU6050::getFSyncInterruptEnabled() {
syundo0730 7:d5845b617139 1433 I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1434 return buffer[0];
garfieldsg 0:662207e34fba 1435 }
garfieldsg 0:662207e34fba 1436 /** Set FSYNC pin interrupt enabled setting.
garfieldsg 0:662207e34fba 1437 * @param enabled New FSYNC pin interrupt enabled setting
garfieldsg 0:662207e34fba 1438 * @see getFSyncInterruptEnabled()
garfieldsg 0:662207e34fba 1439 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1440 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
garfieldsg 0:662207e34fba 1441 */
syundo0730 6:f38dfe62d74c 1442 void MPU6050::setFSyncInterruptEnabled(bool enabled) {
syundo0730 7:d5845b617139 1443 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1444 }
garfieldsg 0:662207e34fba 1445 /** Get I2C bypass enabled status.
garfieldsg 0:662207e34fba 1446 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
garfieldsg 0:662207e34fba 1447 * 0, the host application processor will be able to directly access the
garfieldsg 0:662207e34fba 1448 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
garfieldsg 0:662207e34fba 1449 * application processor will not be able to directly access the auxiliary I2C
garfieldsg 0:662207e34fba 1450 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
garfieldsg 0:662207e34fba 1451 * bit[5]).
garfieldsg 0:662207e34fba 1452 * @return Current I2C bypass enabled status
garfieldsg 0:662207e34fba 1453 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1454 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
garfieldsg 0:662207e34fba 1455 */
syundo0730 6:f38dfe62d74c 1456 bool MPU6050::getI2CBypassEnabled() {
syundo0730 7:d5845b617139 1457 I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1458 return buffer[0];
garfieldsg 0:662207e34fba 1459 }
garfieldsg 0:662207e34fba 1460 /** Set I2C bypass enabled status.
garfieldsg 0:662207e34fba 1461 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
garfieldsg 0:662207e34fba 1462 * 0, the host application processor will be able to directly access the
garfieldsg 0:662207e34fba 1463 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
garfieldsg 0:662207e34fba 1464 * application processor will not be able to directly access the auxiliary I2C
garfieldsg 0:662207e34fba 1465 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
garfieldsg 0:662207e34fba 1466 * bit[5]).
garfieldsg 0:662207e34fba 1467 * @param enabled New I2C bypass enabled status
garfieldsg 0:662207e34fba 1468 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1469 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
garfieldsg 0:662207e34fba 1470 */
syundo0730 6:f38dfe62d74c 1471 void MPU6050::setI2CBypassEnabled(bool enabled) {
syundo0730 7:d5845b617139 1472 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1473 }
garfieldsg 0:662207e34fba 1474 /** Get reference clock output enabled status.
garfieldsg 0:662207e34fba 1475 * When this bit is equal to 1, a reference clock output is provided at the
garfieldsg 0:662207e34fba 1476 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
garfieldsg 0:662207e34fba 1477 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
garfieldsg 0:662207e34fba 1478 * Specification document.
garfieldsg 0:662207e34fba 1479 * @return Current reference clock output enabled status
garfieldsg 0:662207e34fba 1480 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1481 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
garfieldsg 0:662207e34fba 1482 */
syundo0730 6:f38dfe62d74c 1483 bool MPU6050::getClockOutputEnabled() {
syundo0730 7:d5845b617139 1484 I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1485 return buffer[0];
garfieldsg 0:662207e34fba 1486 }
garfieldsg 0:662207e34fba 1487 /** Set reference clock output enabled status.
garfieldsg 0:662207e34fba 1488 * When this bit is equal to 1, a reference clock output is provided at the
garfieldsg 0:662207e34fba 1489 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
garfieldsg 0:662207e34fba 1490 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
garfieldsg 0:662207e34fba 1491 * Specification document.
garfieldsg 0:662207e34fba 1492 * @param enabled New reference clock output enabled status
garfieldsg 0:662207e34fba 1493 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1494 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
garfieldsg 0:662207e34fba 1495 */
syundo0730 6:f38dfe62d74c 1496 void MPU6050::setClockOutputEnabled(bool enabled) {
syundo0730 7:d5845b617139 1497 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1498 }
garfieldsg 0:662207e34fba 1499
garfieldsg 0:662207e34fba 1500 // INT_ENABLE register
garfieldsg 0:662207e34fba 1501
garfieldsg 0:662207e34fba 1502 /** Get full interrupt enabled status.
garfieldsg 0:662207e34fba 1503 * Full register byte for all interrupts, for quick reading. Each bit will be
garfieldsg 0:662207e34fba 1504 * set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1505 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1506 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1507 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1508 **/
syundo0730 6:f38dfe62d74c 1509 uint8_t MPU6050::getIntEnabled() {
syundo0730 7:d5845b617139 1510 I2Cdev::readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
garfieldsg 0:662207e34fba 1511 return buffer[0];
garfieldsg 0:662207e34fba 1512 }
garfieldsg 0:662207e34fba 1513 /** Set full interrupt enabled status.
garfieldsg 0:662207e34fba 1514 * Full register byte for all interrupts, for quick reading. Each bit should be
garfieldsg 0:662207e34fba 1515 * set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1516 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1517 * @see getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1518 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1519 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1520 **/
syundo0730 6:f38dfe62d74c 1521 void MPU6050::setIntEnabled(uint8_t enabled) {
syundo0730 7:d5845b617139 1522 I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
garfieldsg 0:662207e34fba 1523 }
garfieldsg 0:662207e34fba 1524 /** Get Free Fall interrupt enabled status.
garfieldsg 0:662207e34fba 1525 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1526 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1527 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1528 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1529 **/
syundo0730 6:f38dfe62d74c 1530 bool MPU6050::getIntFreefallEnabled() {
syundo0730 7:d5845b617139 1531 I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
garfieldsg 0:662207e34fba 1532 return buffer[0];
garfieldsg 0:662207e34fba 1533 }
garfieldsg 0:662207e34fba 1534 /** Set Free Fall interrupt enabled status.
garfieldsg 0:662207e34fba 1535 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1536 * @see getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1537 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1538 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1539 **/
syundo0730 6:f38dfe62d74c 1540 void MPU6050::setIntFreefallEnabled(bool enabled) {
syundo0730 7:d5845b617139 1541 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
garfieldsg 0:662207e34fba 1542 }
garfieldsg 0:662207e34fba 1543 /** Get Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1544 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1545 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1546 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1547 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1548 **/
syundo0730 6:f38dfe62d74c 1549 bool MPU6050::getIntMotionEnabled() {
syundo0730 7:d5845b617139 1550 I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
garfieldsg 0:662207e34fba 1551 return buffer[0];
garfieldsg 0:662207e34fba 1552 }
garfieldsg 0:662207e34fba 1553 /** Set Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1554 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1555 * @see getIntMotionEnabled()
garfieldsg 0:662207e34fba 1556 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1557 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1558 **/
syundo0730 6:f38dfe62d74c 1559 void MPU6050::setIntMotionEnabled(bool enabled) {
syundo0730 7:d5845b617139 1560 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
garfieldsg 0:662207e34fba 1561 }
garfieldsg 0:662207e34fba 1562 /** Get Zero Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1563 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1564 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1565 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1566 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1567 **/
syundo0730 6:f38dfe62d74c 1568 bool MPU6050::getIntZeroMotionEnabled() {
syundo0730 7:d5845b617139 1569 I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
garfieldsg 0:662207e34fba 1570 return buffer[0];
garfieldsg 0:662207e34fba 1571 }
garfieldsg 0:662207e34fba 1572 /** Set Zero Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1573 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1574 * @see getIntZeroMotionEnabled()
garfieldsg 0:662207e34fba 1575 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1576 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1577 **/
syundo0730 6:f38dfe62d74c 1578 void MPU6050::setIntZeroMotionEnabled(bool enabled) {
syundo0730 7:d5845b617139 1579 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
garfieldsg 0:662207e34fba 1580 }
garfieldsg 0:662207e34fba 1581 /** Get FIFO Buffer Overflow interrupt enabled status.
garfieldsg 0:662207e34fba 1582 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1583 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1584 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1585 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1586 **/
syundo0730 6:f38dfe62d74c 1587 bool MPU6050::getIntFIFOBufferOverflowEnabled() {
syundo0730 7:d5845b617139 1588 I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
garfieldsg 0:662207e34fba 1589 return buffer[0];
garfieldsg 0:662207e34fba 1590 }
garfieldsg 0:662207e34fba 1591 /** Set FIFO Buffer Overflow interrupt enabled status.
garfieldsg 0:662207e34fba 1592 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1593 * @see getIntFIFOBufferOverflowEnabled()
garfieldsg 0:662207e34fba 1594 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1595 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1596 **/
syundo0730 6:f38dfe62d74c 1597 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled) {
syundo0730 7:d5845b617139 1598 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
garfieldsg 0:662207e34fba 1599 }
garfieldsg 0:662207e34fba 1600 /** Get I2C Master interrupt enabled status.
garfieldsg 0:662207e34fba 1601 * This enables any of the I2C Master interrupt sources to generate an
garfieldsg 0:662207e34fba 1602 * interrupt. Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1603 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1604 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1605 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1606 **/
syundo0730 6:f38dfe62d74c 1607 bool MPU6050::getIntI2CMasterEnabled() {
syundo0730 7:d5845b617139 1608 I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
garfieldsg 0:662207e34fba 1609 return buffer[0];
garfieldsg 0:662207e34fba 1610 }
garfieldsg 0:662207e34fba 1611 /** Set I2C Master interrupt enabled status.
garfieldsg 0:662207e34fba 1612 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1613 * @see getIntI2CMasterEnabled()
garfieldsg 0:662207e34fba 1614 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1615 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1616 **/
syundo0730 6:f38dfe62d74c 1617 void MPU6050::setIntI2CMasterEnabled(bool enabled) {
syundo0730 7:d5845b617139 1618 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
garfieldsg 0:662207e34fba 1619 }
garfieldsg 0:662207e34fba 1620 /** Get Data Ready interrupt enabled setting.
garfieldsg 0:662207e34fba 1621 * This event occurs each time a write operation to all of the sensor registers
garfieldsg 0:662207e34fba 1622 * has been completed. Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1623 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1624 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1625 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1626 */
syundo0730 6:f38dfe62d74c 1627 bool MPU6050::getIntDataReadyEnabled() {
syundo0730 7:d5845b617139 1628 I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
garfieldsg 0:662207e34fba 1629 return buffer[0];
garfieldsg 0:662207e34fba 1630 }
garfieldsg 0:662207e34fba 1631 /** Set Data Ready interrupt enabled status.
garfieldsg 0:662207e34fba 1632 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1633 * @see getIntDataReadyEnabled()
garfieldsg 0:662207e34fba 1634 * @see MPU6050_RA_INT_CFG
garfieldsg 0:662207e34fba 1635 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1636 */
syundo0730 6:f38dfe62d74c 1637 void MPU6050::setIntDataReadyEnabled(bool enabled) {
syundo0730 7:d5845b617139 1638 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
garfieldsg 0:662207e34fba 1639 }
garfieldsg 0:662207e34fba 1640
garfieldsg 0:662207e34fba 1641 // INT_STATUS register
garfieldsg 0:662207e34fba 1642
garfieldsg 0:662207e34fba 1643 /** Get full set of interrupt status bits.
garfieldsg 0:662207e34fba 1644 * These bits clear to 0 after the register has been read. Very useful
garfieldsg 0:662207e34fba 1645 * for getting multiple INT statuses, since each single bit read clears
garfieldsg 0:662207e34fba 1646 * all of them because it has to read the whole byte.
garfieldsg 0:662207e34fba 1647 * @return Current interrupt status
garfieldsg 0:662207e34fba 1648 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1649 */
syundo0730 6:f38dfe62d74c 1650 uint8_t MPU6050::getIntStatus() {
syundo0730 7:d5845b617139 1651 I2Cdev::readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
garfieldsg 0:662207e34fba 1652 return buffer[0];
garfieldsg 0:662207e34fba 1653 }
garfieldsg 0:662207e34fba 1654 /** Get Free Fall interrupt status.
garfieldsg 0:662207e34fba 1655 * This bit automatically sets to 1 when a Free Fall interrupt has been
garfieldsg 0:662207e34fba 1656 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1657 * @return Current interrupt status
garfieldsg 0:662207e34fba 1658 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1659 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1660 */
syundo0730 6:f38dfe62d74c 1661 bool MPU6050::getIntFreefallStatus() {
syundo0730 7:d5845b617139 1662 I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
garfieldsg 0:662207e34fba 1663 return buffer[0];
garfieldsg 0:662207e34fba 1664 }
garfieldsg 0:662207e34fba 1665 /** Get Motion Detection interrupt status.
garfieldsg 0:662207e34fba 1666 * This bit automatically sets to 1 when a Motion Detection interrupt has been
garfieldsg 0:662207e34fba 1667 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1668 * @return Current interrupt status
garfieldsg 0:662207e34fba 1669 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1670 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1671 */
syundo0730 6:f38dfe62d74c 1672 bool MPU6050::getIntMotionStatus() {
syundo0730 7:d5845b617139 1673 I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
garfieldsg 0:662207e34fba 1674 return buffer[0];
garfieldsg 0:662207e34fba 1675 }
garfieldsg 0:662207e34fba 1676 /** Get Zero Motion Detection interrupt status.
garfieldsg 0:662207e34fba 1677 * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
garfieldsg 0:662207e34fba 1678 * been generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1679 * @return Current interrupt status
garfieldsg 0:662207e34fba 1680 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1681 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1682 */
syundo0730 6:f38dfe62d74c 1683 bool MPU6050::getIntZeroMotionStatus() {
syundo0730 7:d5845b617139 1684 I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
garfieldsg 0:662207e34fba 1685 return buffer[0];
garfieldsg 0:662207e34fba 1686 }
garfieldsg 0:662207e34fba 1687 /** Get FIFO Buffer Overflow interrupt status.
garfieldsg 0:662207e34fba 1688 * This bit automatically sets to 1 when a Free Fall interrupt has been
garfieldsg 0:662207e34fba 1689 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1690 * @return Current interrupt status
garfieldsg 0:662207e34fba 1691 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1692 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1693 */
syundo0730 6:f38dfe62d74c 1694 bool MPU6050::getIntFIFOBufferOverflowStatus() {
syundo0730 7:d5845b617139 1695 I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
garfieldsg 0:662207e34fba 1696 return buffer[0];
garfieldsg 0:662207e34fba 1697 }
garfieldsg 0:662207e34fba 1698 /** Get I2C Master interrupt status.
garfieldsg 0:662207e34fba 1699 * This bit automatically sets to 1 when an I2C Master interrupt has been
garfieldsg 0:662207e34fba 1700 * generated. For a list of I2C Master interrupts, please refer to Register 54.
garfieldsg 0:662207e34fba 1701 * The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1702 * @return Current interrupt status
garfieldsg 0:662207e34fba 1703 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1704 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1705 */
syundo0730 6:f38dfe62d74c 1706 bool MPU6050::getIntI2CMasterStatus() {
syundo0730 7:d5845b617139 1707 I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
garfieldsg 0:662207e34fba 1708 return buffer[0];
garfieldsg 0:662207e34fba 1709 }
garfieldsg 0:662207e34fba 1710 /** Get Data Ready interrupt status.
garfieldsg 0:662207e34fba 1711 * This bit automatically sets to 1 when a Data Ready interrupt has been
garfieldsg 0:662207e34fba 1712 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1713 * @return Current interrupt status
garfieldsg 0:662207e34fba 1714 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1715 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1716 */
syundo0730 6:f38dfe62d74c 1717 bool MPU6050::getIntDataReadyStatus() {
syundo0730 7:d5845b617139 1718 I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
garfieldsg 0:662207e34fba 1719 return buffer[0];
garfieldsg 0:662207e34fba 1720 }
garfieldsg 0:662207e34fba 1721
garfieldsg 0:662207e34fba 1722 // ACCEL_*OUT_* registers
garfieldsg 0:662207e34fba 1723
garfieldsg 0:662207e34fba 1724 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
garfieldsg 0:662207e34fba 1725 * FUNCTION NOT FULLY IMPLEMENTED YET.
garfieldsg 0:662207e34fba 1726 * @param ax 16-bit signed integer container for accelerometer X-axis value
garfieldsg 0:662207e34fba 1727 * @param ay 16-bit signed integer container for accelerometer Y-axis value
garfieldsg 0:662207e34fba 1728 * @param az 16-bit signed integer container for accelerometer Z-axis value
garfieldsg 0:662207e34fba 1729 * @param gx 16-bit signed integer container for gyroscope X-axis value
garfieldsg 0:662207e34fba 1730 * @param gy 16-bit signed integer container for gyroscope Y-axis value
garfieldsg 0:662207e34fba 1731 * @param gz 16-bit signed integer container for gyroscope Z-axis value
garfieldsg 0:662207e34fba 1732 * @param mx 16-bit signed integer container for magnetometer X-axis value
garfieldsg 0:662207e34fba 1733 * @param my 16-bit signed integer container for magnetometer Y-axis value
garfieldsg 0:662207e34fba 1734 * @param mz 16-bit signed integer container for magnetometer Z-axis value
garfieldsg 0:662207e34fba 1735 * @see getMotion6()
garfieldsg 0:662207e34fba 1736 * @see getAcceleration()
garfieldsg 0:662207e34fba 1737 * @see getRotation()
garfieldsg 0:662207e34fba 1738 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 1739 */
syundo0730 6:f38dfe62d74c 1740 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz) {
garfieldsg 0:662207e34fba 1741 getMotion6(ax, ay, az, gx, gy, gz);
syundo0730 6:f38dfe62d74c 1742 // TODO: magnetometer integration
garfieldsg 0:662207e34fba 1743 }
garfieldsg 0:662207e34fba 1744 /** Get raw 6-axis motion sensor readings (accel/gyro).
garfieldsg 0:662207e34fba 1745 * Retrieves all currently available motion sensor values.
garfieldsg 0:662207e34fba 1746 * @param ax 16-bit signed integer container for accelerometer X-axis value
garfieldsg 0:662207e34fba 1747 * @param ay 16-bit signed integer container for accelerometer Y-axis value
garfieldsg 0:662207e34fba 1748 * @param az 16-bit signed integer container for accelerometer Z-axis value
garfieldsg 0:662207e34fba 1749 * @param gx 16-bit signed integer container for gyroscope X-axis value
garfieldsg 0:662207e34fba 1750 * @param gy 16-bit signed integer container for gyroscope Y-axis value
garfieldsg 0:662207e34fba 1751 * @param gz 16-bit signed integer container for gyroscope Z-axis value
garfieldsg 0:662207e34fba 1752 * @see getAcceleration()
garfieldsg 0:662207e34fba 1753 * @see getRotation()
garfieldsg 0:662207e34fba 1754 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 1755 */
syundo0730 6:f38dfe62d74c 1756 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz) {
syundo0730 7:d5845b617139 1757 I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
garfieldsg 0:662207e34fba 1758 *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1759 *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 1760 *az = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 1761 *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
garfieldsg 0:662207e34fba 1762 *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
garfieldsg 0:662207e34fba 1763 *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
garfieldsg 0:662207e34fba 1764 }
garfieldsg 0:662207e34fba 1765 /** Get 3-axis accelerometer readings.
garfieldsg 0:662207e34fba 1766 * These registers store the most recent accelerometer measurements.
garfieldsg 0:662207e34fba 1767 * Accelerometer measurements are written to these registers at the Sample Rate
garfieldsg 0:662207e34fba 1768 * as defined in Register 25.
garfieldsg 0:662207e34fba 1769 *
garfieldsg 0:662207e34fba 1770 * The accelerometer measurement registers, along with the temperature
garfieldsg 0:662207e34fba 1771 * measurement registers, gyroscope measurement registers, and external sensor
garfieldsg 0:662207e34fba 1772 * data registers, are composed of two sets of registers: an internal register
garfieldsg 0:662207e34fba 1773 * set and a user-facing read register set.
garfieldsg 0:662207e34fba 1774 *
garfieldsg 0:662207e34fba 1775 * The data within the accelerometer sensors' internal register set is always
garfieldsg 0:662207e34fba 1776 * updated at the Sample Rate. Meanwhile, the user-facing read register set
garfieldsg 0:662207e34fba 1777 * duplicates the internal register set's data values whenever the serial
garfieldsg 0:662207e34fba 1778 * interface is idle. This guarantees that a burst read of sensor registers will
garfieldsg 0:662207e34fba 1779 * read measurements from the same sampling instant. Note that if burst reads
garfieldsg 0:662207e34fba 1780 * are not used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 1781 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 1782 *
garfieldsg 0:662207e34fba 1783 * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
garfieldsg 0:662207e34fba 1784 * (Register 28). For each full scale setting, the accelerometers' sensitivity
garfieldsg 0:662207e34fba 1785 * per LSB in ACCEL_xOUT is shown in the table below:
garfieldsg 0:662207e34fba 1786 *
garfieldsg 0:662207e34fba 1787 * <pre>
garfieldsg 0:662207e34fba 1788 * AFS_SEL | Full Scale Range | LSB Sensitivity
garfieldsg 0:662207e34fba 1789 * --------+------------------+----------------
garfieldsg 0:662207e34fba 1790 * 0 | +/- 2g | 8192 LSB/mg
garfieldsg 0:662207e34fba 1791 * 1 | +/- 4g | 4096 LSB/mg
garfieldsg 0:662207e34fba 1792 * 2 | +/- 8g | 2048 LSB/mg
garfieldsg 0:662207e34fba 1793 * 3 | +/- 16g | 1024 LSB/mg
garfieldsg 0:662207e34fba 1794 * </pre>
garfieldsg 0:662207e34fba 1795 *
garfieldsg 0:662207e34fba 1796 * @param x 16-bit signed integer container for X-axis acceleration
garfieldsg 0:662207e34fba 1797 * @param y 16-bit signed integer container for Y-axis acceleration
garfieldsg 0:662207e34fba 1798 * @param z 16-bit signed integer container for Z-axis acceleration
garfieldsg 0:662207e34fba 1799 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 1800 */
syundo0730 6:f38dfe62d74c 1801 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z) {
syundo0730 7:d5845b617139 1802 I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
garfieldsg 0:662207e34fba 1803 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1804 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 1805 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 1806 }
garfieldsg 0:662207e34fba 1807 /** Get X-axis accelerometer reading.
garfieldsg 0:662207e34fba 1808 * @return X-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1809 * @see getMotion6()
garfieldsg 0:662207e34fba 1810 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 1811 */
syundo0730 6:f38dfe62d74c 1812 int16_t MPU6050::getAccelerationX() {
syundo0730 7:d5845b617139 1813 I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1814 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1815 }
garfieldsg 0:662207e34fba 1816 /** Get Y-axis accelerometer reading.
garfieldsg 0:662207e34fba 1817 * @return Y-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1818 * @see getMotion6()
garfieldsg 0:662207e34fba 1819 * @see MPU6050_RA_ACCEL_YOUT_H
garfieldsg 0:662207e34fba 1820 */
syundo0730 6:f38dfe62d74c 1821 int16_t MPU6050::getAccelerationY() {
syundo0730 7:d5845b617139 1822 I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1823 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1824 }
garfieldsg 0:662207e34fba 1825 /** Get Z-axis accelerometer reading.
garfieldsg 0:662207e34fba 1826 * @return Z-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1827 * @see getMotion6()
garfieldsg 0:662207e34fba 1828 * @see MPU6050_RA_ACCEL_ZOUT_H
garfieldsg 0:662207e34fba 1829 */
syundo0730 6:f38dfe62d74c 1830 int16_t MPU6050::getAccelerationZ() {
syundo0730 7:d5845b617139 1831 I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1832 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1833 }
garfieldsg 0:662207e34fba 1834
garfieldsg 0:662207e34fba 1835 // TEMP_OUT_* registers
garfieldsg 0:662207e34fba 1836
garfieldsg 0:662207e34fba 1837 /** Get current internal temperature.
garfieldsg 0:662207e34fba 1838 * @return Temperature reading in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1839 * @see MPU6050_RA_TEMP_OUT_H
garfieldsg 0:662207e34fba 1840 */
syundo0730 6:f38dfe62d74c 1841 int16_t MPU6050::getTemperature() {
syundo0730 7:d5845b617139 1842 I2Cdev::readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1843 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1844 }
garfieldsg 0:662207e34fba 1845
garfieldsg 0:662207e34fba 1846 // GYRO_*OUT_* registers
garfieldsg 0:662207e34fba 1847
garfieldsg 0:662207e34fba 1848 /** Get 3-axis gyroscope readings.
garfieldsg 0:662207e34fba 1849 * These gyroscope measurement registers, along with the accelerometer
garfieldsg 0:662207e34fba 1850 * measurement registers, temperature measurement registers, and external sensor
garfieldsg 0:662207e34fba 1851 * data registers, are composed of two sets of registers: an internal register
garfieldsg 0:662207e34fba 1852 * set and a user-facing read register set.
garfieldsg 0:662207e34fba 1853 * The data within the gyroscope sensors' internal register set is always
garfieldsg 0:662207e34fba 1854 * updated at the Sample Rate. Meanwhile, the user-facing read register set
garfieldsg 0:662207e34fba 1855 * duplicates the internal register set's data values whenever the serial
garfieldsg 0:662207e34fba 1856 * interface is idle. This guarantees that a burst read of sensor registers will
garfieldsg 0:662207e34fba 1857 * read measurements from the same sampling instant. Note that if burst reads
garfieldsg 0:662207e34fba 1858 * are not used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 1859 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 1860 *
garfieldsg 0:662207e34fba 1861 * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
garfieldsg 0:662207e34fba 1862 * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
garfieldsg 0:662207e34fba 1863 * LSB in GYRO_xOUT is shown in the table below:
garfieldsg 0:662207e34fba 1864 *
garfieldsg 0:662207e34fba 1865 * <pre>
garfieldsg 0:662207e34fba 1866 * FS_SEL | Full Scale Range | LSB Sensitivity
garfieldsg 0:662207e34fba 1867 * -------+--------------------+----------------
garfieldsg 0:662207e34fba 1868 * 0 | +/- 250 degrees/s | 131 LSB/deg/s
garfieldsg 0:662207e34fba 1869 * 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
garfieldsg 0:662207e34fba 1870 * 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
garfieldsg 0:662207e34fba 1871 * 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
garfieldsg 0:662207e34fba 1872 * </pre>
garfieldsg 0:662207e34fba 1873 *
garfieldsg 0:662207e34fba 1874 * @param x 16-bit signed integer container for X-axis rotation
garfieldsg 0:662207e34fba 1875 * @param y 16-bit signed integer container for Y-axis rotation
garfieldsg 0:662207e34fba 1876 * @param z 16-bit signed integer container for Z-axis rotation
garfieldsg 0:662207e34fba 1877 * @see getMotion6()
garfieldsg 0:662207e34fba 1878 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 1879 */
syundo0730 6:f38dfe62d74c 1880 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z) {
syundo0730 7:d5845b617139 1881 I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
garfieldsg 0:662207e34fba 1882 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1883 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 1884 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 1885 }
garfieldsg 0:662207e34fba 1886 /** Get X-axis gyroscope reading.
garfieldsg 0:662207e34fba 1887 * @return X-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1888 * @see getMotion6()
garfieldsg 0:662207e34fba 1889 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 1890 */
syundo0730 6:f38dfe62d74c 1891 int16_t MPU6050::getRotationX() {
syundo0730 7:d5845b617139 1892 I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1893 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1894 }
garfieldsg 0:662207e34fba 1895 /** Get Y-axis gyroscope reading.
garfieldsg 0:662207e34fba 1896 * @return Y-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1897 * @see getMotion6()
garfieldsg 0:662207e34fba 1898 * @see MPU6050_RA_GYRO_YOUT_H
garfieldsg 0:662207e34fba 1899 */
syundo0730 6:f38dfe62d74c 1900 int16_t MPU6050::getRotationY() {
syundo0730 7:d5845b617139 1901 I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1902 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1903 }
garfieldsg 0:662207e34fba 1904 /** Get Z-axis gyroscope reading.
garfieldsg 0:662207e34fba 1905 * @return Z-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1906 * @see getMotion6()
garfieldsg 0:662207e34fba 1907 * @see MPU6050_RA_GYRO_ZOUT_H
garfieldsg 0:662207e34fba 1908 */
syundo0730 6:f38dfe62d74c 1909 int16_t MPU6050::getRotationZ() {
syundo0730 7:d5845b617139 1910 I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1911 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1912 }
garfieldsg 0:662207e34fba 1913
garfieldsg 0:662207e34fba 1914 // EXT_SENS_DATA_* registers
garfieldsg 0:662207e34fba 1915
garfieldsg 0:662207e34fba 1916 /** Read single byte from external sensor data register.
garfieldsg 0:662207e34fba 1917 * These registers store data read from external sensors by the Slave 0, 1, 2,
garfieldsg 0:662207e34fba 1918 * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
garfieldsg 0:662207e34fba 1919 * I2C_SLV4_DI (Register 53).
garfieldsg 0:662207e34fba 1920 *
garfieldsg 0:662207e34fba 1921 * External sensor data is written to these registers at the Sample Rate as
garfieldsg 0:662207e34fba 1922 * defined in Register 25. This access rate can be reduced by using the Slave
garfieldsg 0:662207e34fba 1923 * Delay Enable registers (Register 103).
garfieldsg 0:662207e34fba 1924 *
garfieldsg 0:662207e34fba 1925 * External sensor data registers, along with the gyroscope measurement
garfieldsg 0:662207e34fba 1926 * registers, accelerometer measurement registers, and temperature measurement
garfieldsg 0:662207e34fba 1927 * registers, are composed of two sets of registers: an internal register set
garfieldsg 0:662207e34fba 1928 * and a user-facing read register set.
garfieldsg 0:662207e34fba 1929 *
garfieldsg 0:662207e34fba 1930 * The data within the external sensors' internal register set is always updated
garfieldsg 0:662207e34fba 1931 * at the Sample Rate (or the reduced access rate) whenever the serial interface
garfieldsg 0:662207e34fba 1932 * is idle. This guarantees that a burst read of sensor registers will read
garfieldsg 0:662207e34fba 1933 * measurements from the same sampling instant. Note that if burst reads are not
garfieldsg 0:662207e34fba 1934 * used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 1935 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 1936 *
garfieldsg 0:662207e34fba 1937 * Data is placed in these external sensor data registers according to
garfieldsg 0:662207e34fba 1938 * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
garfieldsg 0:662207e34fba 1939 * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
garfieldsg 0:662207e34fba 1940 * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
garfieldsg 0:662207e34fba 1941 * defined in Register 25) or delayed rate (if specified in Register 52 and
garfieldsg 0:662207e34fba 1942 * 103). During each Sample cycle, slave reads are performed in order of Slave
garfieldsg 0:662207e34fba 1943 * number. If all slaves are enabled with more than zero bytes to be read, the
garfieldsg 0:662207e34fba 1944 * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
garfieldsg 0:662207e34fba 1945 *
garfieldsg 0:662207e34fba 1946 * Each enabled slave will have EXT_SENS_DATA registers associated with it by
garfieldsg 0:662207e34fba 1947 * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
garfieldsg 0:662207e34fba 1948 * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
garfieldsg 0:662207e34fba 1949 * change the higher numbered slaves' associated registers. Furthermore, if
garfieldsg 0:662207e34fba 1950 * fewer total bytes are being read from the external sensors as a result of
garfieldsg 0:662207e34fba 1951 * such a change, then the data remaining in the registers which no longer have
garfieldsg 0:662207e34fba 1952 * an associated slave device (i.e. high numbered registers) will remain in
garfieldsg 0:662207e34fba 1953 * these previously allocated registers unless reset.
garfieldsg 0:662207e34fba 1954 *
garfieldsg 0:662207e34fba 1955 * If the sum of the read lengths of all SLVx transactions exceed the number of
garfieldsg 0:662207e34fba 1956 * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
garfieldsg 0:662207e34fba 1957 * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
garfieldsg 0:662207e34fba 1958 * the slaves cannot be greater than 24 or some bytes will be lost.
garfieldsg 0:662207e34fba 1959 *
garfieldsg 0:662207e34fba 1960 * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
garfieldsg 0:662207e34fba 1961 * information regarding the characteristics of Slave 4, please refer to
garfieldsg 0:662207e34fba 1962 * Registers 49 to 53.
garfieldsg 0:662207e34fba 1963 *
garfieldsg 0:662207e34fba 1964 * EXAMPLE:
garfieldsg 0:662207e34fba 1965 * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
garfieldsg 0:662207e34fba 1966 * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
garfieldsg 0:662207e34fba 1967 * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
garfieldsg 0:662207e34fba 1968 * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
garfieldsg 0:662207e34fba 1969 * will be associated with Slave 1. If Slave 2 is enabled as well, registers
garfieldsg 0:662207e34fba 1970 * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
garfieldsg 0:662207e34fba 1971 *
garfieldsg 0:662207e34fba 1972 * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
garfieldsg 0:662207e34fba 1973 * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
garfieldsg 0:662207e34fba 1974 * instead.
garfieldsg 0:662207e34fba 1975 *
garfieldsg 0:662207e34fba 1976 * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
garfieldsg 0:662207e34fba 1977 * If a slave is disabled at any time, the space initially allocated to the
garfieldsg 0:662207e34fba 1978 * slave in the EXT_SENS_DATA register, will remain associated with that slave.
garfieldsg 0:662207e34fba 1979 * This is to avoid dynamic adjustment of the register allocation.
garfieldsg 0:662207e34fba 1980 *
garfieldsg 0:662207e34fba 1981 * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
garfieldsg 0:662207e34fba 1982 * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
garfieldsg 0:662207e34fba 1983 *
garfieldsg 0:662207e34fba 1984 * This above is also true if one of the slaves gets NACKed and stops
garfieldsg 0:662207e34fba 1985 * functioning.
garfieldsg 0:662207e34fba 1986 *
garfieldsg 0:662207e34fba 1987 * @param position Starting position (0-23)
garfieldsg 0:662207e34fba 1988 * @return Byte read from register
garfieldsg 0:662207e34fba 1989 */
syundo0730 6:f38dfe62d74c 1990 uint8_t MPU6050::getExternalSensorByte(int position) {
syundo0730 7:d5845b617139 1991 I2Cdev::readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
garfieldsg 0:662207e34fba 1992 return buffer[0];
garfieldsg 0:662207e34fba 1993 }
garfieldsg 0:662207e34fba 1994 /** Read word (2 bytes) from external sensor data registers.
garfieldsg 0:662207e34fba 1995 * @param position Starting position (0-21)
garfieldsg 0:662207e34fba 1996 * @return Word read from register
garfieldsg 0:662207e34fba 1997 * @see getExternalSensorByte()
garfieldsg 0:662207e34fba 1998 */
syundo0730 6:f38dfe62d74c 1999 uint16_t MPU6050::getExternalSensorWord(int position) {
syundo0730 7:d5845b617139 2000 I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
garfieldsg 0:662207e34fba 2001 return (((uint16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2002 }
garfieldsg 0:662207e34fba 2003 /** Read double word (4 bytes) from external sensor data registers.
garfieldsg 0:662207e34fba 2004 * @param position Starting position (0-20)
garfieldsg 0:662207e34fba 2005 * @return Double word read from registers
garfieldsg 0:662207e34fba 2006 * @see getExternalSensorByte()
garfieldsg 0:662207e34fba 2007 */
syundo0730 6:f38dfe62d74c 2008 uint32_t MPU6050::getExternalSensorDWord(int position) {
syundo0730 7:d5845b617139 2009 I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
garfieldsg 0:662207e34fba 2010 return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 2011 }
garfieldsg 0:662207e34fba 2012
garfieldsg 0:662207e34fba 2013 // MOT_DETECT_STATUS register
garfieldsg 0:662207e34fba 2014
syundo0730 6:f38dfe62d74c 2015 /** Get full motion detection status register content (all bits).
syundo0730 6:f38dfe62d74c 2016 * @return Motion detection status byte
syundo0730 6:f38dfe62d74c 2017 * @see MPU6050_RA_MOT_DETECT_STATUS
syundo0730 6:f38dfe62d74c 2018 */
syundo0730 6:f38dfe62d74c 2019 uint8_t MPU6050::getMotionStatus() {
syundo0730 7:d5845b617139 2020 I2Cdev::readByte(devAddr, MPU6050_RA_MOT_DETECT_STATUS, buffer);
syundo0730 6:f38dfe62d74c 2021 return buffer[0];
syundo0730 6:f38dfe62d74c 2022 }
garfieldsg 0:662207e34fba 2023 /** Get X-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2024 * @return Motion detection status
garfieldsg 0:662207e34fba 2025 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2026 * @see MPU6050_MOTION_MOT_XNEG_BIT
garfieldsg 0:662207e34fba 2027 */
syundo0730 6:f38dfe62d74c 2028 bool MPU6050::getXNegMotionDetected() {
syundo0730 7:d5845b617139 2029 I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2030 return buffer[0];
garfieldsg 0:662207e34fba 2031 }
garfieldsg 0:662207e34fba 2032 /** Get X-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2033 * @return Motion detection status
garfieldsg 0:662207e34fba 2034 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2035 * @see MPU6050_MOTION_MOT_XPOS_BIT
garfieldsg 0:662207e34fba 2036 */
syundo0730 6:f38dfe62d74c 2037 bool MPU6050::getXPosMotionDetected() {
syundo0730 7:d5845b617139 2038 I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2039 return buffer[0];
garfieldsg 0:662207e34fba 2040 }
garfieldsg 0:662207e34fba 2041 /** Get Y-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2042 * @return Motion detection status
garfieldsg 0:662207e34fba 2043 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2044 * @see MPU6050_MOTION_MOT_YNEG_BIT
garfieldsg 0:662207e34fba 2045 */
syundo0730 6:f38dfe62d74c 2046 bool MPU6050::getYNegMotionDetected() {
syundo0730 7:d5845b617139 2047 I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2048 return buffer[0];
garfieldsg 0:662207e34fba 2049 }
garfieldsg 0:662207e34fba 2050 /** Get Y-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2051 * @return Motion detection status
garfieldsg 0:662207e34fba 2052 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2053 * @see MPU6050_MOTION_MOT_YPOS_BIT
garfieldsg 0:662207e34fba 2054 */
syundo0730 6:f38dfe62d74c 2055 bool MPU6050::getYPosMotionDetected() {
syundo0730 7:d5845b617139 2056 I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2057 return buffer[0];
garfieldsg 0:662207e34fba 2058 }
garfieldsg 0:662207e34fba 2059 /** Get Z-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2060 * @return Motion detection status
garfieldsg 0:662207e34fba 2061 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2062 * @see MPU6050_MOTION_MOT_ZNEG_BIT
garfieldsg 0:662207e34fba 2063 */
syundo0730 6:f38dfe62d74c 2064 bool MPU6050::getZNegMotionDetected() {
syundo0730 7:d5845b617139 2065 I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2066 return buffer[0];
garfieldsg 0:662207e34fba 2067 }
garfieldsg 0:662207e34fba 2068 /** Get Z-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2069 * @return Motion detection status
garfieldsg 0:662207e34fba 2070 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2071 * @see MPU6050_MOTION_MOT_ZPOS_BIT
garfieldsg 0:662207e34fba 2072 */
syundo0730 6:f38dfe62d74c 2073 bool MPU6050::getZPosMotionDetected() {
syundo0730 7:d5845b617139 2074 I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2075 return buffer[0];
garfieldsg 0:662207e34fba 2076 }
garfieldsg 0:662207e34fba 2077 /** Get zero motion detection interrupt status.
garfieldsg 0:662207e34fba 2078 * @return Motion detection status
garfieldsg 0:662207e34fba 2079 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2080 * @see MPU6050_MOTION_MOT_ZRMOT_BIT
garfieldsg 0:662207e34fba 2081 */
syundo0730 6:f38dfe62d74c 2082 bool MPU6050::getZeroMotionDetected() {
syundo0730 7:d5845b617139 2083 I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
garfieldsg 0:662207e34fba 2084 return buffer[0];
garfieldsg 0:662207e34fba 2085 }
garfieldsg 0:662207e34fba 2086
garfieldsg 0:662207e34fba 2087 // I2C_SLV*_DO register
garfieldsg 0:662207e34fba 2088
garfieldsg 0:662207e34fba 2089 /** Write byte to Data Output container for specified slave.
garfieldsg 0:662207e34fba 2090 * This register holds the output data written into Slave when Slave is set to
garfieldsg 0:662207e34fba 2091 * write mode. For further information regarding Slave control, please
garfieldsg 0:662207e34fba 2092 * refer to Registers 37 to 39 and immediately following.
garfieldsg 0:662207e34fba 2093 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 2094 * @param data Byte to write
garfieldsg 0:662207e34fba 2095 * @see MPU6050_RA_I2C_SLV0_DO
garfieldsg 0:662207e34fba 2096 */
syundo0730 6:f38dfe62d74c 2097 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data) {
garfieldsg 0:662207e34fba 2098 if (num > 3) return;
syundo0730 7:d5845b617139 2099 I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
garfieldsg 0:662207e34fba 2100 }
garfieldsg 0:662207e34fba 2101
garfieldsg 0:662207e34fba 2102 // I2C_MST_DELAY_CTRL register
garfieldsg 0:662207e34fba 2103
garfieldsg 0:662207e34fba 2104 /** Get external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2105 * This register is used to specify the timing of external sensor data
garfieldsg 0:662207e34fba 2106 * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
garfieldsg 0:662207e34fba 2107 * sensor data is delayed until all data has been received.
garfieldsg 0:662207e34fba 2108 * @return Current external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2109 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2110 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
garfieldsg 0:662207e34fba 2111 */
syundo0730 6:f38dfe62d74c 2112 bool MPU6050::getExternalShadowDelayEnabled() {
syundo0730 7:d5845b617139 2113 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
garfieldsg 0:662207e34fba 2114 return buffer[0];
garfieldsg 0:662207e34fba 2115 }
garfieldsg 0:662207e34fba 2116 /** Set external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2117 * @param enabled New external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2118 * @see getExternalShadowDelayEnabled()
garfieldsg 0:662207e34fba 2119 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2120 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
garfieldsg 0:662207e34fba 2121 */
syundo0730 6:f38dfe62d74c 2122 void MPU6050::setExternalShadowDelayEnabled(bool enabled) {
syundo0730 7:d5845b617139 2123 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
garfieldsg 0:662207e34fba 2124 }
garfieldsg 0:662207e34fba 2125 /** Get slave delay enabled status.
garfieldsg 0:662207e34fba 2126 * When a particular slave delay is enabled, the rate of access for the that
garfieldsg 0:662207e34fba 2127 * slave device is reduced. When a slave's access rate is decreased relative to
garfieldsg 0:662207e34fba 2128 * the Sample Rate, the slave is accessed every:
garfieldsg 0:662207e34fba 2129 *
garfieldsg 0:662207e34fba 2130 * 1 / (1 + I2C_MST_DLY) Samples
garfieldsg 0:662207e34fba 2131 *
garfieldsg 0:662207e34fba 2132 * This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
garfieldsg 0:662207e34fba 2133 * and DLPF_CFG (register 26).
garfieldsg 0:662207e34fba 2134 *
garfieldsg 0:662207e34fba 2135 * For further information regarding I2C_MST_DLY, please refer to register 52.
garfieldsg 0:662207e34fba 2136 * For further information regarding the Sample Rate, please refer to register 25.
garfieldsg 0:662207e34fba 2137 *
garfieldsg 0:662207e34fba 2138 * @param num Slave number (0-4)
garfieldsg 0:662207e34fba 2139 * @return Current slave delay enabled status.
garfieldsg 0:662207e34fba 2140 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2141 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
garfieldsg 0:662207e34fba 2142 */
syundo0730 6:f38dfe62d74c 2143 bool MPU6050::getSlaveDelayEnabled(uint8_t num) {
garfieldsg 0:662207e34fba 2144 // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
garfieldsg 0:662207e34fba 2145 if (num > 4) return 0;
syundo0730 7:d5845b617139 2146 I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
garfieldsg 0:662207e34fba 2147 return buffer[0];
garfieldsg 0:662207e34fba 2148 }
garfieldsg 0:662207e34fba 2149 /** Set slave delay enabled status.
garfieldsg 0:662207e34fba 2150 * @param num Slave number (0-4)
garfieldsg 0:662207e34fba 2151 * @param enabled New slave delay enabled status.
garfieldsg 0:662207e34fba 2152 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2153 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
garfieldsg 0:662207e34fba 2154 */
syundo0730 6:f38dfe62d74c 2155 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled) {
syundo0730 7:d5845b617139 2156 I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
garfieldsg 0:662207e34fba 2157 }
garfieldsg 0:662207e34fba 2158
garfieldsg 0:662207e34fba 2159 // SIGNAL_PATH_RESET register
garfieldsg 0:662207e34fba 2160
garfieldsg 0:662207e34fba 2161 /** Reset gyroscope signal path.
garfieldsg 0:662207e34fba 2162 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2163 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2164 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2165 * @see MPU6050_PATHRESET_GYRO_RESET_BIT
garfieldsg 0:662207e34fba 2166 */
syundo0730 6:f38dfe62d74c 2167 void MPU6050::resetGyroscopePath() {
syundo0730 7:d5845b617139 2168 I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
garfieldsg 0:662207e34fba 2169 }
garfieldsg 0:662207e34fba 2170 /** Reset accelerometer signal path.
garfieldsg 0:662207e34fba 2171 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2172 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2173 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2174 * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
garfieldsg 0:662207e34fba 2175 */
syundo0730 6:f38dfe62d74c 2176 void MPU6050::resetAccelerometerPath() {
syundo0730 7:d5845b617139 2177 I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
garfieldsg 0:662207e34fba 2178 }
garfieldsg 0:662207e34fba 2179 /** Reset temperature sensor signal path.
garfieldsg 0:662207e34fba 2180 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2181 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2182 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2183 * @see MPU6050_PATHRESET_TEMP_RESET_BIT
garfieldsg 0:662207e34fba 2184 */
syundo0730 6:f38dfe62d74c 2185 void MPU6050::resetTemperaturePath() {
syundo0730 7:d5845b617139 2186 I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
garfieldsg 0:662207e34fba 2187 }
garfieldsg 0:662207e34fba 2188
garfieldsg 0:662207e34fba 2189 // MOT_DETECT_CTRL register
garfieldsg 0:662207e34fba 2190
garfieldsg 0:662207e34fba 2191 /** Get accelerometer power-on delay.
garfieldsg 0:662207e34fba 2192 * The accelerometer data path provides samples to the sensor registers, Motion
garfieldsg 0:662207e34fba 2193 * detection, Zero Motion detection, and Free Fall detection modules. The
garfieldsg 0:662207e34fba 2194 * signal path contains filters which must be flushed on wake-up with new
garfieldsg 0:662207e34fba 2195 * samples before the detection modules begin operations. The default wake-up
garfieldsg 0:662207e34fba 2196 * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
garfieldsg 0:662207e34fba 2197 * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
garfieldsg 0:662207e34fba 2198 * any value above zero unless instructed otherwise by InvenSense. Please refer
garfieldsg 0:662207e34fba 2199 * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
garfieldsg 0:662207e34fba 2200 * further information regarding the detection modules.
garfieldsg 0:662207e34fba 2201 * @return Current accelerometer power-on delay
garfieldsg 0:662207e34fba 2202 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2203 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
garfieldsg 0:662207e34fba 2204 */
syundo0730 6:f38dfe62d74c 2205 uint8_t MPU6050::getAccelerometerPowerOnDelay() {
syundo0730 7:d5845b617139 2206 I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
garfieldsg 0:662207e34fba 2207 return buffer[0];
garfieldsg 0:662207e34fba 2208 }
garfieldsg 0:662207e34fba 2209 /** Set accelerometer power-on delay.
garfieldsg 0:662207e34fba 2210 * @param delay New accelerometer power-on delay (0-3)
garfieldsg 0:662207e34fba 2211 * @see getAccelerometerPowerOnDelay()
garfieldsg 0:662207e34fba 2212 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2213 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
garfieldsg 0:662207e34fba 2214 */
syundo0730 6:f38dfe62d74c 2215 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay) {
syundo0730 7:d5845b617139 2216 I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
garfieldsg 0:662207e34fba 2217 }
garfieldsg 0:662207e34fba 2218 /** Get Free Fall detection counter decrement configuration.
garfieldsg 0:662207e34fba 2219 * Detection is registered by the Free Fall detection module after accelerometer
garfieldsg 0:662207e34fba 2220 * measurements meet their respective threshold conditions over a specified
garfieldsg 0:662207e34fba 2221 * number of samples. When the threshold conditions are met, the corresponding
garfieldsg 0:662207e34fba 2222 * detection counter increments by 1. The user may control the rate at which the
garfieldsg 0:662207e34fba 2223 * detection counter decrements when the threshold condition is not met by
garfieldsg 0:662207e34fba 2224 * configuring FF_COUNT. The decrement rate can be set according to the
garfieldsg 0:662207e34fba 2225 * following table:
garfieldsg 0:662207e34fba 2226 *
garfieldsg 0:662207e34fba 2227 * <pre>
garfieldsg 0:662207e34fba 2228 * FF_COUNT | Counter Decrement
garfieldsg 0:662207e34fba 2229 * ---------+------------------
garfieldsg 0:662207e34fba 2230 * 0 | Reset
garfieldsg 0:662207e34fba 2231 * 1 | 1
garfieldsg 0:662207e34fba 2232 * 2 | 2
garfieldsg 0:662207e34fba 2233 * 3 | 4
garfieldsg 0:662207e34fba 2234 * </pre>
garfieldsg 0:662207e34fba 2235 *
garfieldsg 0:662207e34fba 2236 * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
garfieldsg 0:662207e34fba 2237 * reset the counter to 0. For further information on Free Fall detection,
garfieldsg 0:662207e34fba 2238 * please refer to Registers 29 to 32.
garfieldsg 0:662207e34fba 2239 *
garfieldsg 0:662207e34fba 2240 * @return Current decrement configuration
garfieldsg 0:662207e34fba 2241 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2242 * @see MPU6050_DETECT_FF_COUNT_BIT
garfieldsg 0:662207e34fba 2243 */
syundo0730 6:f38dfe62d74c 2244 uint8_t MPU6050::getFreefallDetectionCounterDecrement() {
syundo0730 7:d5845b617139 2245 I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
garfieldsg 0:662207e34fba 2246 return buffer[0];
garfieldsg 0:662207e34fba 2247 }
garfieldsg 0:662207e34fba 2248 /** Set Free Fall detection counter decrement configuration.
garfieldsg 0:662207e34fba 2249 * @param decrement New decrement configuration value
garfieldsg 0:662207e34fba 2250 * @see getFreefallDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2251 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2252 * @see MPU6050_DETECT_FF_COUNT_BIT
garfieldsg 0:662207e34fba 2253 */
syundo0730 6:f38dfe62d74c 2254 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement) {
syundo0730 7:d5845b617139 2255 I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
garfieldsg 0:662207e34fba 2256 }
garfieldsg 0:662207e34fba 2257 /** Get Motion detection counter decrement configuration.
garfieldsg 0:662207e34fba 2258 * Detection is registered by the Motion detection module after accelerometer
garfieldsg 0:662207e34fba 2259 * measurements meet their respective threshold conditions over a specified
garfieldsg 0:662207e34fba 2260 * number of samples. When the threshold conditions are met, the corresponding
garfieldsg 0:662207e34fba 2261 * detection counter increments by 1. The user may control the rate at which the
garfieldsg 0:662207e34fba 2262 * detection counter decrements when the threshold condition is not met by
garfieldsg 0:662207e34fba 2263 * configuring MOT_COUNT. The decrement rate can be set according to the
garfieldsg 0:662207e34fba 2264 * following table:
garfieldsg 0:662207e34fba 2265 *
garfieldsg 0:662207e34fba 2266 * <pre>
garfieldsg 0:662207e34fba 2267 * MOT_COUNT | Counter Decrement
garfieldsg 0:662207e34fba 2268 * ----------+------------------
garfieldsg 0:662207e34fba 2269 * 0 | Reset
garfieldsg 0:662207e34fba 2270 * 1 | 1
garfieldsg 0:662207e34fba 2271 * 2 | 2
garfieldsg 0:662207e34fba 2272 * 3 | 4
garfieldsg 0:662207e34fba 2273 * </pre>
garfieldsg 0:662207e34fba 2274 *
garfieldsg 0:662207e34fba 2275 * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
garfieldsg 0:662207e34fba 2276 * reset the counter to 0. For further information on Motion detection,
garfieldsg 0:662207e34fba 2277 * please refer to Registers 29 to 32.
garfieldsg 0:662207e34fba 2278 *
garfieldsg 0:662207e34fba 2279 */
syundo0730 6:f38dfe62d74c 2280 uint8_t MPU6050::getMotionDetectionCounterDecrement() {
syundo0730 7:d5845b617139 2281 I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
garfieldsg 0:662207e34fba 2282 return buffer[0];
garfieldsg 0:662207e34fba 2283 }
garfieldsg 0:662207e34fba 2284 /** Set Motion detection counter decrement configuration.
garfieldsg 0:662207e34fba 2285 * @param decrement New decrement configuration value
garfieldsg 0:662207e34fba 2286 * @see getMotionDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2287 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2288 * @see MPU6050_DETECT_MOT_COUNT_BIT
garfieldsg 0:662207e34fba 2289 */
syundo0730 6:f38dfe62d74c 2290 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement) {
syundo0730 7:d5845b617139 2291 I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
garfieldsg 0:662207e34fba 2292 }
garfieldsg 0:662207e34fba 2293
garfieldsg 0:662207e34fba 2294 // USER_CTRL register
garfieldsg 0:662207e34fba 2295
garfieldsg 0:662207e34fba 2296 /** Get FIFO enabled status.
garfieldsg 0:662207e34fba 2297 * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
garfieldsg 0:662207e34fba 2298 * cannot be written to or read from while disabled. The FIFO buffer's state
garfieldsg 0:662207e34fba 2299 * does not change unless the MPU-60X0 is power cycled.
garfieldsg 0:662207e34fba 2300 * @return Current FIFO enabled status
garfieldsg 0:662207e34fba 2301 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2302 * @see MPU6050_USERCTRL_FIFO_EN_BIT
garfieldsg 0:662207e34fba 2303 */
syundo0730 6:f38dfe62d74c 2304 bool MPU6050::getFIFOEnabled() {
syundo0730 7:d5845b617139 2305 I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2306 return buffer[0];
garfieldsg 0:662207e34fba 2307 }
garfieldsg 0:662207e34fba 2308 /** Set FIFO enabled status.
garfieldsg 0:662207e34fba 2309 * @param enabled New FIFO enabled status
garfieldsg 0:662207e34fba 2310 * @see getFIFOEnabled()
garfieldsg 0:662207e34fba 2311 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2312 * @see MPU6050_USERCTRL_FIFO_EN_BIT
garfieldsg 0:662207e34fba 2313 */
syundo0730 6:f38dfe62d74c 2314 void MPU6050::setFIFOEnabled(bool enabled) {
syundo0730 7:d5845b617139 2315 I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2316 }
garfieldsg 0:662207e34fba 2317 /** Get I2C Master Mode enabled status.
garfieldsg 0:662207e34fba 2318 * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
garfieldsg 0:662207e34fba 2319 * external sensor slave devices on the auxiliary I2C bus. When this bit is
garfieldsg 0:662207e34fba 2320 * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
garfieldsg 0:662207e34fba 2321 * driven by the primary I2C bus (SDA and SCL). This is a precondition to
garfieldsg 0:662207e34fba 2322 * enabling Bypass Mode. For further information regarding Bypass Mode, please
garfieldsg 0:662207e34fba 2323 * refer to Register 55.
garfieldsg 0:662207e34fba 2324 * @return Current I2C Master Mode enabled status
garfieldsg 0:662207e34fba 2325 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2326 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
garfieldsg 0:662207e34fba 2327 */
syundo0730 6:f38dfe62d74c 2328 bool MPU6050::getI2CMasterModeEnabled() {
syundo0730 7:d5845b617139 2329 I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2330 return buffer[0];
garfieldsg 0:662207e34fba 2331 }
garfieldsg 0:662207e34fba 2332 /** Set I2C Master Mode enabled status.
garfieldsg 0:662207e34fba 2333 * @param enabled New I2C Master Mode enabled status
garfieldsg 0:662207e34fba 2334 * @see getI2CMasterModeEnabled()
garfieldsg 0:662207e34fba 2335 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2336 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
garfieldsg 0:662207e34fba 2337 */
syundo0730 6:f38dfe62d74c 2338 void MPU6050::setI2CMasterModeEnabled(bool enabled) {
syundo0730 7:d5845b617139 2339 I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2340 }
garfieldsg 0:662207e34fba 2341 /** Switch from I2C to SPI mode (MPU-6000 only)
garfieldsg 0:662207e34fba 2342 * If this is set, the primary SPI interface will be enabled in place of the
garfieldsg 0:662207e34fba 2343 * disabled primary I2C interface.
garfieldsg 0:662207e34fba 2344 */
syundo0730 6:f38dfe62d74c 2345 void MPU6050::switchSPIEnabled(bool enabled) {
syundo0730 7:d5845b617139 2346 I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
garfieldsg 0:662207e34fba 2347 }
garfieldsg 0:662207e34fba 2348 /** Reset the FIFO.
garfieldsg 0:662207e34fba 2349 * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
garfieldsg 0:662207e34fba 2350 * bit automatically clears to 0 after the reset has been triggered.
garfieldsg 0:662207e34fba 2351 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2352 * @see MPU6050_USERCTRL_FIFO_RESET_BIT
garfieldsg 0:662207e34fba 2353 */
syundo0730 6:f38dfe62d74c 2354 void MPU6050::resetFIFO() {
syundo0730 7:d5845b617139 2355 I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
garfieldsg 0:662207e34fba 2356 }
garfieldsg 0:662207e34fba 2357 /** Reset the I2C Master.
garfieldsg 0:662207e34fba 2358 * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
garfieldsg 0:662207e34fba 2359 * This bit automatically clears to 0 after the reset has been triggered.
garfieldsg 0:662207e34fba 2360 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2361 * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
garfieldsg 0:662207e34fba 2362 */
syundo0730 6:f38dfe62d74c 2363 void MPU6050::resetI2CMaster() {
syundo0730 7:d5845b617139 2364 I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
garfieldsg 0:662207e34fba 2365 }
garfieldsg 0:662207e34fba 2366 /** Reset all sensor registers and signal paths.
garfieldsg 0:662207e34fba 2367 * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
garfieldsg 0:662207e34fba 2368 * accelerometers, and temperature sensor). This operation will also clear the
garfieldsg 0:662207e34fba 2369 * sensor registers. This bit automatically clears to 0 after the reset has been
garfieldsg 0:662207e34fba 2370 * triggered.
garfieldsg 0:662207e34fba 2371 *
garfieldsg 0:662207e34fba 2372 * When resetting only the signal path (and not the sensor registers), please
garfieldsg 0:662207e34fba 2373 * use Register 104, SIGNAL_PATH_RESET.
garfieldsg 0:662207e34fba 2374 *
garfieldsg 0:662207e34fba 2375 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2376 * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
garfieldsg 0:662207e34fba 2377 */
syundo0730 6:f38dfe62d74c 2378 void MPU6050::resetSensors() {
syundo0730 7:d5845b617139 2379 I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
garfieldsg 0:662207e34fba 2380 }
garfieldsg 0:662207e34fba 2381
garfieldsg 0:662207e34fba 2382 // PWR_MGMT_1 register
garfieldsg 0:662207e34fba 2383
garfieldsg 0:662207e34fba 2384 /** Trigger a full device reset.
garfieldsg 0:662207e34fba 2385 * A small delay of ~50ms may be desirable after triggering a reset.
garfieldsg 0:662207e34fba 2386 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2387 * @see MPU6050_PWR1_DEVICE_RESET_BIT
garfieldsg 0:662207e34fba 2388 */
syundo0730 6:f38dfe62d74c 2389 void MPU6050::reset() {
syundo0730 7:d5845b617139 2390 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
garfieldsg 0:662207e34fba 2391 }
garfieldsg 0:662207e34fba 2392 /** Get sleep mode status.
garfieldsg 0:662207e34fba 2393 * Setting the SLEEP bit in the register puts the device into very low power
garfieldsg 0:662207e34fba 2394 * sleep mode. In this mode, only the serial interface and internal registers
garfieldsg 0:662207e34fba 2395 * remain active, allowing for a very low standby current. Clearing this bit
garfieldsg 0:662207e34fba 2396 * puts the device back into normal mode. To save power, the individual standby
garfieldsg 0:662207e34fba 2397 * selections for each of the gyros should be used if any gyro axis is not used
garfieldsg 0:662207e34fba 2398 * by the application.
garfieldsg 0:662207e34fba 2399 * @return Current sleep mode enabled status
garfieldsg 0:662207e34fba 2400 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2401 * @see MPU6050_PWR1_SLEEP_BIT
garfieldsg 0:662207e34fba 2402 */
syundo0730 6:f38dfe62d74c 2403 bool MPU6050::getSleepEnabled() {
syundo0730 7:d5845b617139 2404 I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
garfieldsg 0:662207e34fba 2405 return buffer[0];
garfieldsg 0:662207e34fba 2406 }
garfieldsg 0:662207e34fba 2407 /** Set sleep mode status.
garfieldsg 0:662207e34fba 2408 * @param enabled New sleep mode enabled status
garfieldsg 0:662207e34fba 2409 * @see getSleepEnabled()
garfieldsg 0:662207e34fba 2410 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2411 * @see MPU6050_PWR1_SLEEP_BIT
garfieldsg 0:662207e34fba 2412 */
syundo0730 6:f38dfe62d74c 2413 void MPU6050::setSleepEnabled(bool enabled) {
syundo0730 7:d5845b617139 2414 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
garfieldsg 0:662207e34fba 2415 }
garfieldsg 0:662207e34fba 2416 /** Get wake cycle enabled status.
garfieldsg 0:662207e34fba 2417 * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
garfieldsg 0:662207e34fba 2418 * between sleep mode and waking up to take a single sample of data from active
garfieldsg 0:662207e34fba 2419 * sensors at a rate determined by LP_WAKE_CTRL (register 108).
garfieldsg 0:662207e34fba 2420 * @return Current sleep mode enabled status
garfieldsg 0:662207e34fba 2421 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2422 * @see MPU6050_PWR1_CYCLE_BIT
garfieldsg 0:662207e34fba 2423 */
syundo0730 6:f38dfe62d74c 2424 bool MPU6050::getWakeCycleEnabled() {
syundo0730 7:d5845b617139 2425 I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
garfieldsg 0:662207e34fba 2426 return buffer[0];
garfieldsg 0:662207e34fba 2427 }
garfieldsg 0:662207e34fba 2428 /** Set wake cycle enabled status.
garfieldsg 0:662207e34fba 2429 * @param enabled New sleep mode enabled status
garfieldsg 0:662207e34fba 2430 * @see getWakeCycleEnabled()
garfieldsg 0:662207e34fba 2431 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2432 * @see MPU6050_PWR1_CYCLE_BIT
garfieldsg 0:662207e34fba 2433 */
syundo0730 6:f38dfe62d74c 2434 void MPU6050::setWakeCycleEnabled(bool enabled) {
syundo0730 7:d5845b617139 2435 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
garfieldsg 0:662207e34fba 2436 }
garfieldsg 0:662207e34fba 2437 /** Get temperature sensor enabled status.
garfieldsg 0:662207e34fba 2438 * Control the usage of the internal temperature sensor.
garfieldsg 0:662207e34fba 2439 *
garfieldsg 0:662207e34fba 2440 * Note: this register stores the *disabled* value, but for consistency with the
garfieldsg 0:662207e34fba 2441 * rest of the code, the function is named and used with standard true/false
garfieldsg 0:662207e34fba 2442 * values to indicate whether the sensor is enabled or disabled, respectively.
garfieldsg 0:662207e34fba 2443 *
garfieldsg 0:662207e34fba 2444 * @return Current temperature sensor enabled status
garfieldsg 0:662207e34fba 2445 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2446 * @see MPU6050_PWR1_TEMP_DIS_BIT
garfieldsg 0:662207e34fba 2447 */
syundo0730 6:f38dfe62d74c 2448 bool MPU6050::getTempSensorEnabled() {
syundo0730 7:d5845b617139 2449 I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 2450 return buffer[0] == 0; // 1 is actually disabled here
garfieldsg 0:662207e34fba 2451 }
garfieldsg 0:662207e34fba 2452 /** Set temperature sensor enabled status.
garfieldsg 0:662207e34fba 2453 * Note: this register stores the *disabled* value, but for consistency with the
garfieldsg 0:662207e34fba 2454 * rest of the code, the function is named and used with standard true/false
garfieldsg 0:662207e34fba 2455 * values to indicate whether the sensor is enabled or disabled, respectively.
garfieldsg 0:662207e34fba 2456 *
garfieldsg 0:662207e34fba 2457 * @param enabled New temperature sensor enabled status
garfieldsg 0:662207e34fba 2458 * @see getTempSensorEnabled()
garfieldsg 0:662207e34fba 2459 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2460 * @see MPU6050_PWR1_TEMP_DIS_BIT
garfieldsg 0:662207e34fba 2461 */
syundo0730 6:f38dfe62d74c 2462 void MPU6050::setTempSensorEnabled(bool enabled) {
garfieldsg 0:662207e34fba 2463 // 1 is actually disabled here
syundo0730 7:d5845b617139 2464 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
garfieldsg 0:662207e34fba 2465 }
garfieldsg 0:662207e34fba 2466 /** Get clock source setting.
garfieldsg 0:662207e34fba 2467 * @return Current clock source setting
garfieldsg 0:662207e34fba 2468 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2469 * @see MPU6050_PWR1_CLKSEL_BIT
garfieldsg 0:662207e34fba 2470 * @see MPU6050_PWR1_CLKSEL_LENGTH
garfieldsg 0:662207e34fba 2471 */
syundo0730 6:f38dfe62d74c 2472 uint8_t MPU6050::getClockSource() {
syundo0730 7:d5845b617139 2473 I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 2474 return buffer[0];
garfieldsg 0:662207e34fba 2475 }
garfieldsg 0:662207e34fba 2476 /** Set clock source setting.
garfieldsg 0:662207e34fba 2477 * An internal 8MHz oscillator, gyroscope based clock, or external sources can
garfieldsg 0:662207e34fba 2478 * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
garfieldsg 0:662207e34fba 2479 * or an external source is chosen as the clock source, the MPU-60X0 can operate
garfieldsg 0:662207e34fba 2480 * in low power modes with the gyroscopes disabled.
garfieldsg 0:662207e34fba 2481 *
garfieldsg 0:662207e34fba 2482 * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
garfieldsg 0:662207e34fba 2483 * However, it is highly recommended that the device be configured to use one of
garfieldsg 0:662207e34fba 2484 * the gyroscopes (or an external clock source) as the clock reference for
garfieldsg 0:662207e34fba 2485 * improved stability. The clock source can be selected according to the following table:
garfieldsg 0:662207e34fba 2486 *
garfieldsg 0:662207e34fba 2487 * <pre>
garfieldsg 0:662207e34fba 2488 * CLK_SEL | Clock Source
garfieldsg 0:662207e34fba 2489 * --------+--------------------------------------
garfieldsg 0:662207e34fba 2490 * 0 | Internal oscillator
garfieldsg 0:662207e34fba 2491 * 1 | PLL with X Gyro reference
garfieldsg 0:662207e34fba 2492 * 2 | PLL with Y Gyro reference
garfieldsg 0:662207e34fba 2493 * 3 | PLL with Z Gyro reference
garfieldsg 0:662207e34fba 2494 * 4 | PLL with external 32.768kHz reference
garfieldsg 0:662207e34fba 2495 * 5 | PLL with external 19.2MHz reference
garfieldsg 0:662207e34fba 2496 * 6 | Reserved
garfieldsg 0:662207e34fba 2497 * 7 | Stops the clock and keeps the timing generator in reset
garfieldsg 0:662207e34fba 2498 * </pre>
garfieldsg 0:662207e34fba 2499 *
garfieldsg 0:662207e34fba 2500 * @param source New clock source setting
garfieldsg 0:662207e34fba 2501 * @see getClockSource()
garfieldsg 0:662207e34fba 2502 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2503 * @see MPU6050_PWR1_CLKSEL_BIT
garfieldsg 0:662207e34fba 2504 * @see MPU6050_PWR1_CLKSEL_LENGTH
garfieldsg 0:662207e34fba 2505 */
syundo0730 6:f38dfe62d74c 2506 void MPU6050::setClockSource(uint8_t source) {
syundo0730 7:d5845b617139 2507 I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
garfieldsg 0:662207e34fba 2508 }
garfieldsg 0:662207e34fba 2509
garfieldsg 0:662207e34fba 2510 // PWR_MGMT_2 register
garfieldsg 0:662207e34fba 2511
garfieldsg 0:662207e34fba 2512 /** Get wake frequency in Accel-Only Low Power Mode.
garfieldsg 0:662207e34fba 2513 * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
garfieldsg 0:662207e34fba 2514 * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
garfieldsg 0:662207e34fba 2515 * the device will power off all devices except for the primary I2C interface,
garfieldsg 0:662207e34fba 2516 * waking only the accelerometer at fixed intervals to take a single
garfieldsg 0:662207e34fba 2517 * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
garfieldsg 0:662207e34fba 2518 * as shown below:
garfieldsg 0:662207e34fba 2519 *
garfieldsg 0:662207e34fba 2520 * <pre>
garfieldsg 0:662207e34fba 2521 * LP_WAKE_CTRL | Wake-up Frequency
garfieldsg 0:662207e34fba 2522 * -------------+------------------
garfieldsg 0:662207e34fba 2523 * 0 | 1.25 Hz
garfieldsg 0:662207e34fba 2524 * 1 | 2.5 Hz
garfieldsg 0:662207e34fba 2525 * 2 | 5 Hz
garfieldsg 0:662207e34fba 2526 * 3 | 10 Hz
syundo0730 7:d5845b617139 2527 * </pre>
garfieldsg 0:662207e34fba 2528 *
garfieldsg 0:662207e34fba 2529 * For further information regarding the MPU-60X0's power modes, please refer to
garfieldsg 0:662207e34fba 2530 * Register 107.
garfieldsg 0:662207e34fba 2531 *
garfieldsg 0:662207e34fba 2532 * @return Current wake frequency
garfieldsg 0:662207e34fba 2533 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2534 */
syundo0730 6:f38dfe62d74c 2535 uint8_t MPU6050::getWakeFrequency() {
syundo0730 7:d5845b617139 2536 I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
garfieldsg 0:662207e34fba 2537 return buffer[0];
garfieldsg 0:662207e34fba 2538 }
garfieldsg 0:662207e34fba 2539 /** Set wake frequency in Accel-Only Low Power Mode.
garfieldsg 0:662207e34fba 2540 * @param frequency New wake frequency
garfieldsg 0:662207e34fba 2541 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2542 */
syundo0730 6:f38dfe62d74c 2543 void MPU6050::setWakeFrequency(uint8_t frequency) {
syundo0730 7:d5845b617139 2544 I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
garfieldsg 0:662207e34fba 2545 }
garfieldsg 0:662207e34fba 2546
garfieldsg 0:662207e34fba 2547 /** Get X-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2548 * If enabled, the X-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2549 * @return Current X-axis standby enabled status
garfieldsg 0:662207e34fba 2550 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2551 * @see MPU6050_PWR2_STBY_XA_BIT
garfieldsg 0:662207e34fba 2552 */
syundo0730 6:f38dfe62d74c 2553 bool MPU6050::getStandbyXAccelEnabled() {
syundo0730 7:d5845b617139 2554 I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
garfieldsg 0:662207e34fba 2555 return buffer[0];
garfieldsg 0:662207e34fba 2556 }
garfieldsg 0:662207e34fba 2557 /** Set X-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2558 * @param New X-axis standby enabled status
garfieldsg 0:662207e34fba 2559 * @see getStandbyXAccelEnabled()
garfieldsg 0:662207e34fba 2560 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2561 * @see MPU6050_PWR2_STBY_XA_BIT
garfieldsg 0:662207e34fba 2562 */
syundo0730 6:f38dfe62d74c 2563 void MPU6050::setStandbyXAccelEnabled(bool enabled) {
syundo0730 7:d5845b617139 2564 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
garfieldsg 0:662207e34fba 2565 }
garfieldsg 0:662207e34fba 2566 /** Get Y-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2567 * If enabled, the Y-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2568 * @return Current Y-axis standby enabled status
garfieldsg 0:662207e34fba 2569 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2570 * @see MPU6050_PWR2_STBY_YA_BIT
garfieldsg 0:662207e34fba 2571 */
syundo0730 6:f38dfe62d74c 2572 bool MPU6050::getStandbyYAccelEnabled() {
syundo0730 7:d5845b617139 2573 I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
garfieldsg 0:662207e34fba 2574 return buffer[0];
garfieldsg 0:662207e34fba 2575 }
garfieldsg 0:662207e34fba 2576 /** Set Y-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2577 * @param New Y-axis standby enabled status
garfieldsg 0:662207e34fba 2578 * @see getStandbyYAccelEnabled()
garfieldsg 0:662207e34fba 2579 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2580 * @see MPU6050_PWR2_STBY_YA_BIT
garfieldsg 0:662207e34fba 2581 */
syundo0730 6:f38dfe62d74c 2582 void MPU6050::setStandbyYAccelEnabled(bool enabled) {
syundo0730 7:d5845b617139 2583 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
garfieldsg 0:662207e34fba 2584 }
garfieldsg 0:662207e34fba 2585 /** Get Z-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2586 * If enabled, the Z-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2587 * @return Current Z-axis standby enabled status
garfieldsg 0:662207e34fba 2588 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2589 * @see MPU6050_PWR2_STBY_ZA_BIT
garfieldsg 0:662207e34fba 2590 */
syundo0730 6:f38dfe62d74c 2591 bool MPU6050::getStandbyZAccelEnabled() {
syundo0730 7:d5845b617139 2592 I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
garfieldsg 0:662207e34fba 2593 return buffer[0];
garfieldsg 0:662207e34fba 2594 }
garfieldsg 0:662207e34fba 2595 /** Set Z-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2596 * @param New Z-axis standby enabled status
garfieldsg 0:662207e34fba 2597 * @see getStandbyZAccelEnabled()
garfieldsg 0:662207e34fba 2598 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2599 * @see MPU6050_PWR2_STBY_ZA_BIT
garfieldsg 0:662207e34fba 2600 */
syundo0730 6:f38dfe62d74c 2601 void MPU6050::setStandbyZAccelEnabled(bool enabled) {
syundo0730 7:d5845b617139 2602 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
garfieldsg 0:662207e34fba 2603 }
garfieldsg 0:662207e34fba 2604 /** Get X-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2605 * If enabled, the X-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2606 * @return Current X-axis standby enabled status
garfieldsg 0:662207e34fba 2607 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2608 * @see MPU6050_PWR2_STBY_XG_BIT
garfieldsg 0:662207e34fba 2609 */
syundo0730 6:f38dfe62d74c 2610 bool MPU6050::getStandbyXGyroEnabled() {
syundo0730 7:d5845b617139 2611 I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
garfieldsg 0:662207e34fba 2612 return buffer[0];
garfieldsg 0:662207e34fba 2613 }
garfieldsg 0:662207e34fba 2614 /** Set X-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2615 * @param New X-axis standby enabled status
garfieldsg 0:662207e34fba 2616 * @see getStandbyXGyroEnabled()
garfieldsg 0:662207e34fba 2617 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2618 * @see MPU6050_PWR2_STBY_XG_BIT
garfieldsg 0:662207e34fba 2619 */
syundo0730 6:f38dfe62d74c 2620 void MPU6050::setStandbyXGyroEnabled(bool enabled) {
syundo0730 7:d5845b617139 2621 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
garfieldsg 0:662207e34fba 2622 }
garfieldsg 0:662207e34fba 2623 /** Get Y-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2624 * If enabled, the Y-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2625 * @return Current Y-axis standby enabled status
garfieldsg 0:662207e34fba 2626 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2627 * @see MPU6050_PWR2_STBY_YG_BIT
garfieldsg 0:662207e34fba 2628 */
syundo0730 6:f38dfe62d74c 2629 bool MPU6050::getStandbyYGyroEnabled() {
syundo0730 7:d5845b617139 2630 I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
garfieldsg 0:662207e34fba 2631 return buffer[0];
garfieldsg 0:662207e34fba 2632 }
garfieldsg 0:662207e34fba 2633 /** Set Y-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2634 * @param New Y-axis standby enabled status
garfieldsg 0:662207e34fba 2635 * @see getStandbyYGyroEnabled()
garfieldsg 0:662207e34fba 2636 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2637 * @see MPU6050_PWR2_STBY_YG_BIT
garfieldsg 0:662207e34fba 2638 */
syundo0730 6:f38dfe62d74c 2639 void MPU6050::setStandbyYGyroEnabled(bool enabled) {
syundo0730 7:d5845b617139 2640 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
garfieldsg 0:662207e34fba 2641 }
garfieldsg 0:662207e34fba 2642 /** Get Z-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2643 * If enabled, the Z-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2644 * @return Current Z-axis standby enabled status
garfieldsg 0:662207e34fba 2645 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2646 * @see MPU6050_PWR2_STBY_ZG_BIT
garfieldsg 0:662207e34fba 2647 */
syundo0730 6:f38dfe62d74c 2648 bool MPU6050::getStandbyZGyroEnabled() {
syundo0730 7:d5845b617139 2649 I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
garfieldsg 0:662207e34fba 2650 return buffer[0];
garfieldsg 0:662207e34fba 2651 }
garfieldsg 0:662207e34fba 2652 /** Set Z-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2653 * @param New Z-axis standby enabled status
garfieldsg 0:662207e34fba 2654 * @see getStandbyZGyroEnabled()
garfieldsg 0:662207e34fba 2655 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2656 * @see MPU6050_PWR2_STBY_ZG_BIT
garfieldsg 0:662207e34fba 2657 */
syundo0730 6:f38dfe62d74c 2658 void MPU6050::setStandbyZGyroEnabled(bool enabled) {
syundo0730 7:d5845b617139 2659 I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
garfieldsg 0:662207e34fba 2660 }
garfieldsg 0:662207e34fba 2661
garfieldsg 0:662207e34fba 2662 // FIFO_COUNT* registers
garfieldsg 0:662207e34fba 2663
garfieldsg 0:662207e34fba 2664 /** Get current FIFO buffer size.
garfieldsg 0:662207e34fba 2665 * This value indicates the number of bytes stored in the FIFO buffer. This
garfieldsg 0:662207e34fba 2666 * number is in turn the number of bytes that can be read from the FIFO buffer
garfieldsg 0:662207e34fba 2667 * and it is directly proportional to the number of samples available given the
garfieldsg 0:662207e34fba 2668 * set of sensor data bound to be stored in the FIFO (register 35 and 36).
garfieldsg 0:662207e34fba 2669 * @return Current FIFO buffer size
garfieldsg 0:662207e34fba 2670 */
syundo0730 6:f38dfe62d74c 2671 uint16_t MPU6050::getFIFOCount() {
syundo0730 7:d5845b617139 2672 I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
garfieldsg 0:662207e34fba 2673 return (((uint16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2674 }
garfieldsg 0:662207e34fba 2675
garfieldsg 0:662207e34fba 2676 // FIFO_R_W register
garfieldsg 0:662207e34fba 2677
garfieldsg 0:662207e34fba 2678 /** Get byte from FIFO buffer.
garfieldsg 0:662207e34fba 2679 * This register is used to read and write data from the FIFO buffer. Data is
garfieldsg 0:662207e34fba 2680 * written to the FIFO in order of register number (from lowest to highest). If
garfieldsg 0:662207e34fba 2681 * all the FIFO enable flags (see below) are enabled and all External Sensor
garfieldsg 0:662207e34fba 2682 * Data registers (Registers 73 to 96) are associated with a Slave device, the
garfieldsg 0:662207e34fba 2683 * contents of registers 59 through 96 will be written in order at the Sample
garfieldsg 0:662207e34fba 2684 * Rate.
garfieldsg 0:662207e34fba 2685 *
garfieldsg 0:662207e34fba 2686 * The contents of the sensor data registers (Registers 59 to 96) are written
garfieldsg 0:662207e34fba 2687 * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
garfieldsg 0:662207e34fba 2688 * in FIFO_EN (Register 35). An additional flag for the sensor data registers
garfieldsg 0:662207e34fba 2689 * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
garfieldsg 0:662207e34fba 2690 *
garfieldsg 0:662207e34fba 2691 * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
garfieldsg 0:662207e34fba 2692 * automatically set to 1. This bit is located in INT_STATUS (Register 58).
garfieldsg 0:662207e34fba 2693 * When the FIFO buffer has overflowed, the oldest data will be lost and new
garfieldsg 0:662207e34fba 2694 * data will be written to the FIFO.
garfieldsg 0:662207e34fba 2695 *
garfieldsg 0:662207e34fba 2696 * If the FIFO buffer is empty, reading this register will return the last byte
garfieldsg 0:662207e34fba 2697 * that was previously read from the FIFO until new data is available. The user
garfieldsg 0:662207e34fba 2698 * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
garfieldsg 0:662207e34fba 2699 * empty.
garfieldsg 0:662207e34fba 2700 *
garfieldsg 0:662207e34fba 2701 * @return Byte from FIFO buffer
garfieldsg 0:662207e34fba 2702 */
syundo0730 6:f38dfe62d74c 2703 uint8_t MPU6050::getFIFOByte() {
syundo0730 7:d5845b617139 2704 I2Cdev::readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
garfieldsg 0:662207e34fba 2705 return buffer[0];
garfieldsg 0:662207e34fba 2706 }
syundo0730 6:f38dfe62d74c 2707 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length) {
syundo0730 7:d5845b617139 2708 if(length > 0){
syundo0730 7:d5845b617139 2709 I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
syundo0730 7:d5845b617139 2710 } else {
syundo0730 7:d5845b617139 2711 *data = 0;
syundo0730 7:d5845b617139 2712 }
garfieldsg 0:662207e34fba 2713 }
garfieldsg 0:662207e34fba 2714 /** Write byte to FIFO buffer.
garfieldsg 0:662207e34fba 2715 * @see getFIFOByte()
garfieldsg 0:662207e34fba 2716 * @see MPU6050_RA_FIFO_R_W
garfieldsg 0:662207e34fba 2717 */
syundo0730 6:f38dfe62d74c 2718 void MPU6050::setFIFOByte(uint8_t data) {
syundo0730 7:d5845b617139 2719 I2Cdev::writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
garfieldsg 0:662207e34fba 2720 }
garfieldsg 0:662207e34fba 2721
garfieldsg 0:662207e34fba 2722 // WHO_AM_I register
garfieldsg 0:662207e34fba 2723
garfieldsg 0:662207e34fba 2724 /** Get Device ID.
garfieldsg 0:662207e34fba 2725 * This register is used to verify the identity of the device (0b110100, 0x34).
garfieldsg 0:662207e34fba 2726 * @return Device ID (6 bits only! should be 0x34)
garfieldsg 0:662207e34fba 2727 * @see MPU6050_RA_WHO_AM_I
garfieldsg 0:662207e34fba 2728 * @see MPU6050_WHO_AM_I_BIT
garfieldsg 0:662207e34fba 2729 * @see MPU6050_WHO_AM_I_LENGTH
garfieldsg 0:662207e34fba 2730 */
syundo0730 6:f38dfe62d74c 2731 uint8_t MPU6050::getDeviceID() {
syundo0730 7:d5845b617139 2732 I2Cdev::readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
garfieldsg 0:662207e34fba 2733 return buffer[0];
garfieldsg 0:662207e34fba 2734 }
garfieldsg 0:662207e34fba 2735 /** Set Device ID.
garfieldsg 0:662207e34fba 2736 * Write a new ID into the WHO_AM_I register (no idea why this should ever be
garfieldsg 0:662207e34fba 2737 * necessary though).
garfieldsg 0:662207e34fba 2738 * @param id New device ID to set.
garfieldsg 0:662207e34fba 2739 * @see getDeviceID()
garfieldsg 0:662207e34fba 2740 * @see MPU6050_RA_WHO_AM_I
garfieldsg 0:662207e34fba 2741 * @see MPU6050_WHO_AM_I_BIT
garfieldsg 0:662207e34fba 2742 * @see MPU6050_WHO_AM_I_LENGTH
garfieldsg 0:662207e34fba 2743 */
syundo0730 6:f38dfe62d74c 2744 void MPU6050::setDeviceID(uint8_t id) {
syundo0730 7:d5845b617139 2745 I2Cdev::writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
garfieldsg 0:662207e34fba 2746 }
garfieldsg 0:662207e34fba 2747
garfieldsg 0:662207e34fba 2748 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
garfieldsg 0:662207e34fba 2749
garfieldsg 0:662207e34fba 2750 // XG_OFFS_TC register
garfieldsg 0:662207e34fba 2751
syundo0730 6:f38dfe62d74c 2752 uint8_t MPU6050::getOTPBankValid() {
syundo0730 7:d5845b617139 2753 I2Cdev::readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
garfieldsg 0:662207e34fba 2754 return buffer[0];
garfieldsg 0:662207e34fba 2755 }
syundo0730 6:f38dfe62d74c 2756 void MPU6050::setOTPBankValid(bool enabled) {
syundo0730 7:d5845b617139 2757 I2Cdev::writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
garfieldsg 0:662207e34fba 2758 }
syundo0730 6:f38dfe62d74c 2759 int8_t MPU6050::getXGyroOffsetTC() {
syundo0730 7:d5845b617139 2760 I2Cdev::readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 2761 return buffer[0];
garfieldsg 0:662207e34fba 2762 }
syundo0730 6:f38dfe62d74c 2763 void MPU6050::setXGyroOffsetTC(int8_t offset) {
syundo0730 7:d5845b617139 2764 I2Cdev::writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 2765 }
garfieldsg 0:662207e34fba 2766
garfieldsg 0:662207e34fba 2767 // YG_OFFS_TC register
garfieldsg 0:662207e34fba 2768
syundo0730 6:f38dfe62d74c 2769 int8_t MPU6050::getYGyroOffsetTC() {
syundo0730 7:d5845b617139 2770 I2Cdev::readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 2771 return buffer[0];
garfieldsg 0:662207e34fba 2772 }
syundo0730 6:f38dfe62d74c 2773 void MPU6050::setYGyroOffsetTC(int8_t offset) {
syundo0730 7:d5845b617139 2774 I2Cdev::writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 2775 }
garfieldsg 0:662207e34fba 2776
garfieldsg 0:662207e34fba 2777 // ZG_OFFS_TC register
garfieldsg 0:662207e34fba 2778
syundo0730 6:f38dfe62d74c 2779 int8_t MPU6050::getZGyroOffsetTC() {
syundo0730 7:d5845b617139 2780 I2Cdev::readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 2781 return buffer[0];
garfieldsg 0:662207e34fba 2782 }
syundo0730 6:f38dfe62d74c 2783 void MPU6050::setZGyroOffsetTC(int8_t offset) {
syundo0730 7:d5845b617139 2784 I2Cdev::writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 2785 }
garfieldsg 0:662207e34fba 2786
garfieldsg 0:662207e34fba 2787 // X_FINE_GAIN register
garfieldsg 0:662207e34fba 2788
syundo0730 6:f38dfe62d74c 2789 int8_t MPU6050::getXFineGain() {
syundo0730 7:d5845b617139 2790 I2Cdev::readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 2791 return buffer[0];
garfieldsg 0:662207e34fba 2792 }
syundo0730 6:f38dfe62d74c 2793 void MPU6050::setXFineGain(int8_t gain) {
syundo0730 7:d5845b617139 2794 I2Cdev::writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 2795 }
garfieldsg 0:662207e34fba 2796
garfieldsg 0:662207e34fba 2797 // Y_FINE_GAIN register
garfieldsg 0:662207e34fba 2798
syundo0730 6:f38dfe62d74c 2799 int8_t MPU6050::getYFineGain() {
syundo0730 7:d5845b617139 2800 I2Cdev::readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 2801 return buffer[0];
garfieldsg 0:662207e34fba 2802 }
syundo0730 6:f38dfe62d74c 2803 void MPU6050::setYFineGain(int8_t gain) {
syundo0730 7:d5845b617139 2804 I2Cdev::writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 2805 }
garfieldsg 0:662207e34fba 2806
garfieldsg 0:662207e34fba 2807 // Z_FINE_GAIN register
garfieldsg 0:662207e34fba 2808
syundo0730 6:f38dfe62d74c 2809 int8_t MPU6050::getZFineGain() {
syundo0730 7:d5845b617139 2810 I2Cdev::readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 2811 return buffer[0];
garfieldsg 0:662207e34fba 2812 }
syundo0730 6:f38dfe62d74c 2813 void MPU6050::setZFineGain(int8_t gain) {
syundo0730 7:d5845b617139 2814 I2Cdev::writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 2815 }
garfieldsg 0:662207e34fba 2816
garfieldsg 0:662207e34fba 2817 // XA_OFFS_* registers
garfieldsg 0:662207e34fba 2818
syundo0730 6:f38dfe62d74c 2819 int16_t MPU6050::getXAccelOffset() {
syundo0730 7:d5845b617139 2820 I2Cdev::readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 2821 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2822 }
syundo0730 6:f38dfe62d74c 2823 void MPU6050::setXAccelOffset(int16_t offset) {
syundo0730 7:d5845b617139 2824 I2Cdev::writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
garfieldsg 0:662207e34fba 2825 }
garfieldsg 0:662207e34fba 2826
garfieldsg 0:662207e34fba 2827 // YA_OFFS_* register
garfieldsg 0:662207e34fba 2828
syundo0730 6:f38dfe62d74c 2829 int16_t MPU6050::getYAccelOffset() {
syundo0730 7:d5845b617139 2830 I2Cdev::readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 2831 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2832 }
syundo0730 6:f38dfe62d74c 2833 void MPU6050::setYAccelOffset(int16_t offset) {
syundo0730 7:d5845b617139 2834 I2Cdev::writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
garfieldsg 0:662207e34fba 2835 }
garfieldsg 0:662207e34fba 2836
garfieldsg 0:662207e34fba 2837 // ZA_OFFS_* register
garfieldsg 0:662207e34fba 2838
syundo0730 6:f38dfe62d74c 2839 int16_t MPU6050::getZAccelOffset() {
syundo0730 7:d5845b617139 2840 I2Cdev::readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 2841 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2842 }
syundo0730 6:f38dfe62d74c 2843 void MPU6050::setZAccelOffset(int16_t offset) {
syundo0730 7:d5845b617139 2844 I2Cdev::writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
garfieldsg 0:662207e34fba 2845 }
garfieldsg 0:662207e34fba 2846
garfieldsg 0:662207e34fba 2847 // XG_OFFS_USR* registers
garfieldsg 0:662207e34fba 2848
syundo0730 6:f38dfe62d74c 2849 int16_t MPU6050::getXGyroOffset() {
syundo0730 7:d5845b617139 2850 I2Cdev::readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 2851 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2852 }
syundo0730 6:f38dfe62d74c 2853 void MPU6050::setXGyroOffset(int16_t offset) {
syundo0730 7:d5845b617139 2854 I2Cdev::writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 2855 }
garfieldsg 0:662207e34fba 2856
garfieldsg 0:662207e34fba 2857 // YG_OFFS_USR* register
garfieldsg 0:662207e34fba 2858
syundo0730 6:f38dfe62d74c 2859 int16_t MPU6050::getYGyroOffset() {
syundo0730 7:d5845b617139 2860 I2Cdev::readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 2861 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2862 }
syundo0730 6:f38dfe62d74c 2863 void MPU6050::setYGyroOffset(int16_t offset) {
syundo0730 7:d5845b617139 2864 I2Cdev::writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 2865 }
garfieldsg 0:662207e34fba 2866
garfieldsg 0:662207e34fba 2867 // ZG_OFFS_USR* register
garfieldsg 0:662207e34fba 2868
syundo0730 6:f38dfe62d74c 2869 int16_t MPU6050::getZGyroOffset() {
syundo0730 7:d5845b617139 2870 I2Cdev::readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 2871 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2872 }
syundo0730 6:f38dfe62d74c 2873 void MPU6050::setZGyroOffset(int16_t offset) {
syundo0730 7:d5845b617139 2874 I2Cdev::writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 2875 }
garfieldsg 0:662207e34fba 2876
garfieldsg 0:662207e34fba 2877 // INT_ENABLE register (DMP functions)
garfieldsg 0:662207e34fba 2878
syundo0730 6:f38dfe62d74c 2879 bool MPU6050::getIntPLLReadyEnabled() {
syundo0730 7:d5845b617139 2880 I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
garfieldsg 0:662207e34fba 2881 return buffer[0];
garfieldsg 0:662207e34fba 2882 }
syundo0730 6:f38dfe62d74c 2883 void MPU6050::setIntPLLReadyEnabled(bool enabled) {
syundo0730 7:d5845b617139 2884 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
garfieldsg 0:662207e34fba 2885 }
syundo0730 6:f38dfe62d74c 2886 bool MPU6050::getIntDMPEnabled() {
syundo0730 7:d5845b617139 2887 I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
garfieldsg 0:662207e34fba 2888 return buffer[0];
garfieldsg 0:662207e34fba 2889 }
syundo0730 6:f38dfe62d74c 2890 void MPU6050::setIntDMPEnabled(bool enabled) {
syundo0730 7:d5845b617139 2891 I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
garfieldsg 0:662207e34fba 2892 }
garfieldsg 0:662207e34fba 2893
garfieldsg 0:662207e34fba 2894 // DMP_INT_STATUS
garfieldsg 0:662207e34fba 2895
syundo0730 6:f38dfe62d74c 2896 bool MPU6050::getDMPInt5Status() {
syundo0730 7:d5845b617139 2897 I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
garfieldsg 0:662207e34fba 2898 return buffer[0];
garfieldsg 0:662207e34fba 2899 }
syundo0730 6:f38dfe62d74c 2900 bool MPU6050::getDMPInt4Status() {
syundo0730 7:d5845b617139 2901 I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
garfieldsg 0:662207e34fba 2902 return buffer[0];
garfieldsg 0:662207e34fba 2903 }
syundo0730 6:f38dfe62d74c 2904 bool MPU6050::getDMPInt3Status() {
syundo0730 7:d5845b617139 2905 I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
garfieldsg 0:662207e34fba 2906 return buffer[0];
garfieldsg 0:662207e34fba 2907 }
syundo0730 6:f38dfe62d74c 2908 bool MPU6050::getDMPInt2Status() {
syundo0730 7:d5845b617139 2909 I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
garfieldsg 0:662207e34fba 2910 return buffer[0];
garfieldsg 0:662207e34fba 2911 }
syundo0730 6:f38dfe62d74c 2912 bool MPU6050::getDMPInt1Status() {
syundo0730 7:d5845b617139 2913 I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
garfieldsg 0:662207e34fba 2914 return buffer[0];
garfieldsg 0:662207e34fba 2915 }
syundo0730 6:f38dfe62d74c 2916 bool MPU6050::getDMPInt0Status() {
syundo0730 7:d5845b617139 2917 I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
garfieldsg 0:662207e34fba 2918 return buffer[0];
garfieldsg 0:662207e34fba 2919 }
garfieldsg 0:662207e34fba 2920
garfieldsg 0:662207e34fba 2921 // INT_STATUS register (DMP functions)
garfieldsg 0:662207e34fba 2922
syundo0730 6:f38dfe62d74c 2923 bool MPU6050::getIntPLLReadyStatus() {
syundo0730 7:d5845b617139 2924 I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
garfieldsg 0:662207e34fba 2925 return buffer[0];
garfieldsg 0:662207e34fba 2926 }
syundo0730 6:f38dfe62d74c 2927 bool MPU6050::getIntDMPStatus() {
syundo0730 7:d5845b617139 2928 I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
garfieldsg 0:662207e34fba 2929 return buffer[0];
garfieldsg 0:662207e34fba 2930 }
garfieldsg 0:662207e34fba 2931
garfieldsg 0:662207e34fba 2932 // USER_CTRL register (DMP functions)
garfieldsg 0:662207e34fba 2933
syundo0730 6:f38dfe62d74c 2934 bool MPU6050::getDMPEnabled() {
syundo0730 7:d5845b617139 2935 I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2936 return buffer[0];
garfieldsg 0:662207e34fba 2937 }
syundo0730 6:f38dfe62d74c 2938 void MPU6050::setDMPEnabled(bool enabled) {
syundo0730 7:d5845b617139 2939 I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2940 }
syundo0730 6:f38dfe62d74c 2941 void MPU6050::resetDMP() {
syundo0730 7:d5845b617139 2942 I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
garfieldsg 0:662207e34fba 2943 }
garfieldsg 0:662207e34fba 2944
garfieldsg 0:662207e34fba 2945 // BANK_SEL register
garfieldsg 0:662207e34fba 2946
syundo0730 6:f38dfe62d74c 2947 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank) {
garfieldsg 0:662207e34fba 2948 bank &= 0x1F;
garfieldsg 0:662207e34fba 2949 if (userBank) bank |= 0x20;
garfieldsg 0:662207e34fba 2950 if (prefetchEnabled) bank |= 0x40;
syundo0730 7:d5845b617139 2951 I2Cdev::writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
garfieldsg 0:662207e34fba 2952 }
garfieldsg 0:662207e34fba 2953
garfieldsg 0:662207e34fba 2954 // MEM_START_ADDR register
garfieldsg 0:662207e34fba 2955
syundo0730 6:f38dfe62d74c 2956 void MPU6050::setMemoryStartAddress(uint8_t address) {
syundo0730 7:d5845b617139 2957 I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
garfieldsg 0:662207e34fba 2958 }
garfieldsg 0:662207e34fba 2959
garfieldsg 0:662207e34fba 2960 // MEM_R_W register
garfieldsg 0:662207e34fba 2961
syundo0730 6:f38dfe62d74c 2962 uint8_t MPU6050::readMemoryByte() {
syundo0730 7:d5845b617139 2963 I2Cdev::readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
garfieldsg 0:662207e34fba 2964 return buffer[0];
garfieldsg 0:662207e34fba 2965 }
syundo0730 6:f38dfe62d74c 2966 void MPU6050::writeMemoryByte(uint8_t data) {
syundo0730 7:d5845b617139 2967 I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
garfieldsg 0:662207e34fba 2968 }
syundo0730 6:f38dfe62d74c 2969 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address) {
garfieldsg 0:662207e34fba 2970 setMemoryBank(bank);
garfieldsg 0:662207e34fba 2971 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 2972 uint8_t chunkSize;
garfieldsg 0:662207e34fba 2973 for (uint16_t i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 2974 // determine correct chunk size according to bank position and data size
garfieldsg 0:662207e34fba 2975 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
garfieldsg 0:662207e34fba 2976
garfieldsg 0:662207e34fba 2977 // make sure we don't go past the data size
garfieldsg 0:662207e34fba 2978 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
garfieldsg 0:662207e34fba 2979
garfieldsg 0:662207e34fba 2980 // make sure this chunk doesn't go past the bank boundary (256 bytes)
garfieldsg 0:662207e34fba 2981 if (chunkSize > 256 - address) chunkSize = 256 - address;
garfieldsg 0:662207e34fba 2982
garfieldsg 0:662207e34fba 2983 // read the chunk of data as specified
syundo0730 7:d5845b617139 2984 I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
syundo0730 7:d5845b617139 2985
garfieldsg 0:662207e34fba 2986 // increase byte index by [chunkSize]
garfieldsg 0:662207e34fba 2987 i += chunkSize;
garfieldsg 0:662207e34fba 2988
garfieldsg 0:662207e34fba 2989 // uint8_t automatically wraps to 0 at 256
garfieldsg 0:662207e34fba 2990 address += chunkSize;
garfieldsg 0:662207e34fba 2991
garfieldsg 0:662207e34fba 2992 // if we aren't done, update bank (if necessary) and address
garfieldsg 0:662207e34fba 2993 if (i < dataSize) {
garfieldsg 0:662207e34fba 2994 if (address == 0) bank++;
garfieldsg 0:662207e34fba 2995 setMemoryBank(bank);
garfieldsg 0:662207e34fba 2996 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 2997 }
garfieldsg 0:662207e34fba 2998 }
garfieldsg 0:662207e34fba 2999 }
syundo0730 6:f38dfe62d74c 3000 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem) {
garfieldsg 0:662207e34fba 3001 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3002 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3003 uint8_t chunkSize;
syundo0730 6:f38dfe62d74c 3004 uint8_t *verifyBuffer;
syundo0730 7:d5845b617139 3005 uint8_t *progBuffer=0;
garfieldsg 0:662207e34fba 3006 uint16_t i;
garfieldsg 0:662207e34fba 3007 uint8_t j;
garfieldsg 0:662207e34fba 3008 if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
garfieldsg 0:662207e34fba 3009 if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
garfieldsg 0:662207e34fba 3010 for (i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 3011 // determine correct chunk size according to bank position and data size
garfieldsg 0:662207e34fba 3012 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
garfieldsg 0:662207e34fba 3013
garfieldsg 0:662207e34fba 3014 // make sure we don't go past the data size
garfieldsg 0:662207e34fba 3015 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
garfieldsg 0:662207e34fba 3016
garfieldsg 0:662207e34fba 3017 // make sure this chunk doesn't go past the bank boundary (256 bytes)
garfieldsg 0:662207e34fba 3018 if (chunkSize > 256 - address) chunkSize = 256 - address;
syundo0730 7:d5845b617139 3019
garfieldsg 0:662207e34fba 3020 if (useProgMem) {
garfieldsg 0:662207e34fba 3021 // write the chunk of data as specified
garfieldsg 0:662207e34fba 3022 for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
garfieldsg 0:662207e34fba 3023 } else {
garfieldsg 0:662207e34fba 3024 // write the chunk of data as specified
garfieldsg 0:662207e34fba 3025 progBuffer = (uint8_t *)data + i;
garfieldsg 0:662207e34fba 3026 }
garfieldsg 0:662207e34fba 3027
syundo0730 7:d5845b617139 3028 I2Cdev::writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
garfieldsg 0:662207e34fba 3029
garfieldsg 0:662207e34fba 3030 // verify data if needed
garfieldsg 0:662207e34fba 3031 if (verify && verifyBuffer) {
garfieldsg 0:662207e34fba 3032 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3033 setMemoryStartAddress(address);
syundo0730 7:d5845b617139 3034 I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
garfieldsg 0:662207e34fba 3035 if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
garfieldsg 0:662207e34fba 3036 /*Serial.print("Block write verification error, bank ");
garfieldsg 0:662207e34fba 3037 Serial.print(bank, DEC);
garfieldsg 0:662207e34fba 3038 Serial.print(", address ");
garfieldsg 0:662207e34fba 3039 Serial.print(address, DEC);
garfieldsg 0:662207e34fba 3040 Serial.print("!\nExpected:");
garfieldsg 0:662207e34fba 3041 for (j = 0; j < chunkSize; j++) {
garfieldsg 0:662207e34fba 3042 Serial.print(" 0x");
garfieldsg 0:662207e34fba 3043 if (progBuffer[j] < 16) Serial.print("0");
garfieldsg 0:662207e34fba 3044 Serial.print(progBuffer[j], HEX);
garfieldsg 0:662207e34fba 3045 }
garfieldsg 0:662207e34fba 3046 Serial.print("\nReceived:");
garfieldsg 0:662207e34fba 3047 for (uint8_t j = 0; j < chunkSize; j++) {
garfieldsg 0:662207e34fba 3048 Serial.print(" 0x");
garfieldsg 0:662207e34fba 3049 if (verifyBuffer[i + j] < 16) Serial.print("0");
garfieldsg 0:662207e34fba 3050 Serial.print(verifyBuffer[i + j], HEX);
garfieldsg 0:662207e34fba 3051 }
garfieldsg 0:662207e34fba 3052 Serial.print("\n");*/
garfieldsg 0:662207e34fba 3053 free(verifyBuffer);
garfieldsg 0:662207e34fba 3054 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3055 return false; // uh oh.
garfieldsg 0:662207e34fba 3056 }
garfieldsg 0:662207e34fba 3057 }
garfieldsg 0:662207e34fba 3058
garfieldsg 0:662207e34fba 3059 // increase byte index by [chunkSize]
garfieldsg 0:662207e34fba 3060 i += chunkSize;
garfieldsg 0:662207e34fba 3061
garfieldsg 0:662207e34fba 3062 // uint8_t automatically wraps to 0 at 256
garfieldsg 0:662207e34fba 3063 address += chunkSize;
garfieldsg 0:662207e34fba 3064
garfieldsg 0:662207e34fba 3065 // if we aren't done, update bank (if necessary) and address
garfieldsg 0:662207e34fba 3066 if (i < dataSize) {
garfieldsg 0:662207e34fba 3067 if (address == 0) bank++;
garfieldsg 0:662207e34fba 3068 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3069 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3070 }
garfieldsg 0:662207e34fba 3071 }
garfieldsg 0:662207e34fba 3072 if (verify) free(verifyBuffer);
garfieldsg 0:662207e34fba 3073 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3074 return true;
garfieldsg 0:662207e34fba 3075 }
syundo0730 6:f38dfe62d74c 3076 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify) {
garfieldsg 0:662207e34fba 3077 return writeMemoryBlock(data, dataSize, bank, address, verify, true);
garfieldsg 0:662207e34fba 3078 }
syundo0730 6:f38dfe62d74c 3079 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem) {
syundo0730 7:d5845b617139 3080 uint8_t *progBuffer = 0;
syundo0730 7:d5845b617139 3081 uint8_t success, special;
garfieldsg 0:662207e34fba 3082 uint16_t i, j;
garfieldsg 0:662207e34fba 3083 if (useProgMem) {
garfieldsg 0:662207e34fba 3084 progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
garfieldsg 0:662207e34fba 3085 }
garfieldsg 0:662207e34fba 3086
garfieldsg 0:662207e34fba 3087 // config set data is a long string of blocks with the following structure:
garfieldsg 0:662207e34fba 3088 // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
garfieldsg 0:662207e34fba 3089 uint8_t bank, offset, length;
garfieldsg 0:662207e34fba 3090 for (i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 3091 if (useProgMem) {
garfieldsg 0:662207e34fba 3092 bank = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3093 offset = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3094 length = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3095 } else {
garfieldsg 0:662207e34fba 3096 bank = data[i++];
garfieldsg 0:662207e34fba 3097 offset = data[i++];
garfieldsg 0:662207e34fba 3098 length = data[i++];
garfieldsg 0:662207e34fba 3099 }
garfieldsg 0:662207e34fba 3100
garfieldsg 0:662207e34fba 3101 // write data or perform special action
garfieldsg 0:662207e34fba 3102 if (length > 0) {
garfieldsg 0:662207e34fba 3103 // regular block of data to write
garfieldsg 0:662207e34fba 3104 /*Serial.print("Writing config block to bank ");
garfieldsg 0:662207e34fba 3105 Serial.print(bank);
garfieldsg 0:662207e34fba 3106 Serial.print(", offset ");
garfieldsg 0:662207e34fba 3107 Serial.print(offset);
garfieldsg 0:662207e34fba 3108 Serial.print(", length=");
garfieldsg 0:662207e34fba 3109 Serial.println(length);*/
garfieldsg 0:662207e34fba 3110 if (useProgMem) {
garfieldsg 0:662207e34fba 3111 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
garfieldsg 0:662207e34fba 3112 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
garfieldsg 0:662207e34fba 3113 } else {
garfieldsg 0:662207e34fba 3114 progBuffer = (uint8_t *)data + i;
garfieldsg 0:662207e34fba 3115 }
garfieldsg 0:662207e34fba 3116 success = writeMemoryBlock(progBuffer, length, bank, offset, true);
garfieldsg 0:662207e34fba 3117 i += length;
garfieldsg 0:662207e34fba 3118 } else {
garfieldsg 0:662207e34fba 3119 // special instruction
garfieldsg 0:662207e34fba 3120 // NOTE: this kind of behavior (what and when to do certain things)
garfieldsg 0:662207e34fba 3121 // is totally undocumented. This code is in here based on observed
garfieldsg 0:662207e34fba 3122 // behavior only, and exactly why (or even whether) it has to be here
garfieldsg 0:662207e34fba 3123 // is anybody's guess for now.
garfieldsg 0:662207e34fba 3124 if (useProgMem) {
garfieldsg 0:662207e34fba 3125 special = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3126 } else {
garfieldsg 0:662207e34fba 3127 special = data[i++];
garfieldsg 0:662207e34fba 3128 }
garfieldsg 0:662207e34fba 3129 /*Serial.print("Special command code ");
garfieldsg 0:662207e34fba 3130 Serial.print(special, HEX);
garfieldsg 0:662207e34fba 3131 Serial.println(" found...");*/
garfieldsg 0:662207e34fba 3132 if (special == 0x01) {
garfieldsg 0:662207e34fba 3133 // enable DMP-related interrupts
syundo0730 7:d5845b617139 3134
garfieldsg 0:662207e34fba 3135 //setIntZeroMotionEnabled(true);
garfieldsg 0:662207e34fba 3136 //setIntFIFOBufferOverflowEnabled(true);
garfieldsg 0:662207e34fba 3137 //setIntDMPEnabled(true);
syundo0730 7:d5845b617139 3138 I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation
garfieldsg 0:662207e34fba 3139
garfieldsg 0:662207e34fba 3140 success = true;
garfieldsg 0:662207e34fba 3141 } else {
garfieldsg 0:662207e34fba 3142 // unknown special command
garfieldsg 0:662207e34fba 3143 success = false;
garfieldsg 0:662207e34fba 3144 }
garfieldsg 0:662207e34fba 3145 }
syundo0730 7:d5845b617139 3146
garfieldsg 0:662207e34fba 3147 if (!success) {
garfieldsg 0:662207e34fba 3148 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3149 return false; // uh oh
garfieldsg 0:662207e34fba 3150 }
garfieldsg 0:662207e34fba 3151 }
garfieldsg 0:662207e34fba 3152 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3153 return true;
garfieldsg 0:662207e34fba 3154 }
syundo0730 6:f38dfe62d74c 3155 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize) {
syundo0730 6:f38dfe62d74c 3156 return writeDMPConfigurationSet(data, dataSize, true);
garfieldsg 0:662207e34fba 3157 }
garfieldsg 0:662207e34fba 3158
garfieldsg 0:662207e34fba 3159 // DMP_CFG_1 register
garfieldsg 0:662207e34fba 3160
syundo0730 6:f38dfe62d74c 3161 uint8_t MPU6050::getDMPConfig1() {
syundo0730 7:d5845b617139 3162 I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
garfieldsg 0:662207e34fba 3163 return buffer[0];
garfieldsg 0:662207e34fba 3164 }
syundo0730 6:f38dfe62d74c 3165 void MPU6050::setDMPConfig1(uint8_t config) {
syundo0730 7:d5845b617139 3166 I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
garfieldsg 0:662207e34fba 3167 }
garfieldsg 0:662207e34fba 3168
garfieldsg 0:662207e34fba 3169 // DMP_CFG_2 register
garfieldsg 0:662207e34fba 3170
syundo0730 6:f38dfe62d74c 3171 uint8_t MPU6050::getDMPConfig2() {
syundo0730 7:d5845b617139 3172 I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
garfieldsg 0:662207e34fba 3173 return buffer[0];
garfieldsg 0:662207e34fba 3174 }
syundo0730 6:f38dfe62d74c 3175 void MPU6050::setDMPConfig2(uint8_t config) {
syundo0730 7:d5845b617139 3176 I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
syundo0730 7:d5845b617139 3177 }