Bayley Wang
/
qonly_controller
derp
main.cpp
- Committer:
- bwang
- Date:
- 2016-04-18
- Revision:
- 11:825203ff4371
- Parent:
- 10:7624146c5945
- Child:
- 12:0811d08424e1
- Child:
- 14:10743610ecb5
File content as of revision 11:825203ff4371:
#include "mbed.h" #include "math.h" #include "PositionSensor.h" #include "FastPWM.h" #define PWMA PA_8 #define PWMB PA_9 #define PWMC PA_10 #define EN PB_15 #define IA PA_4 #define IB PB_0 #define PI 3.141593f #define CPR 4096 #define POS_OFFSET 4.5f #define I_SCALE_RAW 25.0f //mv/A #define R_UP 12000.0f //ohms #define R_DOWN 3600.0f //ohms #define R_BIAS 3600.0f //ohms #define AVDD 3300.0f //mV #define I_OFFSET (AVDD * R_DOWN * R_UP / (R_DOWN * R_UP + R_BIAS * (R_DOWN + R_UP))) #define I_SCALE (R_BIAS * R_DOWN * I_SCALE_RAW / (R_DOWN * R_UP + R_BIAS * (R_DOWN + R_UP))) #define K_LOOP 0.02 #define KI_BASE 0.008 #define BUS_VOLTAGE 20.0 #define KP (K_LOOP / BUS_VOLTAGE) #define KI (KI_BASE * K_LOOP / BUS_VOLTAGE) #define INTEGRAL_MAX 1.0f #define THROTTLE_MAX 2000.0f #define THROTTLE_ERROR 5000.0f #define THROTTLE_MIN 1500.0f #define Q_REF_MAX (-200.0) FastPWM *a; FastPWM *b; FastPWM *c; DigitalOut en(EN); InterruptIn throttle_interrupt(PB_8); PositionSensorEncoder pos(CPR, 0); int adval1, adval2; float ia, ib, ic, alpha, beta, q; double vq = 0.0, q_integral = 0.0, last_q = 0.0; float throttle = 0.0f; int edge_seen = 0, watchdog_divider = 0; int err_throttle_too_low = 0, err_throttle_too_high = 0; extern "C" void TIM1_UP_TIM10_IRQHandler(void) { if (TIM1->SR & TIM_SR_UIF) { float p = pos.GetElecPosition() - POS_OFFSET; if (p < 0) p += 2 * PI; //float pos_dac = 0.85f * p / (2 * PI) + 0.05f; //DAC->DHR12R2 = (unsigned int) (pos_dac * 4096); float sin_p = sinf(p); float cos_p = cosf(p); ADC1->CR2 |= 0x40000000; volatile int delay; for (delay = 0; delay < 35; delay++); adval1 = ADC1->DR; adval2 = ADC2->DR; ia = ((float) adval1 / 4096.0f * AVDD - I_OFFSET) / I_SCALE; ib = ((float) adval2 / 4096.0f * AVDD - I_OFFSET) / I_SCALE; ic = -ia - ib; float u = ib; float v = ic; alpha = u; beta = 1 / sqrtf(3.0f) * u + 2 / sqrtf(3.0f) * v; q = -alpha * sin_p - beta * cos_p; //if (throttle < THROTTLE_MIN || throttle > THROTTLE_ERROR) throttle = THROTTLE_MIN; if (throttle < THROTTLE_MIN) { throttle = THROTTLE_MIN; err_throttle_too_low = 1; } /* if(edge_seen == 0) { throttle = THROTTLE_MIN; en = 0; } else { en = 1; } */ if (throttle > THROTTLE_ERROR) { throttle = THROTTLE_MIN; err_throttle_too_high = 1; } if (throttle > THROTTLE_MAX) throttle = THROTTLE_MAX; float throttle_scaler = (throttle - THROTTLE_MIN) / (THROTTLE_MAX - THROTTLE_MIN); double q_err = Q_REF_MAX * (double) throttle_scaler - q; //DAC->DHR12R2 = (unsigned int) (q_err * 20 + 2048); q_integral += q_err * KI; if (q_integral > INTEGRAL_MAX) q_integral = INTEGRAL_MAX; if (q_integral < -INTEGRAL_MAX) q_integral = -INTEGRAL_MAX; vq = KP * q_err + q_integral; if (vq < -1.0f) vq = -1.0f; if (vq > 1.0f) vq = 1.0f; //DAC->DHR12R2 = (unsigned int) (vq * 2000 + 2048); DAC->DHR12R2 = (unsigned int) (throttle_scaler * 2000 + 2048); if (err_throttle_too_low || err_throttle_too_high || !edge_seen) { en = 0; } else { en = 1; } *a = 0.5f + 0.5f * vq * sinf(p); *b = 0.5f + 0.5f * vq * sinf(p + 2 * PI / 3); *c = 0.5f + 0.5f * vq * sinf(p - 2 * PI / 3); watchdog_divider++; if (watchdog_divider == 15000) { watchdog_divider = 0; edge_seen = 0; } } TIM1->SR = 0x00; } void throttle_rise() { TIM5->CNT = 0; edge_seen = 1; } void throttle_fall() { throttle = TIM5->CNT; edge_seen = 1; } int main() { //Enable clocks for GPIOs RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; //enable TIM1 clock a = new FastPWM(PWMA); b = new FastPWM(PWMB); c = new FastPWM(PWMC); NVIC_EnableIRQ(TIM1_UP_TIM10_IRQn); //Enable TIM1 IRQ TIM1->DIER |= TIM_DIER_UIE; //enable update interrupt //TIM1->CR1 = 0x40; //CMS = 10, interrupt only when counting up TIM1->CR1 |= TIM_CR1_ARPE; //autoreload on, TIM1->RCR |= 0x01; //update event once per up/down count of tim1 TIM1->EGR |= TIM_EGR_UG; TIM1->PSC = 0x00; //no prescaler, timer counts up in sync with the peripheral clock TIM1->ARR = 0x2EE0; //TIM1->ARR = 0x1770; //15 Khz TIM1->CCER |= ~(TIM_CCER_CC1NP); //Interupt when low side is on. TIM1->CR1 |= TIM_CR1_CEN; TIM5->CR1 |= TIM_CR1_ARPE; TIM5->EGR |= TIM_EGR_UG; TIM5->PSC = 0x00; TIM5->ARR = 0xFFFFFFFF; TIM5->CR1 |= TIM_CR1_CEN; //ADC Setup RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; // clock for ADC1 RCC->APB2ENR |= RCC_APB2ENR_ADC2EN; // clock for ADC2 ADC->CCR = 0x00000006; //Regular simultaneous mode, 3 channels ADC1->CR2 |= ADC_CR2_ADON; //ADC1 on ADC1->SQR3 = 0x0000004; //PA_4 as ADC1, sequence 0 ADC2->CR2 |= ADC_CR2_ADON; //ADC2 ON ADC2->SQR3 = 0x00000008; //PB_0 as ADC2, sequence 1 GPIOA->MODER |= (1 << 8); GPIOA->MODER |= (1 << 9); GPIOA->MODER |= (1 << 2); GPIOA->MODER |= (1 << 3); GPIOA->MODER |= (1 << 0); GPIOA->MODER |= (1 << 1); GPIOB->MODER |= (1 << 0); GPIOB->MODER |= (1 << 1); GPIOC->MODER |= (1 << 2); GPIOC->MODER |= (1 << 3); //DAC setup RCC->APB1ENR |= 0x20000000; DAC->CR |= DAC_CR_EN2; GPIOA->MODER |= (1 << 10); GPIOA->MODER |= (1 << 11); *a = 0.0f; *b = 0.0f; *c = 0.0f; en = 1; throttle_interrupt.rise(throttle_rise); throttle_interrupt.fall(throttle_fall); for (;;) { } }