Chris LU
/
MX28_Sensor_Correction
Sensor_Correction
Fork of MX28_Sensor_Correction by
main.cpp
- Committer:
- alan82914
- Date:
- 2017-02-13
- Revision:
- 0:6dc8ac1c7c00
- Child:
- 2:bd98f7a4e231
File content as of revision 0:6dc8ac1c7c00:
#include "mbed.h" #include "LSM9DS0.h" #include "Mx28.h" #include <math.h> // Dynamixel #define SERVO_ID 0x01 // ID of which we will set Dynamixel too #define SERVO_ControlPin A2 // Control pin of buffer chip, NOTE: this does not matter becasue we are not using a half to full contorl buffer. #define SERVO_SET_Baudrate 1000000 // Baud rate speed which the Dynamixel will be set too (1Mbps) #define TxPin A0 #define RxPin A1 #define CW_LIMIT_ANGLE 0x001 // lowest clockwise angle is 1, as when set to 0 it set servo to wheel mode #define CCW_LIMIT_ANGLE 0xFFF // Highest anit-clockwise angle is 0XFFF, as when set to 0 it set servo to wheel mode #define pi 3.14 #define Ts 5 // sampling time #define A 20 // angle #define f 0.2 // Hz unsigned long t = 0; double deg = 0; int Pos = 0; int zero = 190; char mode = 'a'; Serial pc(SERIAL_TX, SERIAL_RX); DynamixelClass dynamixelClass(SERVO_SET_Baudrate,SERVO_ControlPin,TxPin,RxPin); // DigitalIn mybutton(USER_BUTTON); // sampling time Lowpass Filter float T = 0.001; // Interrupt Ticker timer1; // UART Serial uart_1(D10,D2); // TX : D10 RX : D2 // serial 1 // void init_uart(void); void separate(void); void uart_send(void); void init_TIMER(void); void timer1_interrupt(void); void change_mode(); float lpf(float input, float output_old, float frequency); // uart send data int display[6] = {0,0,0,0,0,0}; char num[14] = {254,255,0,0,0,0,0,0,0,0,0,0,0,0}; // char num[0] , num[1] : 2 start byte void init_sensor(void); void read_sensor(void); void sensor_filter(void); LSM9DS0 sensor(SPI_MODE, D9, D6); // SPI_CS1 : D7 , SPI_CS2 : D6 int sensor_flag = 0; // sensor initial flag int sensor_count = 0; // sensor data int16_t Gyro_axis_data[3] = {0}; // X, Y, Z axis int16_t Acce_axis_data[3] = {0}; // X, Y, Z axis // sensor gain #define Gyro_gain_x 0 #define Gyro_gain_y 0 #define Gyro_gain_z 0 // datasheet : 70 mdeg/digit #define Acce_gain_x 0 #define Acce_gain_y 0 #define Acce_gain_z 0 // sensor filter correction data float Gyro_axis_data_f[3]; float Gyro_axis_data_f_old[3]; float Gyro_scale[3]; // scale = (data - zero) * gain float Gyro_axis_zero[3] = {0,0,0}; float Acce_axis_data_f[3]; float Acce_axis_data_f_old[3]; float Acce_scale[3]; // scale = (data - zero) * gain float Acce_axis_zero[3] = {0,0,0}; int main() { pc.baud(115200); dynamixelClass.setMode(SERVO_ID, SERVO, CW_LIMIT_ANGLE, CCW_LIMIT_ANGLE); // set mode to SERVO and set angle limits init_uart(); init_sensor(); init_TIMER(); uart_1.attach(&change_mode); while(1) { pc.printf("%d\n",Pos); } // while(1) end } // UART void init_uart() { uart_1.baud(115200); // 設定baudrate } int i = 0; void uart_send(void) { // uart send data display[0] = Gyro_axis_data[0]; display[1] = Gyro_axis_data[1]; display[2] = Gyro_axis_data[2]; display[3] = Acce_axis_data[0]; display[4] = Acce_axis_data[1]; display[5] = Acce_axis_data[2]; separate(); int j = 0; int k = 1; while(k) { if(uart_1.writeable()) { uart_1.putc(num[i]); i++; j++; } if(j>1) // send 2 bytes { k = 0; j = 0; } } if(i>15) i = 0; } void separate(void) { num[2] = display[0] >> 8; // HSB(8bit)資料存入陣列 num[3] = display[0] & 0x00ff; // LSB(8bit)資料存入陣列 num[4] = display[1] >> 8; num[5] = display[1] & 0x00ff; num[6] = display[2] >> 8; num[7] = display[2] & 0x00ff; num[8] = display[3] >> 8; num[9] = display[3] & 0x00ff; num[10] = display[4] >> 8; num[11] = display[4] & 0x00ff; num[12] = display[5] >> 8; num[13] = display[5] & 0x00ff; } // sensor void init_sensor(void) { sensor.begin(); } void read_sensor(void) { // sensor raw data Gyro_axis_data[0] = sensor.readRawGyroX(); Gyro_axis_data[1] = sensor.readRawGyroY(); Gyro_axis_data[2] = sensor.readRawGyroZ(); Acce_axis_data[0] = sensor.readRawAccelX(); Acce_axis_data[1] = sensor.readRawAccelY(); Acce_axis_data[2] = sensor.readRawAccelZ(); } void sensor_filter(void) { // gyro filter Gyro_axis_data_f[0] = lpf(Gyro_axis_data[0],Gyro_axis_data_f_old[0],18); Gyro_axis_data_f_old[0] = Gyro_axis_data_f[0]; Gyro_axis_data_f[1] = lpf(Gyro_axis_data[1],Gyro_axis_data_f_old[1],18); Gyro_axis_data_f_old[1] = Gyro_axis_data_f[1]; Gyro_axis_data_f[2] = lpf(Gyro_axis_data[2],Gyro_axis_data_f_old[2],18); Gyro_axis_data_f_old[2] = Gyro_axis_data_f[2]; // acce filter Acce_axis_data_f[0] = lpf(Acce_axis_data[0],Acce_axis_data_f_old[0],18); Acce_axis_data_f_old[0] = Acce_axis_data_f[0]; Acce_axis_data_f[1] = lpf(Acce_axis_data[1],Acce_axis_data_f_old[1],18); Acce_axis_data_f_old[1] = Acce_axis_data_f[1]; Acce_axis_data_f[2] = lpf(Acce_axis_data[2],Acce_axis_data_f_old[2],18); Acce_axis_data_f_old[2] = Acce_axis_data_f[2]; Gyro_scale[0] = (Gyro_axis_data_f[0]-Gyro_axis_zero[0])*Gyro_gain_x; Gyro_scale[1] = (Gyro_axis_data_f[1]-Gyro_axis_zero[1])*Gyro_gain_y; Gyro_scale[2] = (Gyro_axis_data_f[2]-Gyro_axis_zero[2])*Gyro_gain_z; Acce_scale[0] = ((Acce_axis_data_f[0]-Acce_axis_zero[0]))*Acce_gain_x; Acce_scale[1] = ((Acce_axis_data_f[1]-Acce_axis_zero[1]))*Acce_gain_y; Acce_scale[2] = ((Acce_axis_data_f[2]-Acce_axis_zero[2]))*Acce_gain_z; } // Timer void init_TIMER(void) { timer1.attach_us(&timer1_interrupt, 10000);//10ms interrupt period (100 Hz) } void timer1_interrupt(void) { // sensor initial start if(sensor_flag == 0) { sensor_count++; if(sensor_count >= 50) { sensor_flag = 1; sensor_count = 0; } } else { read_sensor(); sensor_filter(); uart_send(); } switch (mode) { case 'a': deg = zero*4096.0f/360.0f; break; case 'b': deg = (zero + 90)*4096.0f/360.0f; break; case 'c': deg = (zero-A*sin(2*pi*f*t*0.001*Ts))*4096.0f/360.0f; // 在正負A度搖 t = t + 1; if(t >= 1/(f*0.001*Ts)) // 2*pi*f*t*0.001*Ts = 2*pi -> t = 1/(f*0.001*T) t = 0; break; } dynamixelClass.servo(SERVO_ID,deg,0x400); Pos = dynamixelClass.readPosition(SERVO_ID); } void change_mode() { mode = uart_1.getc(); } float lpf(float input, float output_old, float frequency) { float output = 0; output = (output_old + frequency*T*input) / (1 + frequency*T); return output; }