Inductance Testing Code

Dependencies:   mbed

Fork of CurrentModeSine by Austin Brown

Revision:
1:64b881306f6f
Parent:
0:9edd6ec0f56a
diff -r 9edd6ec0f56a -r 64b881306f6f FOC/foc.cpp
--- a/FOC/foc.cpp	Sat May 20 21:42:20 2017 +0000
+++ b/FOC/foc.cpp	Thu Oct 11 04:13:45 2018 +0000
@@ -1,158 +1,118 @@
 
 #include "foc.h"
 
-//#include "FastMath.h"
 //using namespace FastMath;
-
-
-void abc( float theta, float d, float q, float *a, float *b, float *c){
-    ///Phase current amplitude = lengh of dq vector///
-    ///i.e. iq = 1, id = 0, peak phase current of 1///
-
-    *a = d*cosf(theta) + q*sinf(theta);
-    *b = d*cosf((2.0f*PI/3.0f)+theta) + q*sinf((2.0f*PI/3.0f)+theta);
-    *c = d*cosf((-2.0f*PI/3.0f)+theta) + q*sinf((-2.0f*PI/3.0f)+theta);
-    }
-    
-void dq0(float theta, float a, float b, float c, float *d, float *q){
-    ///Phase current amplitude = lengh of dq vector///
-    ///i.e. iq = 1, id = 0, peak phase current of 1///
-    
-    *d = (2.0f/3.0f)*(a*cosf(theta) + b*cosf((2.0f*PI/3.0f)+theta) + c*cosf((-2.0f*PI/3.0f)+theta));
-    *q = (2.0f/3.0f)*(a*sinf(theta) + b*sinf((2.0f*PI/3.0f)+theta) + c*sinf((-2.0f*PI/3.0f)+theta));
-    }
     
 void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){
     ///u,v,w amplitude = v_bus for full modulation depth///
     
     float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f;
-    *dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX);
-    *dtc_v = fminf(fmaxf(((v - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX);
-    *dtc_w = fminf(fmaxf(((w - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX);
+    *dtc_u = fminf(fmaxf(((u - v_offset)*MODULATION_FACTOR/v_bus + ((DTC_MAX+DTC_MIN)/2)), DTC_MIN), DTC_MAX);
+    *dtc_v = fminf(fmaxf(((v - v_offset)*MODULATION_FACTOR/v_bus + ((DTC_MAX+DTC_MIN)/2)), DTC_MIN), DTC_MAX);
+    *dtc_w = fminf(fmaxf(((w - v_offset)*MODULATION_FACTOR/v_bus + ((DTC_MAX+DTC_MIN)/2)), DTC_MIN), DTC_MAX);
     
     }
 
-void zero_current(int *offset_1, int *offset_2){
-    int adc1_offset = 0;
-    int adc2_offset = 0;
-    int n = 1024;
-    for (int i = 0; i<n; i++){
-        ADC1->CR2  |= 0x40000000; 
-        wait(.001);
-        adc2_offset += ADC2->DR;
-        adc1_offset += ADC1->DR;
-        }
-    *offset_1 = adc1_offset/n;
-    *offset_2 = adc2_offset/n;
-    }
 
-void reset_foc(ControllerStruct *controller){
+void reset_foc(FocStruct *controller){
     controller->q_int = 0;
     controller->d_int = 0;
     }
 
 
-void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){
+void commutate(FocStruct *controller){
        
-       controller->loop_count ++;
-       if(gpio->phasing){
-           controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);    //Calculate phase currents from ADC readings
-           controller->i_a = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
-           }
-        else{
-           controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);    //Calculate phase currents from ADC readings
-           controller->i_a = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);
-           }
-       controller->i_c = -controller->i_b - controller->i_a;
-       
-       
-       dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q);    //dq0 transform on currents
+    controller->loop_count ++;
+//    controller->i_a = inverter->i_a; 
+//    controller->i_b = inverter->i_b; 
+//    controller->i_c = inverter->i_c;
+    
+    
+    float s = sinf(controller->theta_elec); 
+    float c = cosf(controller->theta_elec);
+    //float s = FastSin(controller->theta_elec); 
+    //float c = FastCos(controller->theta_elec);
+                          
+    controller->i_d = 0.6666667f*( c*controller->i_a + ( 0.86602540378f*s-.5f*c)*controller->i_b + (-0.86602540378f*s-.5f*c)*controller->i_c);   ///Faster DQ0 Transform
+    controller->i_q = 0.6666667f*(-s*controller->i_a - (-0.86602540378f*c-.5f*s)*controller->i_b - ( 0.86602540378f*c-.5f*s)*controller->i_c);
        
-       ///Cogging Compensation Lookup///
-       //int ind = theta * (128.0f/(2.0f*PI));
-       //float cogging_current = controller->cogging[ind];
-       //float cogging_current = 1.0f*cos(6*theta);
-       ///Controller///
-       float i_d_error = controller->i_d_ref - controller->i_d;
-       float i_q_error = controller->i_q_ref - controller->i_q;// + cogging_current;
-       //float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE);   //feed-forward voltage
-       //float v_q_ff = 2.0f*(2*controller->i_q_ref*R_PHASE + controller->dtheta_elec*WB*0.8165f);
-       controller->d_int += i_d_error;   
-       controller->q_int += i_q_error;
+    float i_d_error = controller->i_d_ref - controller->i_d;
+    float i_q_error = controller->i_q_ref - controller->i_q;
+    
+    controller->d_int += i_d_error;   
+    controller->q_int += i_q_error;
+    limit_norm(&controller->d_int, &controller->q_int, V_CLIP/(K_Q*KI_Q));
+        
+    controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff;  
+    controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff; 
+    
+    limit_norm(&controller->v_d, &controller->v_q, V_CLIP);
+    
+    if (USE_THETA_ADV) {
+        s = sinf(controller->theta_elec_adv); 
+        c = cosf(controller->theta_elec_adv);
+    }
+    
+    //s = FastSin(controller->theta_elec_adv); 
+    //c = FastCos(controller->theta_elec_adv);
+    
+    controller->v_u = c*controller->v_d - s*controller->v_q;                // Faster Inverse DQ0 transform
+    controller->v_v = ( 0.86602540378f*s-.5f*c)*controller->v_d - (-0.86602540378f*c-.5f*s)*controller->v_q;
+    controller->v_w = (-0.86602540378f*s-.5f*c)*controller->v_d - ( 0.86602540378f*c-.5f*s)*controller->v_q;
+
+    svm(V_BUS, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation
+    
+    //controller->dtc_u = 0.2;
+    //controller->dtc_v = 0.2;
+    //controller->dtc_w = 0.8;
+    
+//    focc->dtc_u = controller->dtc_u; 
+//    inverter->dtc_v = controller->dtc_v; 
+//    inverter->dtc_w = controller->dtc_w; 
+    
+
+    if(controller->loop_count >10000){
+        controller->loop_count  = 0;
+    }
+}
+    
+
+
        
-       //v_d_ff = 0;
-       //v_q_ff = 0;
+void voltage_mode_commutate(FocStruct *controller){
+       
+    controller->loop_count ++;
+    
+    float s = sinf(controller->theta_elec); 
+    float c = cosf(controller->theta_elec);
+                           
+    controller->i_d = 0.6666667f*( c*controller->i_a + ( 0.86602540378f*s-.5f*c)*controller->i_b + (-0.86602540378f*s-.5f*c)*controller->i_c);   ///Faster DQ0 Transform
+    controller->i_q = 0.6666667f*(-s*controller->i_a - (-0.86602540378f*c-.5f*s)*controller->i_b - ( 0.86602540378f*c-.5f*s)*controller->i_c);
        
-       limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q));
-       //controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM);
-       //controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM);
+    
+    limit_norm(&controller->v_d, &controller->v_q, V_CLIP);
+    
+    if (USE_THETA_ADV) {
+        s = sinf(controller->theta_elec_adv); 
+        c = cosf(controller->theta_elec_adv);
+    }
+    
+    controller->v_u = c*controller->v_d - s*controller->v_q;                // Faster Inverse DQ0 transform
+    controller->v_v = ( 0.86602540378f*s-.5f*c)*controller->v_d - (-0.86602540378f*c-.5f*s)*controller->v_q;
+    controller->v_w = (-0.86602540378f*s-.5f*c)*controller->v_d - ( 0.86602540378f*c-.5f*s)*controller->v_q;
+
+    svm(V_BUS, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation
+            
+
+    if(controller->loop_count >10000){
+        controller->loop_count  = 0;
+    }
+}   
        
        
-       controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff;  
-       controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff; 
        
-       //controller->v_d = v_d_ff;
-       //controller->v_q = v_q_ff; 
-       
-       limit_norm(&controller->v_d, &controller->v_q, controller->v_bus);
-       
-       abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages
-       svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation
-
-       //gpio->pwm_u->write(1.0f-controller->dtc_u);  //write duty cycles
-       //gpio->pwm_v->write(1.0f-controller->dtc_v);
-       //gpio->pwm_w->write(1.0f-controller->dtc_w);  
-       
-       //bing1 = (controller->dtc_u);
-       //bing2 = (controller->dtc_v);
-       //bing3 = (controller->dtc_w); 
-       /*
-       //if(gpio->phasing){
-            TIM1->CCR1 = 0x1194*(1.0f-controller->dtc_u);
-            TIM1->CCR2 = 0x1194*(1.0f-controller->dtc_v);
-            TIM1->CCR3 = 0x1194*(1.0f-controller->dtc_w); 
-        }
-        else{
-            TIM1->CCR3 = 0x1194*(1.0f-controller->dtc_u);
-            TIM1->CCR1 = 0x1194*(1.0f-controller->dtc_v);
-            TIM1->CCR2 = 0x1194*(1.0f-controller->dtc_w);
-        }*/
-       //gpio->pwm_u->write(1.0f - .05f);  //write duty cycles
-        //gpio->pwm_v->write(1.0f - .05f);
-        //gpio->pwm_w->write(1.0f - .1f);
-       //TIM1->CCR1 = 0x708*(1.0f-controller->dtc_u);
-        //TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v);
-        //TIM1->CCR3 = 0x708*(1.0f-controller->dtc_w);
-       controller->theta_elec = theta;   //For some reason putting this at the front breaks thins
-       
-
-       if(controller->loop_count >400){
-           //controller->i_q_ref = -controller->i_q_ref;
-           controller->loop_count  = 0;
-           
-           //printf("%d   %f\n\r", ind, cogging_current);
-           //printf("%f\n\r", controller->theta_elec);
-           //pc.printf("%f    %f    %f\n\r", controller->i_a, controller->i_b, controller->i_c);
-           //pc.printf("%f    %f\n\r", controller->i_d, controller->i_q);
-           //pc.printf("%d    %d\n\r", controller->adc1_raw, controller->adc2_raw);
-            }
-    }
     
-/*    
-void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){
     
-    }
-*/    
-
-void voltageabc( float theta, float d, float q, float *a, float *b, float *c){
-    ///Phase current amplitude = lengh of dq vector///
-    ///i.e. iq = 1, id = 0, peak phase current of 1///
-
-    *a = sinf(theta);
-    *b = sinf((2.0f*PI/3.0f)+theta);
-    *c = sinf((-2.0f*PI/3.0f)+theta);
-    }
-