Workshop 1

Dependencies:   PM2_Libary Eigen

Committer:
pmic
Date:
Sat May 14 16:10:50 2022 +0200
Revision:
37:15c19c21c499
Parent:
36:8c75783c1eca
Child:
38:8cf86a20f0fe
Removed IRSensor.h, this version needs testing

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 36:8c75783c1eca 1 #include <mbed.h>
pmic 36:8c75783c1eca 2 #include <math.h>
pmic 36:8c75783c1eca 3 #include <vector>
pmic 36:8c75783c1eca 4
pmic 17:c19b471f05cb 5 #include "PM2_Libary.h"
pmic 36:8c75783c1eca 6 #include "Eigen/Dense.h"
pmic 36:8c75783c1eca 7
pmic 36:8c75783c1eca 8 # define M_PI 3.14159265358979323846 // number pi
pmic 6:e1fa1a2d7483 9
pmic 24:86f1a63e35a0 10 // logical variable main task
pmic 24:86f1a63e35a0 11 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 17:c19b471f05cb 12
pmic 24:86f1a63e35a0 13 // user button on nucleo board
pmic 24:86f1a63e35a0 14 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 15 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 16 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 17 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 18
pmic 1:93d997d6b232 19 int main()
pmic 23:26b3a25fc637 20 {
pmic 36:8c75783c1eca 21 // while loop gets executed every main_task_period_ms milliseconds
pmic 36:8c75783c1eca 22 const int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
pmic 36:8c75783c1eca 23 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
pmic 36:8c75783c1eca 24
pmic 36:8c75783c1eca 25 // led on nucleo board
pmic 36:8c75783c1eca 26 DigitalOut user_led(LED1); // create DigitalOut object to command user led
pmic 36:8c75783c1eca 27
pmic 36:8c75783c1eca 28 // additional Led
pmic 36:8c75783c1eca 29 DigitalOut extra_led(PB_9); // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm)
pmic 36:8c75783c1eca 30
pmic 36:8c75783c1eca 31 // mechanical button
pmic 36:8c75783c1eca 32 DigitalIn mechanical_button(PC_5); // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below
pmic 36:8c75783c1eca 33
pmic 36:8c75783c1eca 34 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
pmic 36:8c75783c1eca 35 float ir_distance_mV = 0.0f; // define variable to store measurement
pmic 36:8c75783c1eca 36 AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 36:8c75783c1eca 37
pmic 36:8c75783c1eca 38 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 36:8c75783c1eca 39 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 36:8c75783c1eca 40
pmic 36:8c75783c1eca 41 const float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motor M1
pmic 36:8c75783c1eca 42 FastPWM pwm_M1(PB_13); // motor M1 is used open loop
pmic 36:8c75783c1eca 43 FastPWM pwm_M2(PA_9); // motor M2 is closed-loop speed controlled (angle velocity)
pmic 36:8c75783c1eca 44 FastPWM pwm_M3(PA_10); // motor M3 is closed-loop position controlled (angle controlled)
pmic 36:8c75783c1eca 45
pmic 36:8c75783c1eca 46 EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
pmic 36:8c75783c1eca 47 EncoderCounter encoder_M2(PB_6, PB_7);
pmic 36:8c75783c1eca 48 EncoderCounter encoder_M3(PA_0, PA_1);
pmic 36:8c75783c1eca 49
pmic 36:8c75783c1eca 50 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
pmic 36:8c75783c1eca 51 const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
pmic 36:8c75783c1eca 52 const float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio
pmic 36:8c75783c1eca 53 const float kn = 180.0f / 12.0f; // define motor constant in rpm per V
pmic 36:8c75783c1eca 54 const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
pmic 36:8c75783c1eca 55 const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
pmic 36:8c75783c1eca 56
pmic 36:8c75783c1eca 57 // SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box with default contoller parameters
pmic 36:8c75783c1eca 58 SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear
pmic 36:8c75783c1eca 59
pmic 36:8c75783c1eca 60 float max_speed_rps = 0.5f; // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
pmic 36:8c75783c1eca 61 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
pmic 36:8c75783c1eca 62 PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 36:8c75783c1eca 63 positionController_M3.setSpeedCntrlGain(kp * k_gear);
pmic 36:8c75783c1eca 64 positionController_M3.setMaxVelocityRPS(max_speed_rps);
pmic 36:8c75783c1eca 65
pmic 36:8c75783c1eca 66 // Futaba Servo S3001 20mm 3kg Analog
pmic 36:8c75783c1eca 67 Servo servo_S1(PB_2); // create servo objects
pmic 36:8c75783c1eca 68 Servo servo_S2(PC_8);
pmic 36:8c75783c1eca 69 float servo_S1_angle = 0; // servo S1 normalized angle
pmic 36:8c75783c1eca 70 float servo_S2_angle = 0; // servo S2 normalized angle
pmic 36:8c75783c1eca 71 const int servo_period_mus = 20000; // define servo period time in mus
pmic 36:8c75783c1eca 72
pmic 36:8c75783c1eca 73 int servo_counter = 0; // define servo counter, this is an additional variable to make the servos move
pmic 36:8c75783c1eca 74 const int loops_per_seconds = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second
pmic 36:8c75783c1eca 75
pmic 36:8c75783c1eca 76 // Groove Ultrasonic Ranger V2.0
pmic 36:8c75783c1eca 77 float us_distance_cm = 0.0f; // define variable to store measurement
pmic 36:8c75783c1eca 78 RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); // create range finder object (ultra sonic distance sensor), 20 Hz parametrization
pmic 36:8c75783c1eca 79 // RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 7000); // create range finder object (ultra sonic distance sensor), 50 Hz parametrization
pmic 36:8c75783c1eca 80
pmic 36:8c75783c1eca 81 // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
pmic 36:8c75783c1eca 82 // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
pmic 36:8c75783c1eca 83
pmic 24:86f1a63e35a0 84 // attach button fall and rise functions to user button object
pmic 24:86f1a63e35a0 85 user_button.fall(&user_button_pressed_fcn);
pmic 24:86f1a63e35a0 86 user_button.rise(&user_button_released_fcn);
pmic 17:c19b471f05cb 87
pmic 29:d6f1ccf42a31 88 // start timer
pmic 24:86f1a63e35a0 89 main_task_timer.start();
pmic 6:e1fa1a2d7483 90
pmic 24:86f1a63e35a0 91 // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential
pmic 24:86f1a63e35a0 92 mechanical_button.mode(PullUp);
pmic 24:86f1a63e35a0 93
pmic 24:86f1a63e35a0 94 // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
pmic 10:c5d85e35758c 95 enable_motors = 1;
pmic 17:c19b471f05cb 96
pmic 24:86f1a63e35a0 97 // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V
pmic 25:ea1d6e27c895 98 pwm_M1.period(pwm_period_s);
pmic 30:1e8295770bc1 99 pwm_M1.write(0.5f);
pmic 9:f10b974d01e0 100
pmic 31:1b2a1bd1bccb 101 // set the soft pwm period for the servo objects
pmic 31:1b2a1bd1bccb 102 servo_S1.SetPeriod(servo_period_mus);
pmic 31:1b2a1bd1bccb 103 servo_S2.SetPeriod(servo_period_mus);
pmic 6:e1fa1a2d7483 104
pmic 24:86f1a63e35a0 105 while (true) { // this loop will run forever
pmic 6:e1fa1a2d7483 106
pmic 24:86f1a63e35a0 107 main_task_timer.reset();
pmic 6:e1fa1a2d7483 108
pmic 24:86f1a63e35a0 109 if (do_execute_main_task) {
pmic 17:c19b471f05cb 110
pmic 24:86f1a63e35a0 111 // read analog input
pmic 24:86f1a63e35a0 112 ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
pmic 6:e1fa1a2d7483 113
pmic 24:86f1a63e35a0 114 // command dc motors if mechanical button is pressed
pmic 29:d6f1ccf42a31 115 if (mechanical_button.read()) {
pmic 30:1e8295770bc1 116 pwm_M1.write(0.75f); // write output voltage to motor M1
pmic 24:86f1a63e35a0 117 speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2
pmic 36:8c75783c1eca 118 positionController_M3.setDesiredRotation(1.5f); // set a desired rotation for position controlled dc motors M3
pmic 24:86f1a63e35a0 119 } else {
pmic 30:1e8295770bc1 120 pwm_M1.write(0.5f);
pmic 24:86f1a63e35a0 121 speedController_M2.setDesiredSpeedRPS(0.0f);
pmic 36:8c75783c1eca 122 positionController_M3.setDesiredRotation(0.0f);
pmic 24:86f1a63e35a0 123 }
pmic 6:e1fa1a2d7483 124
pmic 30:1e8295770bc1 125 // check if servos are enabled
pmic 31:1b2a1bd1bccb 126 if (!servo_S1.isEnabled()) servo_S1.Enable();
pmic 31:1b2a1bd1bccb 127 if (!servo_S2.isEnabled()) servo_S2.Enable();
pmic 24:86f1a63e35a0 128 // command servo position, this needs to be calibrated
pmic 30:1e8295770bc1 129 servo_S1.SetPosition(servo_S1_angle);
pmic 31:1b2a1bd1bccb 130 if (servo_S1_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
pmic 30:1e8295770bc1 131 servo_S1_angle += 0.01f;
pmic 8:9bb806a7f585 132 }
pmic 30:1e8295770bc1 133 servo_S2.SetPosition(servo_S2_angle);
pmic 31:1b2a1bd1bccb 134 if (servo_S2_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
pmic 30:1e8295770bc1 135 servo_S2_angle += 0.01f;
pmic 8:9bb806a7f585 136 }
pmic 10:c5d85e35758c 137 servo_counter++;
pmic 6:e1fa1a2d7483 138
pmic 24:86f1a63e35a0 139 // read ultra sonic distance sensor
pmic 24:86f1a63e35a0 140 us_distance_cm = us_range_finder.read_cm();
pmic 11:af0f165f8761 141
pmic 24:86f1a63e35a0 142 // visual feedback that the main task is executed
pmic 24:86f1a63e35a0 143 extra_led = 1;
pmic 9:f10b974d01e0 144
pmic 1:93d997d6b232 145 } else {
pmic 6:e1fa1a2d7483 146
pmic 24:86f1a63e35a0 147 ir_distance_mV = 0.0f;
pmic 1:93d997d6b232 148
pmic 30:1e8295770bc1 149 pwm_M1.write(0.5f);
pmic 17:c19b471f05cb 150 speedController_M2.setDesiredSpeedRPS(0.0f);
pmic 36:8c75783c1eca 151 positionController_M3.setDesiredRotation(0.0f);
pmic 6:e1fa1a2d7483 152
pmic 30:1e8295770bc1 153 servo_S1_angle = 0;
pmic 30:1e8295770bc1 154 servo_S2_angle = 0;
pmic 30:1e8295770bc1 155 // servo_S1.SetPosition(servo_S1_angle);
pmic 30:1e8295770bc1 156 // servo_S2.SetPosition(servo_S2_angle);
pmic 30:1e8295770bc1 157 if (servo_S1.isEnabled()) servo_S1.Disable();
pmic 30:1e8295770bc1 158 if (servo_S2.isEnabled()) servo_S2.Disable();
pmic 17:c19b471f05cb 159
pmic 24:86f1a63e35a0 160 us_distance_cm = 0.0f;
pmic 6:e1fa1a2d7483 161
pmic 24:86f1a63e35a0 162 extra_led = 0;
pmic 1:93d997d6b232 163 }
pmic 6:e1fa1a2d7483 164
pmic 24:86f1a63e35a0 165 user_led = !user_led;
pmic 24:86f1a63e35a0 166
pmic 24:86f1a63e35a0 167 // do only output via serial what's really necessary (this makes your code slow)
pmic 30:1e8295770bc1 168 printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 angle (normalized): %3.3f, Servo S2 angle (normalized): %3.3f, US sensor (cm): %3.3f\r\n",
pmic 24:86f1a63e35a0 169 ir_distance_mV,
pmic 17:c19b471f05cb 170 encoder_M1.read(),
pmic 17:c19b471f05cb 171 speedController_M2.getSpeedRPS(),
pmic 17:c19b471f05cb 172 positionController_M3.getRotation(),
pmic 30:1e8295770bc1 173 servo_S1_angle,
pmic 30:1e8295770bc1 174 servo_S2_angle,
pmic 24:86f1a63e35a0 175 us_distance_cm);
pmic 6:e1fa1a2d7483 176
pmic 24:86f1a63e35a0 177 // read out the imu, the actual frames of the sensor reading needs to be figured out
pmic 24:86f1a63e35a0 178 // imu.updateGyro();
pmic 24:86f1a63e35a0 179 // imu.updateAcc();
pmic 24:86f1a63e35a0 180 // imu.updateMag();
pmic 24:86f1a63e35a0 181 // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(),
pmic 24:86f1a63e35a0 182 // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ());
pmic 17:c19b471f05cb 183
pmic 24:86f1a63e35a0 184 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 185 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 186 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
pmic 1:93d997d6b232 187 }
pmic 1:93d997d6b232 188 }
pmic 6:e1fa1a2d7483 189
pmic 24:86f1a63e35a0 190 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 191 {
pmic 26:28693b369945 192 user_button_timer.start();
pmic 6:e1fa1a2d7483 193 user_button_timer.reset();
pmic 6:e1fa1a2d7483 194 }
pmic 6:e1fa1a2d7483 195
pmic 24:86f1a63e35a0 196 void user_button_released_fcn()
pmic 6:e1fa1a2d7483 197 {
pmic 24:86f1a63e35a0 198 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 199 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 200 user_button_timer.stop();
pmic 24:86f1a63e35a0 201 if (user_button_elapsed_time_ms > 200) {
pmic 24:86f1a63e35a0 202 do_execute_main_task = !do_execute_main_task;
pmic 8:9bb806a7f585 203 }
pmic 6:e1fa1a2d7483 204 }