first

Dependencies:   ExperimentServer QEI_pmw MotorShield

Committer:
benj1man3
Date:
Tue Nov 17 20:45:25 2020 +0000
Revision:
24:f6e9e29c9263
Parent:
23:80e05d939f8c
first;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pwensing 0:43448bf056e8 1 #include "mbed.h"
pwensing 0:43448bf056e8 2 #include "rtos.h"
pwensing 0:43448bf056e8 3 #include "EthernetInterface.h"
pwensing 0:43448bf056e8 4 #include "ExperimentServer.h"
pwensing 0:43448bf056e8 5 #include "QEI.h"
saloutos 16:f9ea2b2d410f 6 #include "BezierCurve.h"
elijahsj 6:1faceb53dabe 7 #include "MotorShield.h"
elijahsj 13:3a1f4e09789b 8 #include "HardwareSetup.h"
benj1man3 24:f6e9e29c9263 9 #include <iostream>
benj1man3 24:f6e9e29c9263 10
pwensing 0:43448bf056e8 11
saloutos 16:f9ea2b2d410f 12 #define BEZIER_ORDER_FOOT 7
saloutos 17:1bb5aa45826e 13 #define NUM_INPUTS (12 + 2*(BEZIER_ORDER_FOOT+1))
saloutos 16:f9ea2b2d410f 14 #define NUM_OUTPUTS 19
pwensing 0:43448bf056e8 15
saloutos 16:f9ea2b2d410f 16 #define PULSE_TO_RAD (2.0f*3.14159f / 1200.0f)
saloutos 16:f9ea2b2d410f 17
saloutos 16:f9ea2b2d410f 18 // Initializations
pwensing 0:43448bf056e8 19 Serial pc(USBTX, USBRX); // USB Serial Terminal
pwensing 0:43448bf056e8 20 ExperimentServer server; // Object that lets us communicate with MATLAB
elijahsj 5:1ab9b2527794 21 Timer t; // Timer to measure elapsed time of experiment
elijahsj 5:1ab9b2527794 22
elijahsj 5:1ab9b2527794 23 QEI encoderA(PE_9,PE_11, NC, 1200, QEI::X4_ENCODING); // MOTOR A ENCODER (no index, 1200 counts/rev, Quadrature encoding)
elijahsj 5:1ab9b2527794 24 QEI encoderB(PA_5, PB_3, NC, 1200, QEI::X4_ENCODING); // MOTOR B ENCODER (no index, 1200 counts/rev, Quadrature encoding)
elijahsj 5:1ab9b2527794 25 QEI encoderC(PC_6, PC_7, NC, 1200, QEI::X4_ENCODING); // MOTOR C ENCODER (no index, 1200 counts/rev, Quadrature encoding)
elijahsj 5:1ab9b2527794 26 QEI encoderD(PD_12, PD_13, NC, 1200, QEI::X4_ENCODING);// MOTOR D ENCODER (no index, 1200 counts/rev, Quadrature encoding)
elijahsj 5:1ab9b2527794 27
elijahsj 12:84a6dcb60422 28 MotorShield motorShield(12000); //initialize the motor shield with a period of 12000 ticks or ~20kHZ
saloutos 16:f9ea2b2d410f 29 Ticker currentLoop;
saloutos 16:f9ea2b2d410f 30
saloutos 16:f9ea2b2d410f 31 // Variables for q1
saloutos 16:f9ea2b2d410f 32 float current1;
saloutos 16:f9ea2b2d410f 33 float current_des1 = 0;
saloutos 16:f9ea2b2d410f 34 float prev_current_des1 = 0;
saloutos 16:f9ea2b2d410f 35 float current_int1 = 0;
saloutos 16:f9ea2b2d410f 36 float angle1;
saloutos 16:f9ea2b2d410f 37 float velocity1;
saloutos 16:f9ea2b2d410f 38 float duty_cycle1;
saloutos 16:f9ea2b2d410f 39 float angle1_init;
saloutos 16:f9ea2b2d410f 40
saloutos 16:f9ea2b2d410f 41 // Variables for q2
saloutos 16:f9ea2b2d410f 42 float current2;
saloutos 16:f9ea2b2d410f 43 float current_des2 = 0;
saloutos 16:f9ea2b2d410f 44 float prev_current_des2 = 0;
saloutos 16:f9ea2b2d410f 45 float current_int2 = 0;
saloutos 16:f9ea2b2d410f 46 float angle2;
saloutos 16:f9ea2b2d410f 47 float velocity2;
saloutos 16:f9ea2b2d410f 48 float duty_cycle2;
saloutos 16:f9ea2b2d410f 49 float angle2_init;
saloutos 16:f9ea2b2d410f 50
saloutos 16:f9ea2b2d410f 51 // Fixed kinematic parameters
saloutos 16:f9ea2b2d410f 52 const float l_OA=.011;
saloutos 16:f9ea2b2d410f 53 const float l_OB=.042;
saloutos 16:f9ea2b2d410f 54 const float l_AC=.096;
saloutos 16:f9ea2b2d410f 55 const float l_DE=.091;
saloutos 16:f9ea2b2d410f 56
saloutos 16:f9ea2b2d410f 57 // Timing parameters
saloutos 16:f9ea2b2d410f 58 float current_control_period_us = 200.0f; // 5kHz current control loop
saloutos 16:f9ea2b2d410f 59 float impedance_control_period_us = 1000.0f; // 1kHz impedance control loop
saloutos 16:f9ea2b2d410f 60 float start_period, traj_period, end_period;
saloutos 16:f9ea2b2d410f 61
saloutos 16:f9ea2b2d410f 62 // Control parameters
saloutos 19:562c08086d71 63 float current_Kp = 4.0f;
saloutos 19:562c08086d71 64 float current_Ki = 0.4f;
saloutos 19:562c08086d71 65 float current_int_max = 3.0f;
saloutos 16:f9ea2b2d410f 66 float duty_max;
saloutos 16:f9ea2b2d410f 67 float K_xx;
saloutos 16:f9ea2b2d410f 68 float K_yy;
saloutos 16:f9ea2b2d410f 69 float K_xy;
saloutos 16:f9ea2b2d410f 70 float D_xx;
saloutos 16:f9ea2b2d410f 71 float D_xy;
saloutos 16:f9ea2b2d410f 72 float D_yy;
saloutos 16:f9ea2b2d410f 73
saloutos 16:f9ea2b2d410f 74 // Model parameters
saloutos 17:1bb5aa45826e 75 float supply_voltage = 12; // motor supply voltage
saloutos 18:21c8d94eddee 76 float R = 2.0f; // motor resistance
saloutos 18:21c8d94eddee 77 float k_t = 0.18f; // motor torque constant
saloutos 17:1bb5aa45826e 78 float nu = 0.0005; // motor viscous friction
saloutos 16:f9ea2b2d410f 79
saloutos 16:f9ea2b2d410f 80 // Current control interrupt function
saloutos 16:f9ea2b2d410f 81 void CurrentLoop()
saloutos 16:f9ea2b2d410f 82 {
saloutos 19:562c08086d71 83 // This loop sets the motor voltage commands using PI current controllers with feedforward terms.
saloutos 16:f9ea2b2d410f 84
saloutos 16:f9ea2b2d410f 85 //use the motor shield as follows:
saloutos 16:f9ea2b2d410f 86 //motorShield.motorAWrite(DUTY CYCLE, DIRECTION), DIRECTION = 0 is forward, DIRECTION =1 is backwards.
saloutos 16:f9ea2b2d410f 87
saloutos 18:21c8d94eddee 88 current1 = -(((float(motorShield.readCurrentA())/65536.0f)*30.0f)-15.0f); // measure current
saloutos 18:21c8d94eddee 89 velocity1 = encoderA.getVelocity() * PULSE_TO_RAD; // measure velocity
saloutos 18:21c8d94eddee 90 float err_c1 = current_des1 - current1; // current errror
saloutos 18:21c8d94eddee 91 current_int1 += err_c1; // integrate error
saloutos 18:21c8d94eddee 92 current_int1 = fmaxf( fminf(current_int1, current_int_max), -current_int_max); // anti-windup
saloutos 18:21c8d94eddee 93 float ff1 = R*current_des1 + k_t*velocity1; // feedforward terms
saloutos 18:21c8d94eddee 94 duty_cycle1 = (ff1 + current_Kp*err_c1 + current_Ki*current_int1)/supply_voltage; // PI current controller
saloutos 16:f9ea2b2d410f 95
saloutos 16:f9ea2b2d410f 96 float absDuty1 = abs(duty_cycle1);
saloutos 16:f9ea2b2d410f 97 if (absDuty1 > duty_max) {
saloutos 16:f9ea2b2d410f 98 duty_cycle1 *= duty_max / absDuty1;
saloutos 16:f9ea2b2d410f 99 absDuty1 = duty_max;
saloutos 16:f9ea2b2d410f 100 }
saloutos 16:f9ea2b2d410f 101 if (duty_cycle1 < 0) { // backwards
saloutos 16:f9ea2b2d410f 102 motorShield.motorAWrite(absDuty1, 1);
saloutos 16:f9ea2b2d410f 103 } else { // forwards
saloutos 16:f9ea2b2d410f 104 motorShield.motorAWrite(absDuty1, 0);
saloutos 16:f9ea2b2d410f 105 }
saloutos 16:f9ea2b2d410f 106 prev_current_des1 = current_des1;
saloutos 16:f9ea2b2d410f 107
saloutos 18:21c8d94eddee 108 current2 = -(((float(motorShield.readCurrentB())/65536.0f)*30.0f)-15.0f); // measure current
saloutos 18:21c8d94eddee 109 velocity2 = encoderB.getVelocity() * PULSE_TO_RAD; // measure velocity
saloutos 18:21c8d94eddee 110 float err_c2 = current_des2 - current2; // current error
saloutos 18:21c8d94eddee 111 current_int2 += err_c2; // integrate error
saloutos 18:21c8d94eddee 112 current_int2 = fmaxf( fminf(current_int2, current_int_max), -current_int_max); // anti-windup
saloutos 18:21c8d94eddee 113 float ff2 = R*current_des2 + k_t*velocity2; // feedforward terms
saloutos 18:21c8d94eddee 114 duty_cycle2 = (ff2 + current_Kp*err_c2 + current_Ki*current_int2)/supply_voltage; // PI current controller
saloutos 16:f9ea2b2d410f 115
saloutos 16:f9ea2b2d410f 116 float absDuty2 = abs(duty_cycle2);
saloutos 16:f9ea2b2d410f 117 if (absDuty2 > duty_max) {
saloutos 16:f9ea2b2d410f 118 duty_cycle2 *= duty_max / absDuty2;
saloutos 16:f9ea2b2d410f 119 absDuty2 = duty_max;
saloutos 16:f9ea2b2d410f 120 }
saloutos 16:f9ea2b2d410f 121 if (duty_cycle2 < 0) { // backwards
saloutos 16:f9ea2b2d410f 122 motorShield.motorBWrite(absDuty2, 1);
saloutos 16:f9ea2b2d410f 123 } else { // forwards
saloutos 16:f9ea2b2d410f 124 motorShield.motorBWrite(absDuty2, 0);
saloutos 16:f9ea2b2d410f 125 }
saloutos 16:f9ea2b2d410f 126 prev_current_des2 = current_des2;
saloutos 16:f9ea2b2d410f 127
saloutos 16:f9ea2b2d410f 128 }
elijahsj 6:1faceb53dabe 129
elijahsj 4:7a1b35f081bb 130 int main (void)
elijahsj 4:7a1b35f081bb 131 {
saloutos 17:1bb5aa45826e 132
saloutos 17:1bb5aa45826e 133 // Object for 7th order Cartesian foot trajectory
saloutos 17:1bb5aa45826e 134 BezierCurve rDesFoot_bez(2,BEZIER_ORDER_FOOT);
saloutos 17:1bb5aa45826e 135
pwensing 0:43448bf056e8 136 // Link the terminal with our server and start it up
pwensing 0:43448bf056e8 137 server.attachTerminal(pc);
pwensing 0:43448bf056e8 138 server.init();
elijahsj 13:3a1f4e09789b 139
pwensing 0:43448bf056e8 140 // Continually get input from MATLAB and run experiments
pwensing 0:43448bf056e8 141 float input_params[NUM_INPUTS];
elijahsj 5:1ab9b2527794 142 pc.printf("%f",input_params[0]);
elijahsj 5:1ab9b2527794 143
pwensing 0:43448bf056e8 144 while(1) {
saloutos 16:f9ea2b2d410f 145
saloutos 16:f9ea2b2d410f 146 // If there are new inputs, this code will run
pwensing 0:43448bf056e8 147 if (server.getParams(input_params,NUM_INPUTS)) {
saloutos 16:f9ea2b2d410f 148
saloutos 16:f9ea2b2d410f 149
saloutos 17:1bb5aa45826e 150 // Get inputs from MATLAB
saloutos 16:f9ea2b2d410f 151 start_period = input_params[0]; // First buffer time, before trajectory
saloutos 16:f9ea2b2d410f 152 traj_period = input_params[1]; // Trajectory time/length
saloutos 16:f9ea2b2d410f 153 end_period = input_params[2]; // Second buffer time, after trajectory
saloutos 16:f9ea2b2d410f 154
saloutos 16:f9ea2b2d410f 155 angle1_init = input_params[3]; // Initial angle for q1 (rad)
saloutos 16:f9ea2b2d410f 156 angle2_init = input_params[4]; // Initial angle for q2 (rad)
elijahsj 4:7a1b35f081bb 157
saloutos 16:f9ea2b2d410f 158 K_xx = input_params[5]; // Foot stiffness N/m
saloutos 16:f9ea2b2d410f 159 K_yy = input_params[6]; // Foot stiffness N/m
saloutos 16:f9ea2b2d410f 160 K_xy = input_params[7]; // Foot stiffness N/m
saloutos 16:f9ea2b2d410f 161 D_xx = input_params[8]; // Foot damping N/(m/s)
saloutos 19:562c08086d71 162 D_yy = input_params[9]; // Foot damping N/(m/s)
saloutos 16:f9ea2b2d410f 163 D_xy = input_params[10]; // Foot damping N/(m/s)
saloutos 16:f9ea2b2d410f 164 duty_max = input_params[11]; // Maximum duty factor
saloutos 16:f9ea2b2d410f 165
saloutos 19:562c08086d71 166 // Get foot trajectory points
saloutos 16:f9ea2b2d410f 167 float foot_pts[2*(BEZIER_ORDER_FOOT+1)];
saloutos 16:f9ea2b2d410f 168 for(int i = 0; i<2*(BEZIER_ORDER_FOOT+1);i++) {
saloutos 17:1bb5aa45826e 169 foot_pts[i] = input_params[12+i];
saloutos 16:f9ea2b2d410f 170 }
saloutos 16:f9ea2b2d410f 171 rDesFoot_bez.setPoints(foot_pts);
saloutos 16:f9ea2b2d410f 172
saloutos 16:f9ea2b2d410f 173 // Attach current loop interrupt
saloutos 16:f9ea2b2d410f 174 currentLoop.attach_us(CurrentLoop,current_control_period_us);
saloutos 16:f9ea2b2d410f 175
pwensing 0:43448bf056e8 176 // Setup experiment
pwensing 0:43448bf056e8 177 t.reset();
pwensing 0:43448bf056e8 178 t.start();
elijahsj 5:1ab9b2527794 179 encoderA.reset();
elijahsj 5:1ab9b2527794 180 encoderB.reset();
elijahsj 5:1ab9b2527794 181 encoderC.reset();
elijahsj 5:1ab9b2527794 182 encoderD.reset();
elijahsj 10:a40d180c305c 183
benj1man3 24:f6e9e29c9263 184 motorShield.motorAWrite(0, 0); //turn motor A off
saloutos 16:f9ea2b2d410f 185 motorShield.motorBWrite(0, 0); //turn motor B off
saloutos 16:f9ea2b2d410f 186
pwensing 0:43448bf056e8 187 // Run experiment
saloutos 16:f9ea2b2d410f 188 while( t.read() < start_period + traj_period + end_period) {
saloutos 16:f9ea2b2d410f 189
saloutos 19:562c08086d71 190 // Read encoders to get motor states
saloutos 16:f9ea2b2d410f 191 angle1 = encoderA.getPulses() *PULSE_TO_RAD + angle1_init;
saloutos 16:f9ea2b2d410f 192 velocity1 = encoderA.getVelocity() * PULSE_TO_RAD;
saloutos 16:f9ea2b2d410f 193
saloutos 16:f9ea2b2d410f 194 angle2 = encoderB.getPulses() * PULSE_TO_RAD + angle2_init;
saloutos 16:f9ea2b2d410f 195 velocity2 = encoderB.getVelocity() * PULSE_TO_RAD;
saloutos 16:f9ea2b2d410f 196
saloutos 16:f9ea2b2d410f 197 const float th1 = angle1;
saloutos 16:f9ea2b2d410f 198 const float th2 = angle2;
saloutos 16:f9ea2b2d410f 199 const float dth1= velocity1;
saloutos 16:f9ea2b2d410f 200 const float dth2= velocity2;
saloutos 16:f9ea2b2d410f 201
saloutos 16:f9ea2b2d410f 202 // Calculate the Jacobian
benj1man3 24:f6e9e29c9263 203 float Jx_th1 = l_AC*cos(th1 + th2) + l_DE*cos(th1) + l_OB*cos(th1);
benj1man3 24:f6e9e29c9263 204 float Jx_th2 = l_AC*cos(th1 + th2);
benj1man3 24:f6e9e29c9263 205 float Jy_th1 = l_AC*sin(th1 + th2) + l_DE*sin(th1) + l_OB*sin(th1);
benj1man3 24:f6e9e29c9263 206 float Jy_th2 = l_AC*sin(th1 + th2);
saloutos 19:562c08086d71 207
saloutos 17:1bb5aa45826e 208 // Calculate the forward kinematics (position and velocity)
benj1man3 24:f6e9e29c9263 209 float xFoot = l_AC*sin(th1 + th2) + l_DE*sin(th1) + l_OB*sin(th1);
benj1man3 24:f6e9e29c9263 210 float yFoot = - l_AC*cos(th1 + th2) - l_DE*cos(th1) - l_OB*cos(th1);
benj1man3 24:f6e9e29c9263 211 float dxFoot = dth1*(l_AC*cos(th1 + th2) + l_DE*cos(th1) + l_OB*cos(th1)) + dth2*l_AC*cos(th1 + th2);
benj1man3 24:f6e9e29c9263 212 float dyFoot = dth1*(l_AC*sin(th1 + th2) + l_DE*sin(th1) + l_OB*sin(th1)) + dth2*l_AC*sin(th1 + th2);
saloutos 16:f9ea2b2d410f 213
saloutos 16:f9ea2b2d410f 214 // Set gains based on buffer and traj times, then calculate desired x,y from Bezier trajectory at current time if necessary
saloutos 16:f9ea2b2d410f 215 float teff = 0;
saloutos 16:f9ea2b2d410f 216 float vMult = 0;
saloutos 16:f9ea2b2d410f 217 if( t < start_period) {
saloutos 16:f9ea2b2d410f 218 if (K_xx > 0 || K_yy > 0) {
benj1man3 24:f6e9e29c9263 219 K_xx = 1; // for joint space control, set this to 1
benj1man3 24:f6e9e29c9263 220 K_yy = 1; // for joint space control, set this to 1
benj1man3 24:f6e9e29c9263 221 D_xx = .1; // for joint space control, set this to 0.1
benj1man3 24:f6e9e29c9263 222 D_yy = .1; // for joint space control, set this to 0.1
saloutos 16:f9ea2b2d410f 223 K_xy = 0;
saloutos 16:f9ea2b2d410f 224 D_xy = 0;
benj1man3 24:f6e9e29c9263 225 // K_xx = 40; // for joint space control, set this to 1
benj1man3 24:f6e9e29c9263 226 // K_yy = 0; // for joint space control, set this to 1
benj1man3 24:f6e9e29c9263 227 // D_xx = 0; // for joint space control, set this to 0.1
benj1man3 24:f6e9e29c9263 228 // D_yy = 10; // for joint space control, set this to 0.1
benj1man3 24:f6e9e29c9263 229 // K_xy = 0;
benj1man3 24:f6e9e29c9263 230 // D_xy = 0;
saloutos 16:f9ea2b2d410f 231 }
saloutos 16:f9ea2b2d410f 232 teff = 0;
saloutos 16:f9ea2b2d410f 233 }
saloutos 16:f9ea2b2d410f 234 else if (t < start_period + traj_period)
saloutos 16:f9ea2b2d410f 235 {
saloutos 19:562c08086d71 236 K_xx = input_params[5]; // Foot stiffness N/m
saloutos 19:562c08086d71 237 K_yy = input_params[6]; // Foot stiffness N/m
saloutos 19:562c08086d71 238 K_xy = input_params[7]; // Foot stiffness N/m
saloutos 19:562c08086d71 239 D_xx = input_params[8]; // Foot damping N/(m/s)
saloutos 19:562c08086d71 240 D_yy = input_params[9]; // Foot damping N/(m/s)
saloutos 16:f9ea2b2d410f 241 D_xy = input_params[10]; // Foot damping N/(m/s)
saloutos 16:f9ea2b2d410f 242 teff = (t-start_period);
saloutos 16:f9ea2b2d410f 243 vMult = 1;
saloutos 16:f9ea2b2d410f 244 }
elijahsj 4:7a1b35f081bb 245 else
saloutos 16:f9ea2b2d410f 246 {
saloutos 17:1bb5aa45826e 247 teff = traj_period;
saloutos 17:1bb5aa45826e 248 vMult = 0;
saloutos 16:f9ea2b2d410f 249 }
saloutos 16:f9ea2b2d410f 250
saloutos 16:f9ea2b2d410f 251 float rDesFoot[2] , vDesFoot[2];
saloutos 16:f9ea2b2d410f 252 rDesFoot_bez.evaluate(teff/traj_period,rDesFoot);
saloutos 16:f9ea2b2d410f 253 rDesFoot_bez.evaluateDerivative(teff/traj_period,vDesFoot);
saloutos 16:f9ea2b2d410f 254 vDesFoot[0]/=traj_period;
saloutos 16:f9ea2b2d410f 255 vDesFoot[1]/=traj_period;
saloutos 16:f9ea2b2d410f 256 vDesFoot[0]*=vMult;
saloutos 16:f9ea2b2d410f 257 vDesFoot[1]*=vMult;
saloutos 17:1bb5aa45826e 258
saloutos 19:562c08086d71 259 // Calculate the inverse kinematics (joint positions and velocities) for desired joint angles
saloutos 18:21c8d94eddee 260 float xFootd = -rDesFoot[0];
saloutos 18:21c8d94eddee 261 float yFootd = rDesFoot[1];
saloutos 18:21c8d94eddee 262 float l_OE = sqrt( (pow(xFootd,2) + pow(yFootd,2)) );
saloutos 17:1bb5aa45826e 263 float alpha = abs(acos( (pow(l_OE,2) - pow(l_AC,2) - pow((l_OB+l_DE),2))/(-2.0f*l_AC*(l_OB+l_DE)) ));
saloutos 18:21c8d94eddee 264 float th2_des = -(3.14159f - alpha);
saloutos 18:21c8d94eddee 265 float th1_des = -((3.14159f/2.0f) + atan2(yFootd,xFootd) - abs(asin( (l_AC/l_OE)*sin(alpha) )));
saloutos 17:1bb5aa45826e 266
saloutos 17:1bb5aa45826e 267 float dd = (Jx_th1*Jy_th2 - Jx_th2*Jy_th1);
saloutos 17:1bb5aa45826e 268 float dth1_des = (1.0f/dd) * ( Jy_th2*vDesFoot[0] - Jx_th2*vDesFoot[1] );
saloutos 17:1bb5aa45826e 269 float dth2_des = (1.0f/dd) * ( -Jy_th1*vDesFoot[0] + Jx_th1*vDesFoot[1] );
saloutos 17:1bb5aa45826e 270
saloutos 16:f9ea2b2d410f 271 // Calculate error variables
benj1man3 24:f6e9e29c9263 272 float e_x = xFootd-xFoot;
benj1man3 24:f6e9e29c9263 273 float e_y = yFootd-yFoot;
benj1man3 24:f6e9e29c9263 274 float de_x = -dxFoot;
benj1man3 24:f6e9e29c9263 275 float de_y = -dyFoot;
saloutos 17:1bb5aa45826e 276
saloutos 16:f9ea2b2d410f 277 // Calculate virtual force on foot
benj1man3 24:f6e9e29c9263 278 float fx = K_xx*(e_x) + K_xy*(e_y) + D_xx*(de_x) + D_xy*(de_y);
benj1man3 24:f6e9e29c9263 279 float fy = K_xy*(e_x) + K_yy*(e_y) + D_xy*(de_x) + D_yy*(de_y);
saloutos 18:21c8d94eddee 280
benj1man3 24:f6e9e29c9263 281 float Torque_q1= (Jx_th1*fx+Jy_th1*fy);
benj1man3 24:f6e9e29c9263 282 float Torque_q2= (Jx_th2*fx+Jy_th2*fy);
benj1man3 24:f6e9e29c9263 283
benj1man3 24:f6e9e29c9263 284
saloutos 19:562c08086d71 285 // Set desired currents
benj1man3 24:f6e9e29c9263 286
benj1man3 24:f6e9e29c9263 287 // current_des2 = 0;
benj1man3 24:f6e9e29c9263 288 // current_des1 = 0;
saloutos 19:562c08086d71 289
saloutos 17:1bb5aa45826e 290 // Joint impedance
saloutos 17:1bb5aa45826e 291 // sub Kxx for K1, Dxx for D1, Kyy for K2, Dyy for D2
saloutos 22:448cb9493519 292 // Note: Be careful with signs now that you have non-zero desired angles!
saloutos 22:448cb9493519 293 // Your equations should be of the form i_d = K1*(q1_d - q1) + D1*(dq1_d - dq1)
benj1man3 24:f6e9e29c9263 294 // current_des1 =(K_xx*(th1_des-th1)+D_xx*(dth1_des-dth1))/(k_t);
benj1man3 24:f6e9e29c9263 295 // current_des2 = (K_yy*(th2_des-th2)+D_yy*(dth2_des-dth2))/(k_t);
saloutos 19:562c08086d71 296
saloutos 22:448cb9493519 297 // Cartesian impedance
benj1man3 24:f6e9e29c9263 298 // Note: As with the joint space laws, be careful with signs!
saloutos 16:f9ea2b2d410f 299
benj1man3 24:f6e9e29c9263 300 current_des1 = Torque_q1/k_t;
benj1man3 24:f6e9e29c9263 301 current_des2 = Torque_q2/k_t;
saloutos 19:562c08086d71 302
saloutos 19:562c08086d71 303 // Form output to send to MATLAB
saloutos 16:f9ea2b2d410f 304 float output_data[NUM_OUTPUTS];
saloutos 16:f9ea2b2d410f 305 // current time
pwensing 0:43448bf056e8 306 output_data[0] = t.read();
saloutos 16:f9ea2b2d410f 307 // motor 1 state
saloutos 16:f9ea2b2d410f 308 output_data[1] = angle1;
saloutos 16:f9ea2b2d410f 309 output_data[2] = velocity1;
saloutos 16:f9ea2b2d410f 310 output_data[3] = current1;
saloutos 16:f9ea2b2d410f 311 output_data[4] = current_des1;
saloutos 16:f9ea2b2d410f 312 output_data[5] = duty_cycle1;
saloutos 16:f9ea2b2d410f 313 // motor 2 state
saloutos 16:f9ea2b2d410f 314 output_data[6] = angle2;
saloutos 16:f9ea2b2d410f 315 output_data[7] = velocity2;
saloutos 16:f9ea2b2d410f 316 output_data[8] = current2;
saloutos 16:f9ea2b2d410f 317 output_data[9] = current_des2;
saloutos 16:f9ea2b2d410f 318 output_data[10]= duty_cycle2;
saloutos 16:f9ea2b2d410f 319 // foot state
saloutos 16:f9ea2b2d410f 320 output_data[11] = xFoot;
saloutos 16:f9ea2b2d410f 321 output_data[12] = yFoot;
saloutos 17:1bb5aa45826e 322 output_data[13] = dxFoot;
saloutos 17:1bb5aa45826e 323 output_data[14] = dyFoot;
saloutos 17:1bb5aa45826e 324 output_data[15] = rDesFoot[0];
saloutos 17:1bb5aa45826e 325 output_data[16] = rDesFoot[1];
saloutos 17:1bb5aa45826e 326 output_data[17] = vDesFoot[0];
saloutos 17:1bb5aa45826e 327 output_data[18] = vDesFoot[1];
elijahsj 13:3a1f4e09789b 328
pwensing 0:43448bf056e8 329 // Send data to MATLAB
pwensing 0:43448bf056e8 330 server.sendData(output_data,NUM_OUTPUTS);
saloutos 16:f9ea2b2d410f 331
saloutos 16:f9ea2b2d410f 332 wait_us(impedance_control_period_us);
elijahsj 4:7a1b35f081bb 333 }
saloutos 16:f9ea2b2d410f 334
pwensing 0:43448bf056e8 335 // Cleanup after experiment
pwensing 0:43448bf056e8 336 server.setExperimentComplete();
saloutos 16:f9ea2b2d410f 337 currentLoop.detach();
elijahsj 12:84a6dcb60422 338 motorShield.motorAWrite(0, 0); //turn motor A off
saloutos 16:f9ea2b2d410f 339 motorShield.motorBWrite(0, 0); //turn motor B off
saloutos 16:f9ea2b2d410f 340
pwensing 0:43448bf056e8 341 } // end if
saloutos 16:f9ea2b2d410f 342
pwensing 0:43448bf056e8 343 } // end while
elijahsj 10:a40d180c305c 344
elijahsj 6:1faceb53dabe 345 } // end main
elijahsj 6:1faceb53dabe 346