Simple driver for DWM1000 modules.

DW1000.h

Committer:
bhepp
Date:
2016-03-31
Revision:
5:c34ebc7f650c
Parent:
4:faf802b4af85

File content as of revision 5:c34ebc7f650c:

// Adapted from Matthias Grob & Manuel Stalder - ETH Zürich - 2015

#ifndef DW1000_H
#define DW1000_H

#include "mbed.h"

// register addresses
//      Mnemonic                    Address Bytes Description
#define DW1000_DEV_ID               0x00 //     4 Device Identifier – includes device type and revision information
#define DW1000_EUI                  0x01 //     8 Extended Unique Identifier
#define DW1000_PANADR               0x03 //     4 PAN Identifier and Short Address
#define DW1000_SYS_CFG              0x04 //     4 System Configuration bitmap
#define DW1000_SYS_TIME             0x06 //     5 System Time Counter (40-bit)
#define DW1000_TX_FCTRL             0x08 //     5 Transmit Frame Control
#define DW1000_TX_BUFFER            0x09 //  1024 Transmit Data Buffer
#define DW1000_DX_TIME              0x0A //     5 Delayed Send or Receive Time (40-bit)
#define DW1000_RX_FWTO              0x0C //     2 Receive Frame Wait Timeout Period
#define DW1000_SYS_CTRL             0x0D //     4 System Control Register
#define DW1000_SYS_MASK             0x0E //     4 System Event Mask Register
#define DW1000_SYS_STATUS           0x0F //     5 System Event Status Register
#define DW1000_RX_FINFO             0x10 //     4 RX Frame Information                (in double buffer set)
#define DW1000_RX_BUFFER            0x11 //  1024 Receive Data Buffer                 (in double buffer set)
#define DW1000_RX_FQUAL             0x12 //     8 Rx Frame Quality information        (in double buffer set)
#define DW1000_RX_TTCKI             0x13 //     4 Receiver Time Tracking Interval     (in double buffer set)
#define DW1000_RX_TTCKO             0x14 //     5 Receiver Time Tracking Offset       (in double buffer set)
#define DW1000_RX_TIME              0x15 //    14 Receive Message Time of Arrival     (in double buffer set)
#define DW1000_TX_TIME              0x17 //    10 Transmit Message Time of Sending    (in double buffer set)
#define DW1000_TX_ANTD              0x18 //     2 16-bit Delay from Transmit to Antenna
#define DW1000_SYS_STATE            0x19 //     5 System State information
#define DW1000_ACK_RESP_T           0x1A //     4 Acknowledgement Time and Response Time
#define DW1000_RX_SNIFF             0x1D //     4 Pulsed Preamble Reception Configuration
#define DW1000_TX_POWER             0x1E //     4 TX Power Control
#define DW1000_CHAN_CTRL            0x1F //     4 Channel Control
#define DW1000_USR_SFD              0x21 //    41 User-specified short/long TX/RX SFD sequences
#define DW1000_AGC_CTRL             0x23 //    32 Automatic Gain Control configuration
#define DW1000_EXT_SYNC             0x24 //    12 External synchronisation control.
#define DW1000_ACC_MEM              0x25 //  4064 Read access to accumulator data
#define DW1000_GPIO_CTRL            0x26 //    44 Peripheral register bus 1 access - GPIO control
#define DW1000_DRX_CONF             0x27 //    44 Digital Receiver configuration
#define DW1000_RF_CONF              0x28 //    58 Analog RF Configuration
#define DW1000_TX_CAL               0x2A //    52 Transmitter calibration block
#define DW1000_FS_CTRL              0x2B //    21 Frequency synthesiser control block
#define DW1000_AON                  0x2C //    12 Always-On register set
#define DW1000_OTP_IF               0x2D //    18 One Time Programmable Memory Interface
#define DW1000_LDE_CTRL             0x2E //     - Leading edge detection control block
#define DW1000_DIG_DIAG             0x2F //    41 Digital Diagnostics Interface
#define DW1000_PMSC                 0x36 //    48 Power Management System Control Block

#define DW1000_WRITE_FLAG           0x80 // First Bit of the address has to be 1 to indicate we want to write
#define DW1000_SUBADDRESS_FLAG      0x40 // if we have a sub address second Bit has to be 1
#define DW1000_2_SUBADDRESS_FLAG    0x80 // if we have a long sub adress (more than 7 Bit) we set this Bit in the first part

class DW1000
{
    public:
        const static float TIMEUNITS_TO_US = (1/(128*499.2f));  // conversion between the decawave timeunits (ca 15.65ps) to microseconds.
        const static float US_TO_TIMEUNITS = (128*499.2f);      // conversion between microseconds to the decawave timeunits (ca 15.65ps).
        const static uint64_t CONST_2POWER40 = 1099511627776;  // Time register in DW1000 is 40 bit so this is needed to detect overflows.

        DW1000(SPI& spi, InterruptIn* irq, PinName CS, PinName RESET = NC);              // constructor, uses SPI class

        void setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void));                  // setter for callback functions, automatically enables interrupt, if NULL is passed the coresponding interrupt gets disabled
        template<typename T>
        void setCallbacks(T* tptr, void (T::*mptrRX)(void), void (T::*mptrTX)(void))
        {      // overloaded setter to treat member function pointers of objects
            callbackRX.attach(tptr, mptrRX);                                                    // possible client code: dw.setCallbacks(this, &A::callbackRX, &A::callbackTX);
            callbackTX.attach(tptr, mptrTX);                                                    // concept seen in line 100 of http://developer.mbed.org/users/mbed_official/code/mbed/docs/4fc01daae5a5/InterruptIn_8h_source.html
            setInterrupt(true,true);
        }

        // Device API
        uint32_t getDeviceID();                                                                 // gets the Device ID which should be 0xDECA0130 (good for testing SPI!)
        uint64_t getEUI();                                                                      // gets 64 bit Extended Unique Identifier according to IEEE standard
        void setEUI(uint64_t EUI);                                                              // sets 64 bit Extended Unique Identifier according to IEEE standard
        float getVoltage();                                                                     // gets the current chip voltage measurement form the A/D converter
        uint64_t getStatus();                                                                   // get the 40 bit device status
        bool hasTransmissionStarted();                                                          // check if frame transmission has started
        bool hasSentPreamble();                                                                 // check if preamble has been sent
        bool hasSentPHYHeader();                                                                // check if PHY header has been sent
        bool hasSentFrame();                                                                    // check if frame has been sent completely
        bool hasReceivedFrame();
        void clearReceivedFlag();
        void clearSentFlag();
        uint64_t getSYSTimestamp();
        uint64_t getRXTimestamp();
        uint64_t getTXTimestamp();
        float getSYSTimestampUS();
        float getRXTimestampUS();
        float getTXTimestampUS();

        uint16_t getStdNoise();
        uint16_t getPACC();
        uint16_t getFPINDEX();
        uint16_t getFPAMPL1();
        uint16_t getFPAMPL2();
        uint16_t getFPAMPL3();
        uint16_t getCIRPWR();
        uint8_t getPRF();
        
        void sendString(char* message);                                                         // to send String with arbitrary length
        void receiveString(char* message);                                                      // to receive char string (length of the buffer must be 1021 to be safe)
        void sendFrame(uint8_t* message, uint16_t length);                                      // send a raw frame (length in bytes)
        void sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp);
        uint16_t getFramelength();                                                              // to get the framelength of the received frame from the PHY header
        void startRX();                                                                         // start listening for frames
        void stopTRX();                                                                         // disable tranceiver go back to idle mode

        static void hardwareReset(PinName reset_pin);
        static void hardwareReset(DigitalInOut& reset_pin);
        void softwareReset();

        uint8_t readRegister8(uint8_t reg, uint16_t subaddress);                                // expressive methods to read or write the number of bits written in the name
        uint16_t readRegister16(uint8_t reg, uint16_t subaddress);
        uint32_t readRegister32(uint8_t reg, uint16_t subaddress);
        uint64_t readRegister40(uint8_t reg, uint16_t subaddress);
        void writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer);
        void writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer);
        void writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer);
        void writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer);
        void readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length);       // reads the selected part of a slave register into the buffer memory
        void writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length);      // writes the buffer memory to the selected slave register

    private:
        void loadLDE();                                                                         // load the leading edge detection algorithm to RAM, [IMPORTANT because receiving malfunction may occur] see User Manual LDELOAD on p22 & p158
        void resetRX();                                                                         // soft reset only the tranciever part of DW1000
        void resetAll();                                                                        // soft reset the entire DW1000 (some registers stay as they were see User Manual)

        // Interrupt
        InterruptIn* irq;
        FunctionPointer callbackRX;                                                             // function pointer to callback which is called when successfull RX took place
        FunctionPointer callbackTX;                                                             // function pointer to callback which is called when successfull TX took place
        void setInterrupt(bool RX, bool TX);                                                    // set Interrupt for received a good frame (CRC ok) or transmission done
        void ISR();                                                                             // interrupt handling method (also calls according callback methods)
        
        // SPI Inteface
        SPI& spi;                                                                                // SPI Bus
        DigitalOut cs;                                                                          // Slave selector for SPI-Bus (here explicitly needed to start and end SPI transactions also usable to wake up DW1000)
        DigitalInOut reset;

        void setupTransaction(uint8_t reg, uint16_t subaddress, bool write);                    // sets up an SPI read or write transaction with correct register address and offset
        void select();                                                                          // selects the only slave for a transaction
        void deselect();   
};

#endif