Workshop 1

Dependencies:   PM2_Libary Eigen

Committer:
pmic
Date:
Mon May 16 11:05:58 2022 +0200
Revision:
39:c6475c899b61
Parent:
38:8cf86a20f0fe
Child:
40:7e6b7aec3947
Changed main period

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 36:8c75783c1eca 1 #include <mbed.h>
pmic 36:8c75783c1eca 2
pmic 17:c19b471f05cb 3 #include "PM2_Libary.h"
pmic 36:8c75783c1eca 4 #include "Eigen/Dense.h"
pmic 36:8c75783c1eca 5
pmic 36:8c75783c1eca 6 # define M_PI 3.14159265358979323846 // number pi
pmic 6:e1fa1a2d7483 7
pmic 24:86f1a63e35a0 8 // logical variable main task
pmic 24:86f1a63e35a0 9 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 17:c19b471f05cb 10
pmic 24:86f1a63e35a0 11 // user button on nucleo board
pmic 24:86f1a63e35a0 12 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 13 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 14 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 15 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 16
pmic 1:93d997d6b232 17 int main()
pmic 23:26b3a25fc637 18 {
pmic 36:8c75783c1eca 19 // while loop gets executed every main_task_period_ms milliseconds
pmic 39:c6475c899b61 20 const int main_task_period_ms = 50; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
pmic 36:8c75783c1eca 21 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
pmic 36:8c75783c1eca 22
pmic 36:8c75783c1eca 23 // led on nucleo board
pmic 36:8c75783c1eca 24 DigitalOut user_led(LED1); // create DigitalOut object to command user led
pmic 36:8c75783c1eca 25
pmic 36:8c75783c1eca 26 // additional Led
pmic 36:8c75783c1eca 27 DigitalOut extra_led(PB_9); // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm)
pmic 36:8c75783c1eca 28
pmic 36:8c75783c1eca 29 // mechanical button
pmic 36:8c75783c1eca 30 DigitalIn mechanical_button(PC_5); // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below
pmic 36:8c75783c1eca 31
pmic 36:8c75783c1eca 32 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
pmic 36:8c75783c1eca 33 float ir_distance_mV = 0.0f; // define variable to store measurement
pmic 36:8c75783c1eca 34 AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 36:8c75783c1eca 35
pmic 36:8c75783c1eca 36 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 36:8c75783c1eca 37 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 36:8c75783c1eca 38
pmic 36:8c75783c1eca 39 const float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motor M1
pmic 36:8c75783c1eca 40 FastPWM pwm_M1(PB_13); // motor M1 is used open loop
pmic 36:8c75783c1eca 41 FastPWM pwm_M2(PA_9); // motor M2 is closed-loop speed controlled (angle velocity)
pmic 36:8c75783c1eca 42 FastPWM pwm_M3(PA_10); // motor M3 is closed-loop position controlled (angle controlled)
pmic 36:8c75783c1eca 43
pmic 36:8c75783c1eca 44 EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
pmic 36:8c75783c1eca 45 EncoderCounter encoder_M2(PB_6, PB_7);
pmic 36:8c75783c1eca 46 EncoderCounter encoder_M3(PA_0, PA_1);
pmic 36:8c75783c1eca 47
pmic 36:8c75783c1eca 48 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
pmic 36:8c75783c1eca 49 const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
pmic 36:8c75783c1eca 50 const float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio
pmic 36:8c75783c1eca 51 const float kn = 180.0f / 12.0f; // define motor constant in rpm per V
pmic 36:8c75783c1eca 52 const float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
pmic 36:8c75783c1eca 53 const float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
pmic 36:8c75783c1eca 54
pmic 36:8c75783c1eca 55 // SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box with default contoller parameters
pmic 36:8c75783c1eca 56 SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear
pmic 36:8c75783c1eca 57
pmic 36:8c75783c1eca 58 float max_speed_rps = 0.5f; // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
pmic 36:8c75783c1eca 59 // PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
pmic 36:8c75783c1eca 60 PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
pmic 36:8c75783c1eca 61 positionController_M3.setSpeedCntrlGain(kp * k_gear);
pmic 36:8c75783c1eca 62 positionController_M3.setMaxVelocityRPS(max_speed_rps);
pmic 36:8c75783c1eca 63
pmic 36:8c75783c1eca 64 // Futaba Servo S3001 20mm 3kg Analog
pmic 36:8c75783c1eca 65 Servo servo_S1(PB_2); // create servo objects
pmic 36:8c75783c1eca 66 Servo servo_S2(PC_8);
pmic 36:8c75783c1eca 67 float servo_S1_angle = 0; // servo S1 normalized angle
pmic 36:8c75783c1eca 68 float servo_S2_angle = 0; // servo S2 normalized angle
pmic 36:8c75783c1eca 69 const int servo_period_mus = 20000; // define servo period time in mus
pmic 36:8c75783c1eca 70
pmic 36:8c75783c1eca 71 int servo_counter = 0; // define servo counter, this is an additional variable to make the servos move
pmic 36:8c75783c1eca 72 const int loops_per_seconds = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second
pmic 36:8c75783c1eca 73
pmic 36:8c75783c1eca 74 // Groove Ultrasonic Ranger V2.0
pmic 36:8c75783c1eca 75 float us_distance_cm = 0.0f; // define variable to store measurement
pmic 36:8c75783c1eca 76 RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); // create range finder object (ultra sonic distance sensor), 20 Hz parametrization
pmic 36:8c75783c1eca 77 // RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 7000); // create range finder object (ultra sonic distance sensor), 50 Hz parametrization
pmic 36:8c75783c1eca 78
pmic 36:8c75783c1eca 79 // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
pmic 36:8c75783c1eca 80 // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
pmic 36:8c75783c1eca 81
pmic 24:86f1a63e35a0 82 // attach button fall and rise functions to user button object
pmic 24:86f1a63e35a0 83 user_button.fall(&user_button_pressed_fcn);
pmic 24:86f1a63e35a0 84 user_button.rise(&user_button_released_fcn);
pmic 17:c19b471f05cb 85
pmic 29:d6f1ccf42a31 86 // start timer
pmic 24:86f1a63e35a0 87 main_task_timer.start();
pmic 6:e1fa1a2d7483 88
pmic 24:86f1a63e35a0 89 // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential
pmic 24:86f1a63e35a0 90 mechanical_button.mode(PullUp);
pmic 24:86f1a63e35a0 91
pmic 24:86f1a63e35a0 92 // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
pmic 10:c5d85e35758c 93 enable_motors = 1;
pmic 17:c19b471f05cb 94
pmic 24:86f1a63e35a0 95 // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V
pmic 25:ea1d6e27c895 96 pwm_M1.period(pwm_period_s);
pmic 30:1e8295770bc1 97 pwm_M1.write(0.5f);
pmic 9:f10b974d01e0 98
pmic 31:1b2a1bd1bccb 99 // set the soft pwm period for the servo objects
pmic 31:1b2a1bd1bccb 100 servo_S1.SetPeriod(servo_period_mus);
pmic 31:1b2a1bd1bccb 101 servo_S2.SetPeriod(servo_period_mus);
pmic 6:e1fa1a2d7483 102
pmic 24:86f1a63e35a0 103 while (true) { // this loop will run forever
pmic 6:e1fa1a2d7483 104
pmic 24:86f1a63e35a0 105 main_task_timer.reset();
pmic 6:e1fa1a2d7483 106
pmic 24:86f1a63e35a0 107 if (do_execute_main_task) {
pmic 17:c19b471f05cb 108
pmic 24:86f1a63e35a0 109 // read analog input
pmic 24:86f1a63e35a0 110 ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
pmic 6:e1fa1a2d7483 111
pmic 24:86f1a63e35a0 112 // command dc motors if mechanical button is pressed
pmic 29:d6f1ccf42a31 113 if (mechanical_button.read()) {
pmic 30:1e8295770bc1 114 pwm_M1.write(0.75f); // write output voltage to motor M1
pmic 24:86f1a63e35a0 115 speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2
pmic 36:8c75783c1eca 116 positionController_M3.setDesiredRotation(1.5f); // set a desired rotation for position controlled dc motors M3
pmic 24:86f1a63e35a0 117 } else {
pmic 30:1e8295770bc1 118 pwm_M1.write(0.5f);
pmic 24:86f1a63e35a0 119 speedController_M2.setDesiredSpeedRPS(0.0f);
pmic 36:8c75783c1eca 120 positionController_M3.setDesiredRotation(0.0f);
pmic 24:86f1a63e35a0 121 }
pmic 6:e1fa1a2d7483 122
pmic 30:1e8295770bc1 123 // check if servos are enabled
pmic 31:1b2a1bd1bccb 124 if (!servo_S1.isEnabled()) servo_S1.Enable();
pmic 31:1b2a1bd1bccb 125 if (!servo_S2.isEnabled()) servo_S2.Enable();
pmic 24:86f1a63e35a0 126 // command servo position, this needs to be calibrated
pmic 30:1e8295770bc1 127 servo_S1.SetPosition(servo_S1_angle);
pmic 31:1b2a1bd1bccb 128 if (servo_S1_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
pmic 30:1e8295770bc1 129 servo_S1_angle += 0.01f;
pmic 8:9bb806a7f585 130 }
pmic 30:1e8295770bc1 131 servo_S2.SetPosition(servo_S2_angle);
pmic 31:1b2a1bd1bccb 132 if (servo_S2_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
pmic 30:1e8295770bc1 133 servo_S2_angle += 0.01f;
pmic 8:9bb806a7f585 134 }
pmic 10:c5d85e35758c 135 servo_counter++;
pmic 6:e1fa1a2d7483 136
pmic 24:86f1a63e35a0 137 // read ultra sonic distance sensor
pmic 24:86f1a63e35a0 138 us_distance_cm = us_range_finder.read_cm();
pmic 11:af0f165f8761 139
pmic 24:86f1a63e35a0 140 // visual feedback that the main task is executed
pmic 24:86f1a63e35a0 141 extra_led = 1;
pmic 9:f10b974d01e0 142
pmic 1:93d997d6b232 143 } else {
pmic 6:e1fa1a2d7483 144
pmic 24:86f1a63e35a0 145 ir_distance_mV = 0.0f;
pmic 1:93d997d6b232 146
pmic 30:1e8295770bc1 147 pwm_M1.write(0.5f);
pmic 17:c19b471f05cb 148 speedController_M2.setDesiredSpeedRPS(0.0f);
pmic 36:8c75783c1eca 149 positionController_M3.setDesiredRotation(0.0f);
pmic 6:e1fa1a2d7483 150
pmic 30:1e8295770bc1 151 servo_S1_angle = 0;
pmic 30:1e8295770bc1 152 servo_S2_angle = 0;
pmic 30:1e8295770bc1 153 // servo_S1.SetPosition(servo_S1_angle);
pmic 30:1e8295770bc1 154 // servo_S2.SetPosition(servo_S2_angle);
pmic 30:1e8295770bc1 155 if (servo_S1.isEnabled()) servo_S1.Disable();
pmic 30:1e8295770bc1 156 if (servo_S2.isEnabled()) servo_S2.Disable();
pmic 17:c19b471f05cb 157
pmic 24:86f1a63e35a0 158 us_distance_cm = 0.0f;
pmic 6:e1fa1a2d7483 159
pmic 24:86f1a63e35a0 160 extra_led = 0;
pmic 1:93d997d6b232 161 }
pmic 6:e1fa1a2d7483 162
pmic 24:86f1a63e35a0 163 user_led = !user_led;
pmic 24:86f1a63e35a0 164
pmic 24:86f1a63e35a0 165 // do only output via serial what's really necessary (this makes your code slow)
pmic 30:1e8295770bc1 166 printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 angle (normalized): %3.3f, Servo S2 angle (normalized): %3.3f, US sensor (cm): %3.3f\r\n",
pmic 24:86f1a63e35a0 167 ir_distance_mV,
pmic 17:c19b471f05cb 168 encoder_M1.read(),
pmic 17:c19b471f05cb 169 speedController_M2.getSpeedRPS(),
pmic 17:c19b471f05cb 170 positionController_M3.getRotation(),
pmic 30:1e8295770bc1 171 servo_S1_angle,
pmic 30:1e8295770bc1 172 servo_S2_angle,
pmic 24:86f1a63e35a0 173 us_distance_cm);
pmic 6:e1fa1a2d7483 174
pmic 24:86f1a63e35a0 175 // read out the imu, the actual frames of the sensor reading needs to be figured out
pmic 24:86f1a63e35a0 176 // imu.updateGyro();
pmic 24:86f1a63e35a0 177 // imu.updateAcc();
pmic 24:86f1a63e35a0 178 // imu.updateMag();
pmic 24:86f1a63e35a0 179 // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(),
pmic 24:86f1a63e35a0 180 // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ());
pmic 17:c19b471f05cb 181
pmic 24:86f1a63e35a0 182 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 183 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 184 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
pmic 1:93d997d6b232 185 }
pmic 1:93d997d6b232 186 }
pmic 6:e1fa1a2d7483 187
pmic 24:86f1a63e35a0 188 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 189 {
pmic 26:28693b369945 190 user_button_timer.start();
pmic 6:e1fa1a2d7483 191 user_button_timer.reset();
pmic 6:e1fa1a2d7483 192 }
pmic 6:e1fa1a2d7483 193
pmic 24:86f1a63e35a0 194 void user_button_released_fcn()
pmic 6:e1fa1a2d7483 195 {
pmic 24:86f1a63e35a0 196 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 197 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 198 user_button_timer.stop();
pmic 24:86f1a63e35a0 199 if (user_button_elapsed_time_ms > 200) {
pmic 24:86f1a63e35a0 200 do_execute_main_task = !do_execute_main_task;
pmic 8:9bb806a7f585 201 }
pmic 6:e1fa1a2d7483 202 }