auto-measurements
Dependencies: FastPWM3 mbed-dev
Fork of Hobbyking_Cheetah_Compact by
FOC/foc.cpp
- Committer:
- benkatz
- Date:
- 2017-03-31
- Revision:
- 22:60276ba87ac6
- Child:
- 23:2adf23ee0305
File content as of revision 22:60276ba87ac6:
#include "foc.h" //#include "FastMath.h" //using namespace FastMath; void abc( float theta, float d, float q, float *a, float *b, float *c){ ///Phase current amplitude = lengh of dq vector/// ///i.e. iq = 1, id = 0, peak phase current of 1/// *a = d*cosf(-theta) + q*sinf(-theta); *b = d*cosf((2.0f*PI/3.0f)-theta) + q*sinf((2.0f*PI/3.0f)-theta); *c = d*cosf((-2.0f*PI/3.0f)-theta) + q*sinf((-2.0f*PI/3.0f)-theta); } void dq0(float theta, float a, float b, float c, float *d, float *q){ ///Phase current amplitude = lengh of dq vector/// ///i.e. iq = 1, id = 0, peak phase current of 1/// *d = (2.0f/3.0f)*(a*cosf(-theta) + b*cosf((2.0f*PI/3.0f)-theta) + c*cosf((-2.0f*PI/3.0f)-theta)); *q = (2.0f/3.0f)*(a*sinf(-theta) + b*sinf((2.0f*PI/3.0f)-theta) + c*sinf((-2.0f*PI/3.0f)-theta)); } void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){ ///u,v,w amplitude = v_bus for full modulation depth/// float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f; *dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX); *dtc_v = fminf(fmaxf(((v - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX); *dtc_w = fminf(fmaxf(((w - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX); } void zero_current(int *offset_1, int *offset_2){ int adc1_offset = 0; int adc2_offset = 0; int n = 1024; for (int i = 0; i<n; i++){ ADC1->CR2 |= 0x40000000; wait(.001); adc2_offset += ADC2->DR; adc1_offset += ADC1->DR; } *offset_1 = adc1_offset/n; *offset_2 = adc2_offset/n; } void reset_foc(ControllerStruct *controller){ controller->q_int = 0; controller->d_int = 0; } void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){ controller->loop_count ++; if(gpio->phasing){ controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); //Calculate phase currents from ADC readings controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); } else{ controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); //Calculate phase currents from ADC readings controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); } controller->i_a = -controller->i_b - controller->i_c; dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents ///Controller/// float i_d_error = controller->i_d_ref - controller->i_d; float i_q_error = controller->i_q_ref - controller->i_q; float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE); //feed-forward voltage float v_q_ff = 2.0f*(2*controller->i_q_ref*R_PHASE + controller->dtheta_elec*WB*0.8165f); controller->d_int += i_d_error; controller->q_int += i_q_error; //v_d_ff = 0; //v_q_ff = 0; limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q)); //controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM); //controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM); controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff; controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff; //controller->v_d = v_d_ff; //controller->v_q = v_q_ff; limit_norm(&controller->v_d, &controller->v_q, controller->v_bus); abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation //gpio->pwm_u->write(1.0f-controller->dtc_u); //write duty cycles //gpio->pwm_v->write(1.0f-controller->dtc_v); //gpio->pwm_w->write(1.0f-controller->dtc_w); if(gpio->phasing){ TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u); TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v); TIM1->CCR1 = 0x708*(1.0f-controller->dtc_w); } else{ TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u); TIM1->CCR1 = 0x708*(1.0f-controller->dtc_v); TIM1->CCR2 = 0x708*(1.0f-controller->dtc_w); } //gpio->pwm_u->write(1.0f - .05f); //write duty cycles //gpio->pwm_v->write(1.0f - .05f); //gpio->pwm_w->write(1.0f - .1f); //TIM1->CCR1 = 0x708*(1.0f-controller->dtc_u); //TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v); //TIM1->CCR3 = 0x708*(1.0f-controller->dtc_w); controller->theta_elec = theta; //For some reason putting this at the front breaks thins if(controller->loop_count >1000){ //controller->i_q_ref = -controller->i_q_ref; controller->loop_count = 0; //printf("%f\n\r", controller->dtheta_elec); //printf("%f\n\r", controller->theta_elec); //pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c); //pc.printf("%f %f\n\r", controller->i_d, controller->i_q); //pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw); } } /* void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){ } */