auto-measurements
Dependencies: FastPWM3 mbed-dev
Fork of Hobbyking_Cheetah_Compact by
Diff: FOC/foc.cpp
- Revision:
- 22:60276ba87ac6
- Child:
- 23:2adf23ee0305
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/FOC/foc.cpp Fri Mar 31 18:24:46 2017 +0000 @@ -0,0 +1,136 @@ + +#include "foc.h" + +//#include "FastMath.h" +//using namespace FastMath; + + +void abc( float theta, float d, float q, float *a, float *b, float *c){ + ///Phase current amplitude = lengh of dq vector/// + ///i.e. iq = 1, id = 0, peak phase current of 1/// + + *a = d*cosf(-theta) + q*sinf(-theta); + *b = d*cosf((2.0f*PI/3.0f)-theta) + q*sinf((2.0f*PI/3.0f)-theta); + *c = d*cosf((-2.0f*PI/3.0f)-theta) + q*sinf((-2.0f*PI/3.0f)-theta); + } + +void dq0(float theta, float a, float b, float c, float *d, float *q){ + ///Phase current amplitude = lengh of dq vector/// + ///i.e. iq = 1, id = 0, peak phase current of 1/// + + *d = (2.0f/3.0f)*(a*cosf(-theta) + b*cosf((2.0f*PI/3.0f)-theta) + c*cosf((-2.0f*PI/3.0f)-theta)); + *q = (2.0f/3.0f)*(a*sinf(-theta) + b*sinf((2.0f*PI/3.0f)-theta) + c*sinf((-2.0f*PI/3.0f)-theta)); + } + +void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){ + ///u,v,w amplitude = v_bus for full modulation depth/// + + float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f; + *dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX); + *dtc_v = fminf(fmaxf(((v - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX); + *dtc_w = fminf(fmaxf(((w - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX); + + } + +void zero_current(int *offset_1, int *offset_2){ + int adc1_offset = 0; + int adc2_offset = 0; + int n = 1024; + for (int i = 0; i<n; i++){ + ADC1->CR2 |= 0x40000000; + wait(.001); + adc2_offset += ADC2->DR; + adc1_offset += ADC1->DR; + } + *offset_1 = adc1_offset/n; + *offset_2 = adc2_offset/n; + } + +void reset_foc(ControllerStruct *controller){ + controller->q_int = 0; + controller->d_int = 0; + } + + +void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){ + + controller->loop_count ++; + if(gpio->phasing){ + controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); //Calculate phase currents from ADC readings + controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); + } + else{ + controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); //Calculate phase currents from ADC readings + controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); + } + controller->i_a = -controller->i_b - controller->i_c; + + + dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents + + ///Controller/// + float i_d_error = controller->i_d_ref - controller->i_d; + float i_q_error = controller->i_q_ref - controller->i_q; + float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE); //feed-forward voltage + float v_q_ff = 2.0f*(2*controller->i_q_ref*R_PHASE + controller->dtheta_elec*WB*0.8165f); + controller->d_int += i_d_error; + controller->q_int += i_q_error; + + //v_d_ff = 0; + //v_q_ff = 0; + + limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q)); + //controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM); + //controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM); + + + controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff; + controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff; + + //controller->v_d = v_d_ff; + //controller->v_q = v_q_ff; + + limit_norm(&controller->v_d, &controller->v_q, controller->v_bus); + + abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages + svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation + + //gpio->pwm_u->write(1.0f-controller->dtc_u); //write duty cycles + //gpio->pwm_v->write(1.0f-controller->dtc_v); + //gpio->pwm_w->write(1.0f-controller->dtc_w); + + if(gpio->phasing){ + TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u); + TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v); + TIM1->CCR1 = 0x708*(1.0f-controller->dtc_w); + } + else{ + TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u); + TIM1->CCR1 = 0x708*(1.0f-controller->dtc_v); + TIM1->CCR2 = 0x708*(1.0f-controller->dtc_w); + } + //gpio->pwm_u->write(1.0f - .05f); //write duty cycles + //gpio->pwm_v->write(1.0f - .05f); + //gpio->pwm_w->write(1.0f - .1f); + //TIM1->CCR1 = 0x708*(1.0f-controller->dtc_u); + //TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v); + //TIM1->CCR3 = 0x708*(1.0f-controller->dtc_w); + controller->theta_elec = theta; //For some reason putting this at the front breaks thins + + + if(controller->loop_count >1000){ + //controller->i_q_ref = -controller->i_q_ref; + controller->loop_count = 0; + + //printf("%f\n\r", controller->dtheta_elec); + //printf("%f\n\r", controller->theta_elec); + //pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c); + //pc.printf("%f %f\n\r", controller->i_d, controller->i_q); + //pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw); + } + } +/* +void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){ + + } +*/ \ No newline at end of file