Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Impedance_Fast_Circuitry by
main.cpp
- Committer:
- timmey9
- Date:
- 2015-01-29
- Revision:
- 39:82dc3daecf32
- Parent:
- 38:ec3b16c130d7
- Child:
- 40:bd6d8c35e822
File content as of revision 39:82dc3daecf32:
// Server code #include "mbed.h" #include <stdio.h> // Analog sampling #include "PeripheralNames.h" #include "PeripheralPins.h" #include "fsl_adc_hal.h" #include "fsl_clock_manager.h" #include "fsl_dspi_hal.h" #include "AngleEncoder.h" #include "adc.h" #include "dma.h" #include "pdb.h" // Analog sampling #define MAX_FADC 6000000 #define SAMPLING_RATE 10 // In microseconds, so 10 us will be a sampling rate of 100 kHz #define TOTAL_SAMPLES 3 // originally 30000 for 0.3 ms of sampling. // for debug purposes Serial pc(USBTX, USBRX); DigitalOut led_red(LED_RED); DigitalOut led_green(LED_GREEN); DigitalOut led_blue(LED_BLUE); AngleEncoder angle_encoder(PTD2, PTD3, PTD1, PTD0, 8, 0, 1000000); // mosi, miso, sclk, cs, bit_width, mode, hz DigitalIn AMT20_A(PTC0); // input for quadrature encoding from angle encoder DigitalIn AMT20_B(PTC1); // input for quadrature encoding from angle encoder // Analog sampling Ticker Sampler; uint16_t sample_array1[TOTAL_SAMPLES] = {0xa,0xb,0xc}; uint16_t sample_array2[TOTAL_SAMPLES]; uint16_t angle_array[TOTAL_SAMPLES]; float currA0 = 0; float currA2 = 0; // Declaration of functions void timed_sampling(); // Important globabl variables necessary for the sampling every interval int rotary_count = 0; uint32_t last_AMT20_AB_read = 0; void PIT0_IRQHandler(void); using namespace std; int main() { led_blue = 1; led_green = 1; led_red = 1; pc.baud(230400); pc.printf("Starting\r\n"); //for(int i = 0; i < 3; i++) pc.printf("Sample[%i]: %x\r\n", i, sample_array1[i]); dma_init(sample_array1, sample_array2, angle_array, TOTAL_SAMPLES, pc); analog_initialization(A0,pc); //pdb_init(pc); //pdb_start(); //Sampler.attach_us(&timed_sampling, SAMPLING_RATE); pc.printf("\r\n\r\n\r\n"); //while(1) {pc.printf("CNT: %04x\r\n",PDB0->CNT);} while(1) { rotary_count++; if(pc.readable() > 0) { char temp = pc.getc(); switch(temp) { case 's': for(int i = 0; i < TOTAL_SAMPLES; i++) pc.printf("%i: %f\t",i,sample_array1[i]*3.3/65535); pc.printf("\r\n"); break; case 'f': for(int i = 0; i < TOTAL_SAMPLES; i++) sample_array1[i] = 0xf; break; case 'd': for(int i = 0; i < 3; i++) pc.printf("Sample[%i]: %x\r\n", i, sample_array1[i]); break; } } for(int i = 0; i < TOTAL_SAMPLES; i++) pc.printf("A%i: %f ",i,sample_array1[i]*3.3/65535); pc.printf("ADC0_RA: %08x\r\n",ADC0_RA); pc.printf("ADC0_RB: %08x\r\n",ADC0_RB); //for(int i = 0; i < TOTAL_SAMPLES; i++) pc.printf("B%i: %f ",i,sample_array2[i]*3.3/65535); //for(int i = 0; i < TOTAL_SAMPLES; i++) pc.printf("C%i: %i ",i,angle_array[i]); pc.printf("\r"); //pc.printf("DMA_DADDR: %08x \r", *dma_daddr); //pc.printf("A1: %f\tA2: %f\r\n", currA0, currA2); wait(1); } } void timed_sampling() { // start ADC conversion BW_ADC_SC1n_ADCH(0, 0, kAdcChannel12); // This corresponds to starting an ADC conversion on channel 12 of ADC 0 - which is A0 (PTB2) BW_ADC_SC1n_ADCH(1, 0, kAdcChannel14); // This corresponds to starting an ADC conversion on channel 14 of ADC 1 - which is A2 (PTB10) // The following updates the rotary counter for the AMT20 sensor // Put A on PTC0 // Put B on PTC1 uint32_t AMT20_AB = HW_GPIO_PDIR_RD(HW_PORTC) & 0x03; if (AMT20_AB != last_AMT20_AB_read) { // change "INVERT_ANGLE" to change whether relative angle counts up or down. if ((AMT20_AB >> 1)^(last_AMT20_AB_read) & 1U) #if INVERT_ANGLE == 1 {rotary_count--;} else {rotary_count++;} #else {rotary_count++;} else {rotary_count--;} #endif last_AMT20_AB_read = AMT20_AB; } }