Simple driver for DWM1000 modules.
DW1000.h
- Committer:
- bhepp
- Date:
- 2016-03-31
- Revision:
- 5:c34ebc7f650c
- Parent:
- 4:faf802b4af85
File content as of revision 5:c34ebc7f650c:
// Adapted from Matthias Grob & Manuel Stalder - ETH Zürich - 2015 #ifndef DW1000_H #define DW1000_H #include "mbed.h" // register addresses // Mnemonic Address Bytes Description #define DW1000_DEV_ID 0x00 // 4 Device Identifier – includes device type and revision information #define DW1000_EUI 0x01 // 8 Extended Unique Identifier #define DW1000_PANADR 0x03 // 4 PAN Identifier and Short Address #define DW1000_SYS_CFG 0x04 // 4 System Configuration bitmap #define DW1000_SYS_TIME 0x06 // 5 System Time Counter (40-bit) #define DW1000_TX_FCTRL 0x08 // 5 Transmit Frame Control #define DW1000_TX_BUFFER 0x09 // 1024 Transmit Data Buffer #define DW1000_DX_TIME 0x0A // 5 Delayed Send or Receive Time (40-bit) #define DW1000_RX_FWTO 0x0C // 2 Receive Frame Wait Timeout Period #define DW1000_SYS_CTRL 0x0D // 4 System Control Register #define DW1000_SYS_MASK 0x0E // 4 System Event Mask Register #define DW1000_SYS_STATUS 0x0F // 5 System Event Status Register #define DW1000_RX_FINFO 0x10 // 4 RX Frame Information (in double buffer set) #define DW1000_RX_BUFFER 0x11 // 1024 Receive Data Buffer (in double buffer set) #define DW1000_RX_FQUAL 0x12 // 8 Rx Frame Quality information (in double buffer set) #define DW1000_RX_TTCKI 0x13 // 4 Receiver Time Tracking Interval (in double buffer set) #define DW1000_RX_TTCKO 0x14 // 5 Receiver Time Tracking Offset (in double buffer set) #define DW1000_RX_TIME 0x15 // 14 Receive Message Time of Arrival (in double buffer set) #define DW1000_TX_TIME 0x17 // 10 Transmit Message Time of Sending (in double buffer set) #define DW1000_TX_ANTD 0x18 // 2 16-bit Delay from Transmit to Antenna #define DW1000_SYS_STATE 0x19 // 5 System State information #define DW1000_ACK_RESP_T 0x1A // 4 Acknowledgement Time and Response Time #define DW1000_RX_SNIFF 0x1D // 4 Pulsed Preamble Reception Configuration #define DW1000_TX_POWER 0x1E // 4 TX Power Control #define DW1000_CHAN_CTRL 0x1F // 4 Channel Control #define DW1000_USR_SFD 0x21 // 41 User-specified short/long TX/RX SFD sequences #define DW1000_AGC_CTRL 0x23 // 32 Automatic Gain Control configuration #define DW1000_EXT_SYNC 0x24 // 12 External synchronisation control. #define DW1000_ACC_MEM 0x25 // 4064 Read access to accumulator data #define DW1000_GPIO_CTRL 0x26 // 44 Peripheral register bus 1 access - GPIO control #define DW1000_DRX_CONF 0x27 // 44 Digital Receiver configuration #define DW1000_RF_CONF 0x28 // 58 Analog RF Configuration #define DW1000_TX_CAL 0x2A // 52 Transmitter calibration block #define DW1000_FS_CTRL 0x2B // 21 Frequency synthesiser control block #define DW1000_AON 0x2C // 12 Always-On register set #define DW1000_OTP_IF 0x2D // 18 One Time Programmable Memory Interface #define DW1000_LDE_CTRL 0x2E // - Leading edge detection control block #define DW1000_DIG_DIAG 0x2F // 41 Digital Diagnostics Interface #define DW1000_PMSC 0x36 // 48 Power Management System Control Block #define DW1000_WRITE_FLAG 0x80 // First Bit of the address has to be 1 to indicate we want to write #define DW1000_SUBADDRESS_FLAG 0x40 // if we have a sub address second Bit has to be 1 #define DW1000_2_SUBADDRESS_FLAG 0x80 // if we have a long sub adress (more than 7 Bit) we set this Bit in the first part class DW1000 { public: const static float TIMEUNITS_TO_US = (1/(128*499.2f)); // conversion between the decawave timeunits (ca 15.65ps) to microseconds. const static float US_TO_TIMEUNITS = (128*499.2f); // conversion between microseconds to the decawave timeunits (ca 15.65ps). const static uint64_t CONST_2POWER40 = 1099511627776; // Time register in DW1000 is 40 bit so this is needed to detect overflows. DW1000(SPI& spi, InterruptIn* irq, PinName CS, PinName RESET = NC); // constructor, uses SPI class void setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)); // setter for callback functions, automatically enables interrupt, if NULL is passed the coresponding interrupt gets disabled template<typename T> void setCallbacks(T* tptr, void (T::*mptrRX)(void), void (T::*mptrTX)(void)) { // overloaded setter to treat member function pointers of objects callbackRX.attach(tptr, mptrRX); // possible client code: dw.setCallbacks(this, &A::callbackRX, &A::callbackTX); callbackTX.attach(tptr, mptrTX); // concept seen in line 100 of http://developer.mbed.org/users/mbed_official/code/mbed/docs/4fc01daae5a5/InterruptIn_8h_source.html setInterrupt(true,true); } // Device API uint32_t getDeviceID(); // gets the Device ID which should be 0xDECA0130 (good for testing SPI!) uint64_t getEUI(); // gets 64 bit Extended Unique Identifier according to IEEE standard void setEUI(uint64_t EUI); // sets 64 bit Extended Unique Identifier according to IEEE standard float getVoltage(); // gets the current chip voltage measurement form the A/D converter uint64_t getStatus(); // get the 40 bit device status bool hasTransmissionStarted(); // check if frame transmission has started bool hasSentPreamble(); // check if preamble has been sent bool hasSentPHYHeader(); // check if PHY header has been sent bool hasSentFrame(); // check if frame has been sent completely bool hasReceivedFrame(); void clearReceivedFlag(); void clearSentFlag(); uint64_t getSYSTimestamp(); uint64_t getRXTimestamp(); uint64_t getTXTimestamp(); float getSYSTimestampUS(); float getRXTimestampUS(); float getTXTimestampUS(); uint16_t getStdNoise(); uint16_t getPACC(); uint16_t getFPINDEX(); uint16_t getFPAMPL1(); uint16_t getFPAMPL2(); uint16_t getFPAMPL3(); uint16_t getCIRPWR(); uint8_t getPRF(); void sendString(char* message); // to send String with arbitrary length void receiveString(char* message); // to receive char string (length of the buffer must be 1021 to be safe) void sendFrame(uint8_t* message, uint16_t length); // send a raw frame (length in bytes) void sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp); uint16_t getFramelength(); // to get the framelength of the received frame from the PHY header void startRX(); // start listening for frames void stopTRX(); // disable tranceiver go back to idle mode static void hardwareReset(PinName reset_pin); static void hardwareReset(DigitalInOut& reset_pin); void softwareReset(); uint8_t readRegister8(uint8_t reg, uint16_t subaddress); // expressive methods to read or write the number of bits written in the name uint16_t readRegister16(uint8_t reg, uint16_t subaddress); uint32_t readRegister32(uint8_t reg, uint16_t subaddress); uint64_t readRegister40(uint8_t reg, uint16_t subaddress); void writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer); void writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer); void writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer); void writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer); void readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length); // reads the selected part of a slave register into the buffer memory void writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length); // writes the buffer memory to the selected slave register private: void loadLDE(); // load the leading edge detection algorithm to RAM, [IMPORTANT because receiving malfunction may occur] see User Manual LDELOAD on p22 & p158 void resetRX(); // soft reset only the tranciever part of DW1000 void resetAll(); // soft reset the entire DW1000 (some registers stay as they were see User Manual) // Interrupt InterruptIn* irq; FunctionPointer callbackRX; // function pointer to callback which is called when successfull RX took place FunctionPointer callbackTX; // function pointer to callback which is called when successfull TX took place void setInterrupt(bool RX, bool TX); // set Interrupt for received a good frame (CRC ok) or transmission done void ISR(); // interrupt handling method (also calls according callback methods) // SPI Inteface SPI& spi; // SPI Bus DigitalOut cs; // Slave selector for SPI-Bus (here explicitly needed to start and end SPI transactions also usable to wake up DW1000) DigitalInOut reset; void setupTransaction(uint8_t reg, uint16_t subaddress, bool write); // sets up an SPI read or write transaction with correct register address and offset void select(); // selects the only slave for a transaction void deselect(); }; #endif