working PID + Kinematics + Motorcontrol

Dependencies:   HIDScope MODSERIAL QEI biquadFilter mbed

Committer:
cmaas
Date:
Wed Oct 31 14:49:22 2018 +0000
Revision:
1:4f1cd3b918f5
Parent:
0:a6f2b6cc83ca
3 motoren, maar lijkt niet te werken?

Who changed what in which revision?

UserRevisionLine numberNew contents of line
cmaas 0:a6f2b6cc83ca 1 // KINEMATICS + PID + MOTOR CONTROL
cmaas 0:a6f2b6cc83ca 2
cmaas 0:a6f2b6cc83ca 3 //----------------~INITIATING-------------------------
cmaas 0:a6f2b6cc83ca 4 #include "mbed.h"
cmaas 0:a6f2b6cc83ca 5
cmaas 0:a6f2b6cc83ca 6 // KINEMATICS -- DEPENDENCIES
cmaas 0:a6f2b6cc83ca 7 #include "stdio.h"
cmaas 0:a6f2b6cc83ca 8 #define _USE_MATH_DEFINES
cmaas 0:a6f2b6cc83ca 9 #include <math.h>
cmaas 0:a6f2b6cc83ca 10 #define M_PI 3.14159265358979323846 /* pi */
cmaas 0:a6f2b6cc83ca 11
cmaas 0:a6f2b6cc83ca 12 // PID CONTROLLER -- DEPENDENCIES
cmaas 0:a6f2b6cc83ca 13 #include "BiQuad.h"
cmaas 0:a6f2b6cc83ca 14 #include "QEI.h"
cmaas 0:a6f2b6cc83ca 15 #include "MODSERIAL.h"
cmaas 0:a6f2b6cc83ca 16 #include "HIDScope.h"
cmaas 0:a6f2b6cc83ca 17 //#include "Math.h"
cmaas 0:a6f2b6cc83ca 18
cmaas 0:a6f2b6cc83ca 19 // PID CONTROLLER -- PIN DEFENITIONS
cmaas 0:a6f2b6cc83ca 20 AnalogIn button2(A4);
cmaas 1:4f1cd3b918f5 21 AnalogIn button1(A3);
cmaas 1:4f1cd3b918f5 22
cmaas 1:4f1cd3b918f5 23 DigitalOut directionpin1(D4); // motor 1
cmaas 1:4f1cd3b918f5 24 DigitalOut directionpin2(D7); // motor 2
cmaas 1:4f1cd3b918f5 25 DigitalOut directionpin3(D13); // motor 3
cmaas 0:a6f2b6cc83ca 26 PwmOut pwmpin1(D6); // motor 1
cmaas 1:4f1cd3b918f5 27 PwmOut pwmpin2(D5); // motor 2
cmaas 1:4f1cd3b918f5 28 PwmOut pwmpin3(D12); // motor 3
cmaas 0:a6f2b6cc83ca 29
cmaas 1:4f1cd3b918f5 30 QEI encoder1 (D9, D8, NC, 8400, QEI::X4_ENCODING); // motor 1
cmaas 1:4f1cd3b918f5 31 QEI encoder2 (D11, D10, NC, 8400, QEI::X4_ENCODING); // motor 2
cmaas 1:4f1cd3b918f5 32 QEI encoder3 (D3, D2, NC, 8400, QEI::X4_ENCODING); // motor 3
cmaas 0:a6f2b6cc83ca 33 MODSERIAL pc(USBTX, USBRX);
cmaas 0:a6f2b6cc83ca 34 HIDScope scope(2);
cmaas 0:a6f2b6cc83ca 35
cmaas 0:a6f2b6cc83ca 36 // TICKERS
cmaas 0:a6f2b6cc83ca 37 Ticker ref_rot;
cmaas 0:a6f2b6cc83ca 38 Ticker show_counts;
cmaas 0:a6f2b6cc83ca 39 Ticker Scope_Data;
cmaas 0:a6f2b6cc83ca 40
cmaas 0:a6f2b6cc83ca 41 //----------------GLOBALS--------------------------
cmaas 0:a6f2b6cc83ca 42
cmaas 0:a6f2b6cc83ca 43 // CONSTANTS PID CONTROLLER
cmaas 1:4f1cd3b918f5 44 double Kp = 14; //200 , 50
cmaas 0:a6f2b6cc83ca 45 double Ki = 0; //1, 0.5
cmaas 1:4f1cd3b918f5 46 double Kd = 3; //200, 10
cmaas 0:a6f2b6cc83ca 47 double Ts = 0.1; // Sample time in seconds
cmaas 1:4f1cd3b918f5 48
cmaas 1:4f1cd3b918f5 49 double PI = M_PI;// CHANGE THIS INTO M_PI
cmaas 0:a6f2b6cc83ca 50 double reference_rotation; //define as radians
cmaas 1:4f1cd3b918f5 51 double countsToRadians = (2*PI)/8400;
cmaas 1:4f1cd3b918f5 52 //double motor_position;
cmaas 0:a6f2b6cc83ca 53 bool AlwaysTrue;
cmaas 0:a6f2b6cc83ca 54
cmaas 0:a6f2b6cc83ca 55 //CONSTANTS KINEMATICS
cmaas 0:a6f2b6cc83ca 56 // constants
cmaas 0:a6f2b6cc83ca 57 const float la = 0.256; // lengte actieve arm
cmaas 0:a6f2b6cc83ca 58 const float lp = 0.21; // lengte passieve arm
cmaas 0:a6f2b6cc83ca 59 const float rp = 0.052; // straal van midden end effector tot hoekpunt
cmaas 0:a6f2b6cc83ca 60 const float rm = 0.23; // straal van global midden tot motor
cmaas 0:a6f2b6cc83ca 61 const float a = 0.09; // zijde van de driehoek
cmaas 0:a6f2b6cc83ca 62 const float xas = 0.40; // afstand van motor 1 tot motor 3
cmaas 0:a6f2b6cc83ca 63 const float yas = 0.346; // afstand van xas tot motor 2
cmaas 0:a6f2b6cc83ca 64 const float thetap = 0; // rotatiehoek van de end effector
cmaas 0:a6f2b6cc83ca 65
cmaas 0:a6f2b6cc83ca 66 // motor locatie
cmaas 0:a6f2b6cc83ca 67 const int a1x = 0; //x locatie motor 1
cmaas 0:a6f2b6cc83ca 68 const int a1y = 0; //y locatie motor 1
cmaas 0:a6f2b6cc83ca 69 const float a2x = (0.5)*xas; // x locatie motor 2
cmaas 0:a6f2b6cc83ca 70 const float a2y = yas; // y locatie motor 2
cmaas 0:a6f2b6cc83ca 71 const float a3x = xas; // x locatie motor 3
cmaas 0:a6f2b6cc83ca 72 const int a3y = 0; // y locatie motor 3
cmaas 0:a6f2b6cc83ca 73
cmaas 0:a6f2b6cc83ca 74 // script voor het bepalen van de desired position aan de hand van emg (1/0)
cmaas 0:a6f2b6cc83ca 75
cmaas 0:a6f2b6cc83ca 76 // EMG OUTPUT
cmaas 0:a6f2b6cc83ca 77 int EMGxplus;
cmaas 0:a6f2b6cc83ca 78 int EMGxmin ;
cmaas 0:a6f2b6cc83ca 79 int EMGyplus;
cmaas 0:a6f2b6cc83ca 80 int EMGymin ;
cmaas 0:a6f2b6cc83ca 81
cmaas 0:a6f2b6cc83ca 82 // Dit moet experimenteel geperfectioneerd worden
cmaas 0:a6f2b6cc83ca 83 float tijdstap = 0.05; //nu wss heel langzaam, kan miss omhoog
cmaas 0:a6f2b6cc83ca 84 float v = 0.1; // snelheid kan wss ook hoger
cmaas 0:a6f2b6cc83ca 85
cmaas 0:a6f2b6cc83ca 86 float px = 0.2; //starting x
cmaas 0:a6f2b6cc83ca 87 float py = 0.155; // starting y
cmaas 0:a6f2b6cc83ca 88
cmaas 0:a6f2b6cc83ca 89 // limits (since no forward kinematics)
cmaas 0:a6f2b6cc83ca 90 float upperxlim = 0.36; //niet helemaal naar requierments ff kijken of ie groter kan
cmaas 0:a6f2b6cc83ca 91 float lowerxlim = 0.04;
cmaas 0:a6f2b6cc83ca 92 float upperylim = 0.30;
cmaas 0:a6f2b6cc83ca 93 float lowerylim = 0.04;
cmaas 0:a6f2b6cc83ca 94
cmaas 0:a6f2b6cc83ca 95
cmaas 0:a6f2b6cc83ca 96 //----------------FUNCTIONS--------------------------
cmaas 0:a6f2b6cc83ca 97
cmaas 0:a6f2b6cc83ca 98 // ~~~~~~~~~~~~~~ROBOT KINEMATICS ~~~~~~~~~~~~~~~~~~
cmaas 0:a6f2b6cc83ca 99
cmaas 0:a6f2b6cc83ca 100 // functie x positie
cmaas 0:a6f2b6cc83ca 101 float positionx(int EMGxplus,int EMGxmin)
cmaas 0:a6f2b6cc83ca 102 {
cmaas 0:a6f2b6cc83ca 103 float EMGx = EMGxplus - EMGxmin;
cmaas 0:a6f2b6cc83ca 104
cmaas 0:a6f2b6cc83ca 105 float verplaatsingx = EMGx * tijdstap * v;
cmaas 0:a6f2b6cc83ca 106 float pxnieuw = px + verplaatsingx;
cmaas 0:a6f2b6cc83ca 107 // x limit
cmaas 0:a6f2b6cc83ca 108 if (pxnieuw <= upperxlim && pxnieuw >= lowerxlim)
cmaas 0:a6f2b6cc83ca 109 {
cmaas 0:a6f2b6cc83ca 110 px = pxnieuw;
cmaas 0:a6f2b6cc83ca 111 }
cmaas 0:a6f2b6cc83ca 112 else
cmaas 0:a6f2b6cc83ca 113 {
cmaas 0:a6f2b6cc83ca 114 if (pxnieuw >= lowerxlim)
cmaas 0:a6f2b6cc83ca 115 {
cmaas 0:a6f2b6cc83ca 116 px = upperxlim;
cmaas 0:a6f2b6cc83ca 117 }
cmaas 0:a6f2b6cc83ca 118 else
cmaas 0:a6f2b6cc83ca 119 {
cmaas 0:a6f2b6cc83ca 120 px = lowerxlim;
cmaas 0:a6f2b6cc83ca 121 }
cmaas 0:a6f2b6cc83ca 122 }
cmaas 0:a6f2b6cc83ca 123 //printf("X eindpunt (%f) en verplaatsing: (%f)\n\r",px,verplaatsingx);
cmaas 0:a6f2b6cc83ca 124 return px;
cmaas 0:a6f2b6cc83ca 125 }
cmaas 0:a6f2b6cc83ca 126
cmaas 0:a6f2b6cc83ca 127
cmaas 0:a6f2b6cc83ca 128 // functie y positie
cmaas 0:a6f2b6cc83ca 129 float positiony(int EMGyplus,int EMGymin)
cmaas 0:a6f2b6cc83ca 130 {
cmaas 0:a6f2b6cc83ca 131 float EMGy = EMGyplus - EMGymin;
cmaas 0:a6f2b6cc83ca 132
cmaas 0:a6f2b6cc83ca 133 float verplaatsingy = EMGy * tijdstap * v;
cmaas 0:a6f2b6cc83ca 134 float pynieuw = py + verplaatsingy;
cmaas 0:a6f2b6cc83ca 135
cmaas 0:a6f2b6cc83ca 136 // y limit
cmaas 0:a6f2b6cc83ca 137 if (pynieuw <= upperylim && pynieuw >= lowerylim)
cmaas 0:a6f2b6cc83ca 138 {
cmaas 0:a6f2b6cc83ca 139 py = pynieuw;
cmaas 0:a6f2b6cc83ca 140 }
cmaas 0:a6f2b6cc83ca 141 else
cmaas 0:a6f2b6cc83ca 142 {
cmaas 0:a6f2b6cc83ca 143 if (pynieuw >= lowerylim)
cmaas 0:a6f2b6cc83ca 144 {
cmaas 0:a6f2b6cc83ca 145 py = upperylim;
cmaas 0:a6f2b6cc83ca 146 }
cmaas 0:a6f2b6cc83ca 147 else
cmaas 0:a6f2b6cc83ca 148 {
cmaas 0:a6f2b6cc83ca 149 py = lowerylim;
cmaas 0:a6f2b6cc83ca 150 }
cmaas 0:a6f2b6cc83ca 151 }
cmaas 0:a6f2b6cc83ca 152 //printf("Y eindpunt (%f) en verplaatsing: (%f) \n\r",py,verplaatsingy);
cmaas 0:a6f2b6cc83ca 153 return (py);
cmaas 0:a6f2b6cc83ca 154 }
cmaas 0:a6f2b6cc83ca 155
cmaas 0:a6f2b6cc83ca 156
cmaas 0:a6f2b6cc83ca 157 //~~~~~~~~~~~~CALCULATIING MOTOR ANGLES ~~~~~~~~
cmaas 0:a6f2b6cc83ca 158 // arm 1 --> reference angle motor 1
cmaas 0:a6f2b6cc83ca 159 float hoek1(float px, float py) // input: ref x, ref y
cmaas 0:a6f2b6cc83ca 160 {
cmaas 0:a6f2b6cc83ca 161 float c1x = px - rp * cos(thetap +(M_PI/6)); // x locatie hoekpunt end-effector
cmaas 0:a6f2b6cc83ca 162 float c1y = py - rp*sin(thetap+(M_PI/6)); // y locatie hoekpunt end-effector
cmaas 0:a6f2b6cc83ca 163 float alpha1 = atan2((c1y-a1y),(c1x-a1x)); // hoek tussen horizontaal en lijn van motor naar bijbehorende end-effector punt
cmaas 0:a6f2b6cc83ca 164 float psi1 = acos(( pow(la,2)-pow(lp,2)+pow((c1x-a1x),2)+pow((c1y-a1y),2))/(2*la*sqrt(pow ((c1x-a1x),2)+pow((c1y-a1y),2) ))); //Hoek tussen lijn van motor naar bijbehorende end=effector punt en actieve arm
cmaas 0:a6f2b6cc83ca 165 float a1 = alpha1 + psi1; //hoek tussen horizontaal en actieve arm
cmaas 0:a6f2b6cc83ca 166 //printf("arm 1 = %f \n\r",a1);
cmaas 0:a6f2b6cc83ca 167 return a1;
cmaas 0:a6f2b6cc83ca 168 }
cmaas 0:a6f2b6cc83ca 169
cmaas 0:a6f2b6cc83ca 170 // arm 2 --> reference angle motor 2
cmaas 0:a6f2b6cc83ca 171 float hoek2(float px, float py)
cmaas 0:a6f2b6cc83ca 172 {
cmaas 0:a6f2b6cc83ca 173 float c2x = px - rp * cos(thetap -(M_PI/2));
cmaas 0:a6f2b6cc83ca 174 float c2y = py - rp*sin(thetap-(M_PI/2));
cmaas 0:a6f2b6cc83ca 175 float alpha2 = atan2((c2y-a2y),(c2x-a2x));
cmaas 0:a6f2b6cc83ca 176 float psi2 = acos(( pow(la,2)-pow(lp,2)+pow((c2x-a2x),2)+pow((c2y-a2y),2))/(2*la*sqrt(pow ((c2x-a2x),2)+pow((c2y-a2y),2) )));
cmaas 0:a6f2b6cc83ca 177 float a2 = alpha2 + psi2;
cmaas 0:a6f2b6cc83ca 178 //printf("arm 2 = %f \n\r",a2);
cmaas 0:a6f2b6cc83ca 179 return a2;
cmaas 0:a6f2b6cc83ca 180 }
cmaas 0:a6f2b6cc83ca 181
cmaas 0:a6f2b6cc83ca 182 //arm 3 --> reference angle motor 3
cmaas 0:a6f2b6cc83ca 183 float hoek3(float px, float py)
cmaas 0:a6f2b6cc83ca 184 {
cmaas 0:a6f2b6cc83ca 185 float c3x = px - rp * cos(thetap +(5*M_PI/6));
cmaas 0:a6f2b6cc83ca 186 float c3y = py - rp*sin(thetap+(5*M_PI/6));
cmaas 0:a6f2b6cc83ca 187 float alpha3 = atan2((c3y-a3y),(c3x-a3x));
cmaas 0:a6f2b6cc83ca 188 float psi3 = acos(( pow(la,2)-pow(lp,2)+pow((c3x-a3x),2)+pow((c3y-a3y),2))/(2*la*sqrt(pow ((c3x-a3x),2)+pow((c3y-a3y),2) )));
cmaas 0:a6f2b6cc83ca 189 float a3 = alpha3 + psi3;
cmaas 0:a6f2b6cc83ca 190 //printf("arm 3 = %f \n\r",a3);
cmaas 0:a6f2b6cc83ca 191 return a3;
cmaas 0:a6f2b6cc83ca 192 }
cmaas 0:a6f2b6cc83ca 193
cmaas 0:a6f2b6cc83ca 194 // ~~~~~~~~~~~~~~PID CONTROLLER~~~~~~~~~~~~~~~~~~
cmaas 0:a6f2b6cc83ca 195
cmaas 0:a6f2b6cc83ca 196 double PID_controller(double error)
cmaas 0:a6f2b6cc83ca 197 {
cmaas 0:a6f2b6cc83ca 198 static double error_integral = 0;
cmaas 0:a6f2b6cc83ca 199 static double error_prev = error; // initialization with this value only done once!
cmaas 0:a6f2b6cc83ca 200 static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
cmaas 0:a6f2b6cc83ca 201
cmaas 0:a6f2b6cc83ca 202 // Proportional part:
cmaas 0:a6f2b6cc83ca 203 double u_k = Kp * error;
cmaas 0:a6f2b6cc83ca 204
cmaas 0:a6f2b6cc83ca 205 // Integral part
cmaas 0:a6f2b6cc83ca 206 error_integral = error_integral + error * Ts;
cmaas 0:a6f2b6cc83ca 207 double u_i = Ki * error_integral;
cmaas 0:a6f2b6cc83ca 208
cmaas 0:a6f2b6cc83ca 209 // Derivative part
cmaas 0:a6f2b6cc83ca 210 double error_derivative = (error - error_prev)/Ts;
cmaas 0:a6f2b6cc83ca 211 double filtered_error_derivative = LowPassFilter.step(error_derivative);
cmaas 0:a6f2b6cc83ca 212 double u_d = Kd * filtered_error_derivative;
cmaas 0:a6f2b6cc83ca 213 error_prev = error;
cmaas 0:a6f2b6cc83ca 214
cmaas 0:a6f2b6cc83ca 215 // Sum all parts and return it
cmaas 0:a6f2b6cc83ca 216 return u_k + u_i + u_d;
cmaas 0:a6f2b6cc83ca 217 }
cmaas 0:a6f2b6cc83ca 218
cmaas 0:a6f2b6cc83ca 219
cmaas 0:a6f2b6cc83ca 220 // DIRECTON AND SPEED CONTROL
cmaas 1:4f1cd3b918f5 221 void motor_control(double u_1, double u_2, double u_3)
cmaas 0:a6f2b6cc83ca 222 {
cmaas 1:4f1cd3b918f5 223 directionpin1= u_1 > 0.0f; //eithertrueor false
cmaas 1:4f1cd3b918f5 224 pwmpin1= fabs(u_1); //pwmduty cycle canonlybepositive, floatingpoint absolute value
cmaas 1:4f1cd3b918f5 225
cmaas 1:4f1cd3b918f5 226 directionpin1= u_2 > 0.0f; //eithertrueor false
cmaas 1:4f1cd3b918f5 227 pwmpin1= fabs(u_3); //pwmduty cycle canonlybepositive, floatingpoint absolute value
cmaas 1:4f1cd3b918f5 228
cmaas 1:4f1cd3b918f5 229 directionpin1= u_3 > 0.0f; //eithertrueor false
cmaas 1:4f1cd3b918f5 230 pwmpin1= fabs(u_3); //pwmduty cycle canonlybepositive, floatingpoint absolute value
cmaas 0:a6f2b6cc83ca 231 }
cmaas 0:a6f2b6cc83ca 232
cmaas 0:a6f2b6cc83ca 233
cmaas 0:a6f2b6cc83ca 234 // CONTROLLING THE MOTOR
cmaas 0:a6f2b6cc83ca 235 void Motor_mover()
cmaas 0:a6f2b6cc83ca 236 {
cmaas 1:4f1cd3b918f5 237 double motor_position1 = encoder1.getPulses(); //output in counts
cmaas 1:4f1cd3b918f5 238 double reference_rotation1 = hoek2(px, py);
cmaas 1:4f1cd3b918f5 239 double error_1 = reference_rotation1 - motor_position1*countsToRadians;
cmaas 1:4f1cd3b918f5 240 double u_1 = PID_controller(error_1);
cmaas 1:4f1cd3b918f5 241
cmaas 1:4f1cd3b918f5 242 double motor_position2 = encoder2.getPulses(); //output in counts
cmaas 1:4f1cd3b918f5 243 double reference_rotation2 = hoek2(px, py);
cmaas 1:4f1cd3b918f5 244 double error_2 = reference_rotation2 - motor_position2*countsToRadians;
cmaas 1:4f1cd3b918f5 245 double u_2 = PID_controller(error_2);
cmaas 1:4f1cd3b918f5 246
cmaas 1:4f1cd3b918f5 247 double motor_position3 = encoder3.getPulses(); //output in counts
cmaas 1:4f1cd3b918f5 248 double reference_rotation3 = hoek2(px, py);
cmaas 1:4f1cd3b918f5 249 double error_3 = reference_rotation3 - motor_position3*countsToRadians;
cmaas 1:4f1cd3b918f5 250 double u_3 = PID_controller(error_3);
cmaas 1:4f1cd3b918f5 251
cmaas 1:4f1cd3b918f5 252 motor_control(u_1, u_2, u_3);
cmaas 0:a6f2b6cc83ca 253 }
cmaas 0:a6f2b6cc83ca 254
cmaas 0:a6f2b6cc83ca 255 //PRINT TICKER
cmaas 0:a6f2b6cc83ca 256 void PrintFlag()
cmaas 0:a6f2b6cc83ca 257 {
cmaas 0:a6f2b6cc83ca 258 AlwaysTrue = true;
cmaas 0:a6f2b6cc83ca 259 }
cmaas 0:a6f2b6cc83ca 260
cmaas 0:a6f2b6cc83ca 261 // HIDSCOPE
cmaas 0:a6f2b6cc83ca 262 void ScopeData()
cmaas 0:a6f2b6cc83ca 263 {
cmaas 0:a6f2b6cc83ca 264 double y = encoder1.getPulses();
cmaas 0:a6f2b6cc83ca 265 scope.set(0, y);
cmaas 0:a6f2b6cc83ca 266 scope.send();
cmaas 0:a6f2b6cc83ca 267 }
cmaas 0:a6f2b6cc83ca 268
cmaas 0:a6f2b6cc83ca 269
cmaas 0:a6f2b6cc83ca 270 //----------------------MAIN---------------------------------
cmaas 0:a6f2b6cc83ca 271 int main()
cmaas 0:a6f2b6cc83ca 272 {
cmaas 0:a6f2b6cc83ca 273 // ~~~~~~~~~~~~~~~~ INITIATING ~~~~~~~~~~~~
cmaas 0:a6f2b6cc83ca 274 pwmpin1.period_us(60); // setup motor
cmaas 0:a6f2b6cc83ca 275
cmaas 0:a6f2b6cc83ca 276 // setup printing service
cmaas 0:a6f2b6cc83ca 277 pc.baud(9600);
cmaas 0:a6f2b6cc83ca 278 pc.printf("test");
cmaas 0:a6f2b6cc83ca 279
cmaas 0:a6f2b6cc83ca 280 // Tickers
cmaas 0:a6f2b6cc83ca 281 //show_counts.attach(PrintFlag, 0.2);
cmaas 0:a6f2b6cc83ca 282 ref_rot.attach(Motor_mover, 0.01);
cmaas 0:a6f2b6cc83ca 283 Scope_Data.attach(ScopeData, 0.01);
cmaas 1:4f1cd3b918f5 284
cmaas 0:a6f2b6cc83ca 285
cmaas 1:4f1cd3b918f5 286 while(true){
cmaas 1:4f1cd3b918f5 287
cmaas 1:4f1cd3b918f5 288
cmaas 1:4f1cd3b918f5 289 if (button2 == false)
cmaas 1:4f1cd3b918f5 290 {
cmaas 1:4f1cd3b918f5 291 wait(0.05f);
cmaas 1:4f1cd3b918f5 292
cmaas 1:4f1cd3b918f5 293 // berekenen positie
cmaas 1:4f1cd3b918f5 294 float px = positionx(1,0); // EMG: +x, -x
cmaas 1:4f1cd3b918f5 295 float py = positiony(1,0); // EMG: +y, -y
cmaas 1:4f1cd3b918f5 296 //printf("positie (%f,%f)\n\r",px,py);
cmaas 1:4f1cd3b918f5 297 }
cmaas 1:4f1cd3b918f5 298
cmaas 1:4f1cd3b918f5 299 if (button1 == false){
cmaas 1:4f1cd3b918f5 300 wait(0.05f);
cmaas 1:4f1cd3b918f5 301 // berekenen positie
cmaas 1:4f1cd3b918f5 302 float px = positionx(0,1); // EMG: +x, -x
cmaas 1:4f1cd3b918f5 303 float py = positiony(0,1); // EMG: +y, -y
cmaas 1:4f1cd3b918f5 304 //printf("positie (%f,%f)\n\r",px,py);
cmaas 1:4f1cd3b918f5 305 }
cmaas 1:4f1cd3b918f5 306 }
cmaas 0:a6f2b6cc83ca 307
cmaas 0:a6f2b6cc83ca 308 // berekenen hoeken
cmaas 0:a6f2b6cc83ca 309 /*
cmaas 0:a6f2b6cc83ca 310 float a1 = hoek1(px, py);
cmaas 0:a6f2b6cc83ca 311 float a2 = hoek2(px, py);
cmaas 0:a6f2b6cc83ca 312 float a3 = hoek3(px, py);
cmaas 0:a6f2b6cc83ca 313
cmaas 0:a6f2b6cc83ca 314 printf("hoek(%f,%f,%f)\n\r",a1,a2,a3);
cmaas 0:a6f2b6cc83ca 315
cmaas 0:a6f2b6cc83ca 316 return 0;
cmaas 0:a6f2b6cc83ca 317 */
cmaas 0:a6f2b6cc83ca 318 }