imu libraries use in class project
Dependents: Ros_STM32_IMU_BNO055 baseControl_ackermannCar
BNO055.h
- Committer:
- chawankorn
- Date:
- 2018-12-15
- Revision:
- 0:445290b98598
File content as of revision 0:445290b98598:
#ifndef BNO055_H #define BNO055_H #include "mbed.h" // #define BNOAddress (0x28 << 1) //Register definitions /* Page id register definition */ #define BNO055_PAGE_ID_ADDR 0x07 /* PAGE0 REGISTER DEFINITION START*/ #define BNO055_CHIP_ID_ADDR 0x00 #define BNO055_ACCEL_REV_ID_ADDR 0x01 #define BNO055_MAG_REV_ID_ADDR 0x02 #define BNO055_GYRO_REV_ID_ADDR 0x03 #define BNO055_SW_REV_ID_LSB_ADDR 0x04 #define BNO055_SW_REV_ID_MSB_ADDR 0x05 #define BNO055_BL_REV_ID_ADDR 0x06 /* Accel data register */ #define BNO055_ACCEL_DATA_X_LSB_ADDR 0x08 #define BNO055_ACCEL_DATA_X_MSB_ADDR 0x09 #define BNO055_ACCEL_DATA_Y_LSB_ADDR 0x0A #define BNO055_ACCEL_DATA_Y_MSB_ADDR 0x0B #define BNO055_ACCEL_DATA_Z_LSB_ADDR 0x0C #define BNO055_ACCEL_DATA_Z_MSB_ADDR 0x0D /* Mag data register */ #define BNO055_MAG_DATA_X_LSB_ADDR 0x0E #define BNO055_MAG_DATA_X_MSB_ADDR 0x0F #define BNO055_MAG_DATA_Y_LSB_ADDR 0x10 #define BNO055_MAG_DATA_Y_MSB_ADDR 0x11 #define BNO055_MAG_DATA_Z_LSB_ADDR 0x12 #define BNO055_MAG_DATA_Z_MSB_ADDR 0x13 /* Gyro data registers */ #define BNO055_GYRO_DATA_X_LSB_ADDR 0x14 #define BNO055_GYRO_DATA_X_MSB_ADDR 0x15 #define BNO055_GYRO_DATA_Y_LSB_ADDR 0x16 #define BNO055_GYRO_DATA_Y_MSB_ADDR 0x17 #define BNO055_GYRO_DATA_Z_LSB_ADDR 0x18 #define BNO055_GYRO_DATA_Z_MSB_ADDR 0x19 /* Euler data registers */ #define BNO055_EULER_H_LSB_ADDR 0x1A #define BNO055_EULER_H_MSB_ADDR 0x1B #define BNO055_EULER_R_LSB_ADDR 0x1C #define BNO055_EULER_R_MSB_ADDR 0x1D #define BNO055_EULER_P_LSB_ADDR 0x1E #define BNO055_EULER_P_MSB_ADDR 0x1F /* Quaternion data registers */ #define BNO055_QUATERNION_DATA_W_LSB_ADDR 0x20 #define BNO055_QUATERNION_DATA_W_MSB_ADDR 0x21 #define BNO055_QUATERNION_DATA_X_LSB_ADDR 0x22 #define BNO055_QUATERNION_DATA_X_MSB_ADDR 0x23 #define BNO055_QUATERNION_DATA_Y_LSB_ADDR 0x24 #define BNO055_QUATERNION_DATA_Y_MSB_ADDR 0x25 #define BNO055_QUATERNION_DATA_Z_LSB_ADDR 0x26 #define BNO055_QUATERNION_DATA_Z_MSB_ADDR 0x27 /* Linear acceleration data registers */ #define BNO055_LINEAR_ACCEL_DATA_X_LSB_ADDR 0x28 #define BNO055_LINEAR_ACCEL_DATA_X_MSB_ADDR 0x29 #define BNO055_LINEAR_ACCEL_DATA_Y_LSB_ADDR 0x2A #define BNO055_LINEAR_ACCEL_DATA_Y_MSB_ADDR 0x2B #define BNO055_LINEAR_ACCEL_DATA_Z_LSB_ADDR 0x2C #define BNO055_LINEAR_ACCEL_DATA_Z_MSB_ADDR 0x2D /* Gravity data registers */ #define BNO055_GRAVITY_DATA_X_LSB_ADDR 0x2E #define BNO055_GRAVITY_DATA_X_MSB_ADDR 0x2F #define BNO055_GRAVITY_DATA_Y_LSB_ADDR 0x30 #define BNO055_GRAVITY_DATA_Y_MSB_ADDR 0x31 #define BNO055_GRAVITY_DATA_Z_LSB_ADDR 0x32 #define BNO055_GRAVITY_DATA_Z_MSB_ADDR 0x33 /* Temperature data register */ #define BNO055_TEMP_ADDR 0x34 /* Status registers */ #define BNO055_CALIB_STAT_ADDR 0x35 #define BNO055_SELFTEST_RESULT_ADDR 0x36 #define BNO055_INTR_STAT_ADDR 0x37 #define BNO055_SYS_CLK_STAT_ADDR 0x38 #define BNO055_SYS_STAT_ADDR 0x39 #define BNO055_SYS_ERR_ADDR 0x3A /* Unit selection register */ #define BNO055_UNIT_SEL_ADDR 0x3B #define BNO055_DATA_SELECT_ADDR 0x3C /* Mode registers */ #define BNO055_OPR_MODE_ADDR 0x3D #define BNO055_PWR_MODE_ADDR 0x3E #define BNO055_SYS_TRIGGER_ADDR 0x3F #define BNO055_TEMP_SOURCE_ADDR 0x40 /* Axis remap registers */ #define BNO055_AXIS_MAP_CONFIG_ADDR 0x41 #define BNO055_AXIS_MAP_SIGN_ADDR 0x42 /* Accelerometer Offset registers */ #define ACCEL_OFFSET_X_LSB_ADDR 0x55 #define ACCEL_OFFSET_X_MSB_ADDR 0x56 #define ACCEL_OFFSET_Y_LSB_ADDR 0x57 #define ACCEL_OFFSET_Y_MSB_ADDR 0x58 #define ACCEL_OFFSET_Z_LSB_ADDR 0x59 #define ACCEL_OFFSET_Z_MSB_ADDR 0x5A /* Magnetometer Offset registers */ #define MAG_OFFSET_X_LSB_ADDR 0x5B #define MAG_OFFSET_X_MSB_ADDR 0x5C #define MAG_OFFSET_Y_LSB_ADDR 0x5D #define MAG_OFFSET_Y_MSB_ADDR 0x5E #define MAG_OFFSET_Z_LSB_ADDR 0x5F #define MAG_OFFSET_Z_MSB_ADDR 0x60 /* Gyroscope Offset registers*/ #define GYRO_OFFSET_X_LSB_ADDR 0x61 #define GYRO_OFFSET_X_MSB_ADDR 0x62 #define GYRO_OFFSET_Y_LSB_ADDR 0x63 #define GYRO_OFFSET_Y_MSB_ADDR 0x64 #define GYRO_OFFSET_Z_LSB_ADDR 0x65 #define GYRO_OFFSET_Z_MSB_ADDR 0x66 /* Radius registers */ #define ACCEL_RADIUS_LSB_ADDR 0x67 #define ACCEL_RADIUS_MSB_ADDR 0x68 #define MAG_RADIUS_LSB_ADDR 0x69 #define MAG_RADIUS_MSB_ADDR 0x6A /* Page 1 registers */ #define BNO055_UNIQUE_ID_ADDR 0x50 //Definitions for unit selection #define MPERSPERS 0x00 #define MILLIG 0x01 #define DEG_PER_SEC 0x00 #define RAD_PER_SEC 0x02 #define DEGREES 0x00 #define RADIANS 0x04 #define CENTIGRADE 0x00 #define FAHRENHEIT 0x10 #define WINDOWS 0x00 #define ANDROID 0x80 //Definitions for power mode #define POWER_MODE_NORMAL 0x00 #define POWER_MODE_LOWPOWER 0x01 #define POWER_MODE_SUSPEND 0x02 //Definitions for operating mode #define OPERATION_MODE_CONFIG 0x00 #define OPERATION_MODE_ACCONLY 0x01 #define OPERATION_MODE_MAGONLY 0x02 #define OPERATION_MODE_GYRONLY 0x03 #define OPERATION_MODE_ACCMAG 0x04 #define OPERATION_MODE_ACCGYRO 0x05 #define OPERATION_MODE_MAGGYRO 0x06 #define OPERATION_MODE_AMG 0x07 #define OPERATION_MODE_IMUPLUS 0x08 #define OPERATION_MODE_COMPASS 0x09 #define OPERATION_MODE_M4G 0x0A #define OPERATION_MODE_NDOF_FMC_OFF 0x0B #define OPERATION_MODE_NDOF 0x0C typedef struct values{ int16_t rawx,rawy,rawz; float x,y,z; }values; typedef struct angles{ int16_t rawroll,rawpitch,rawyaw; float roll, pitch, yaw; } angles; typedef struct quaternion{ int16_t raww,rawx,rawy,rawz; float w,x,y,z; }quaternion; typedef struct chip{ char id; char accel; char gyro; char mag; char sw[2]; char bootload; char serial[16]; }chip; /** Class for operating Bosch BNO055 sensor over I2C **/ class BNO055 { public: /** Create BNO055 instance **/ BNO055(PinName SDA, PinName SCL); /** Perform a power-on reset of the BNO055 **/ void reset(); /** Check that the BNO055 is connected and download the software details and serial number of chip and store in ID structure **/ bool check(); /** Turn the external timing crystal on/off **/ void SetExternalCrystal(bool yn); /** Set the operation mode of the sensor **/ void setmode(char mode); /** Set the power mode of the sensor **/ void setpowermode(char mode); /** Set the output units from the accelerometer, either MPERSPERS or MILLIG **/ void set_accel_units(char units); /** Set the output units from the gyroscope, either DEG_PER_SEC or RAD_PER_SEC **/ void set_anglerate_units(char units); /** Set the output units from the IMU, either DEGREES or RADIANS **/ void set_angle_units(char units); /** Set the output units from the temperature sensor, either CENTIGRADE or FAHRENHEIT **/ void set_temp_units(char units); /** Set the data output format to either WINDOWS or ANDROID **/ void set_orientation(char units); /** Set the mapping of the exes/directions as per page 25 of datasheet range 0-7, any value outside this will set the orientation to P1 (default at power up) **/ void set_mapping(char orient); /** Get the current values from the accelerometer **/ void get_accel(void); /** Get the current values from the gyroscope **/ void get_gyro(void); /** Get the current values from the magnetometer **/ void get_mag(void); /** Get the corrected linear acceleration **/ void get_lia(void); /** Get the current gravity vector **/ void get_grv(void); /** Get the output quaternion **/ void get_quat(void); /** Get the current Euler angles **/ void get_angles(void); /** Get the current temperature **/ void get_temp(void); /** Read the calibration status register and store the result in the calib variable **/ void get_calib(void); /** Read the offset and radius values into the calibration array**/ void read_calibration_data(void); /** Write the contents of the calibration array into the registers **/ void write_calibration_data(void); /** Structures containing 3-axis data for acceleration, rate of turn and magnetic field. x,y,z are the scale floating point values and rawx, rawy, rawz are the int16_t values read from the sensors **/ values accel,gyro,mag,lia,gravity; /** Stucture containing the Euler angles as yaw, pitch, roll as scaled floating point and rawyaw, rawroll & rollpitch as the int16_t values loaded from the registers **/ angles euler; /** Quaternion values as w,x,y,z (scaled floating point) and raww etc... as int16_t loaded from the registers **/ quaternion quat; /** Current contents of calibration status register **/ char calib; /** Contents of the 22 registers containing offset and radius values used as calibration by the sensor **/ char calibration[22]; /** Structure containing sensor numbers, software version and chip UID **/ chip ID; /** Current temperature **/ int temperature; private: I2C _i2c; char rx,tx[2],address; //I2C variables char rawdata[22]; //Temporary array for input data values char op_mode; char pwr_mode; float accel_scale,rate_scale,angle_scale; int temp_scale; void readchar(char location){ tx[0] = location; _i2c.write(address,tx,1,true); _i2c.read(address,&rx,1,false); } void writechar(char location, char value){ tx[0] = location; tx[1] = value; _i2c.write(address,tx,2); } void setpage(char value){ writechar(BNO055_PAGE_ID_ADDR,value); } }; #endif