Version 0.5.0 of tinydtls
Dependents: tinydtls_test_cellular tinydtls_test_ethernet tiny-dtls
ecc/ecc.c
- Committer:
- ashleymills
- Date:
- 2013-10-18
- Revision:
- 0:ff9ebe0cf0e9
File content as of revision 0:ff9ebe0cf0e9:
/* * Copyright (c) 2009 Chris K Cockrum <ckc@cockrum.net> * * Copyright (c) 2013 Jens Trillmann <jtrillma@tzi.de> * Copyright (c) 2013 Marc Müller-Weinhardt <muewei@tzi.de> * Copyright (c) 2013 Lars Schmertmann <lars@tzi.de> * Copyright (c) 2013 Hauke Mehrtens <hauke@hauke-m.de> * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * * This implementation is based in part on the paper Implementation of an * Elliptic Curve Cryptosystem on an 8-bit Microcontroller [0] by * Chris K Cockrum <ckc@cockrum.net>. * * [0]: http://cockrum.net/Implementation_of_ECC_on_an_8-bit_microcontroller.pdf * * This is a efficient ECC implementation on the secp256r1 curve for 32 Bit CPU * architectures. It provides basic operations on the secp256r1 curve and support * for ECDH and ECDSA. */ //big number functions #include "ecc.h" static uint32_t add( const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length){ uint64_t d = 0; //carry int v = 0; for(v = 0;v<length;v++){ //printf("%02x + %02x + %01x = ", x[v], y[v], d); d += (uint64_t) x[v] + (uint64_t) y[v]; //printf("%02x\n", d); result[v] = d; d = d>>32; //save carry } return (uint32_t)d; } static uint32_t sub( const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length){ uint64_t d = 0; int v; for(v = 0;v < length; v++){ d = (uint64_t) x[v] - (uint64_t) y[v] - d; result[v] = d & 0xFFFFFFFF; d = d>>32; d &= 0x1; } return (uint32_t)d; } static void rshiftby(const uint32_t *in, uint8_t in_size, uint32_t *out, uint8_t out_size, uint8_t shift) { int i; for (i = 0; i < (in_size - shift) && i < out_size; i++) out[i] = in[i + shift]; for (/* reuse i */; i < out_size; i++) out[i] = 0; } //finite field functions //FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF static const uint32_t ecc_prime_m[8] = {0xffffffff, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0xffffffff}; /* This is added after an static byte addition if the answer has a carry in MSB*/ static const uint32_t ecc_prime_r[8] = {0x00000001, 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x00000000}; // ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 static const uint32_t ecc_order_m[9] = {0xFC632551, 0xF3B9CAC2, 0xA7179E84, 0xBCE6FAAD, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000}; static const uint32_t ecc_order_r[8] = {0x039CDAAF, 0x0C46353D, 0x58E8617B, 0x43190552, 0x00000000, 0x00000000, 0xFFFFFFFF, 0x00000000}; static const uint32_t ecc_order_mu[9] = {0xEEDF9BFE, 0x012FFD85, 0xDF1A6C21, 0x43190552, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0x00000000, 0x00000001}; static const uint8_t ecc_order_k = 8; const uint32_t ecc_g_point_x[8] = { 0xD898C296, 0xF4A13945, 0x2DEB33A0, 0x77037D81, 0x63A440F2, 0xF8BCE6E5, 0xE12C4247, 0x6B17D1F2}; const uint32_t ecc_g_point_y[8] = { 0x37BF51F5, 0xCBB64068, 0x6B315ECE, 0x2BCE3357, 0x7C0F9E16, 0x8EE7EB4A, 0xFE1A7F9B, 0x4FE342E2}; static void setZero(uint32_t *A, const int length){ int i; for (i = 0; i < length; ++i) { A[i] = 0; } } /* * copy one array to another */ static void copy(const uint32_t *from, uint32_t *to, uint8_t length){ int i; for (i = 0; i < length; ++i) { to[i] = from[i]; } } static int isSame(const uint32_t *A, const uint32_t *B, uint8_t length){ int i; for(i = 0; i < length; i++){ if (A[i] != B[i]) return 0; } return 1; } //is A greater than B? static int isGreater(const uint32_t *A, const uint32_t *B, uint8_t length){ int i; for (i = length-1; i >= 0; --i) { if(A[i] > B[i]) return 1; if(A[i] < B[i]) return -1; } return 0; } static int fieldAdd(const uint32_t *x, const uint32_t *y, const uint32_t *reducer, uint32_t *result){ if(add(x, y, result, arrayLength)){ //add prime if carry is still set! uint32_t tempas[8]; setZero(tempas, 8); add(result, reducer, tempas, arrayLength); copy(tempas, result, arrayLength); } return 0; } static int fieldSub(const uint32_t *x, const uint32_t *y, const uint32_t *modulus, uint32_t *result){ if(sub(x, y, result, arrayLength)){ //add modulus if carry is set uint32_t tempas[8]; setZero(tempas, 8); add(result, modulus, tempas, arrayLength); copy(tempas, result, arrayLength); } return 0; } //finite Field multiplication //32bit * 32bit = 64bit static int fieldMult(const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length){ uint32_t temp[length * 2]; setZero(temp, length * 2); setZero(result, length * 2); uint8_t k, n; uint64_t l; for (k = 0; k < length; k++){ for (n = 0; n < length; n++){ l = (uint64_t)x[n]*(uint64_t)y[k]; temp[n+k] = l&0xFFFFFFFF; temp[n+k+1] = l>>32; add(&temp[n+k], &result[n+k], &result[n+k], (length * 2) - (n + k)); setZero(temp, length * 2); } } return 0; } //TODO: maximum: //fffffffe00000002fffffffe0000000100000001fffffffe00000001fffffffe00000001fffffffefffffffffffffffffffffffe000000000000000000000001_16 static void fieldModP(uint32_t *A, const uint32_t *B) { uint32_t tempm[8]; uint32_t tempm2[8]; uint8_t n; setZero(tempm, 8); setZero(tempm2, 8); /* A = T */ copy(B,A,arrayLength); /* Form S1 */ for(n=0;n<3;n++) tempm[n]=0; for(n=3;n<8;n++) tempm[n]=B[n+8]; /* tempm2=T+S1 */ fieldAdd(A,tempm,ecc_prime_r,tempm2); /* A=T+S1+S1 */ fieldAdd(tempm2,tempm,ecc_prime_r,A); /* Form S2 */ for(n=0;n<3;n++) tempm[n]=0; for(n=3;n<7;n++) tempm[n]=B[n+9]; for(n=7;n<8;n++) tempm[n]=0; /* tempm2=T+S1+S1+S2 */ fieldAdd(A,tempm,ecc_prime_r,tempm2); /* A=T+S1+S1+S2+S2 */ fieldAdd(tempm2,tempm,ecc_prime_r,A); /* Form S3 */ for(n=0;n<3;n++) tempm[n]=B[n+8]; for(n=3;n<6;n++) tempm[n]=0; for(n=6;n<8;n++) tempm[n]=B[n+8]; /* tempm2=T+S1+S1+S2+S2+S3 */ fieldAdd(A,tempm,ecc_prime_r,tempm2); /* Form S4 */ for(n=0;n<3;n++) tempm[n]=B[n+9]; for(n=3;n<6;n++) tempm[n]=B[n+10]; for(n=6;n<7;n++) tempm[n]=B[n+7]; for(n=7;n<8;n++) tempm[n]=B[n+1]; /* A=T+S1+S1+S2+S2+S3+S4 */ fieldAdd(tempm2,tempm,ecc_prime_r,A); /* Form D1 */ for(n=0;n<3;n++) tempm[n]=B[n+11]; for(n=3;n<6;n++) tempm[n]=0; for(n=6;n<7;n++) tempm[n]=B[n+2]; for(n=7;n<8;n++) tempm[n]=B[n+3]; /* tempm2=T+S1+S1+S2+S2+S3+S4-D1 */ fieldSub(A,tempm,ecc_prime_m,tempm2); /* Form D2 */ for(n=0;n<4;n++) tempm[n]=B[n+12]; for(n=4;n<6;n++) tempm[n]=0; for(n=6;n<7;n++) tempm[n]=B[n+3]; for(n=7;n<8;n++) tempm[n]=B[n+4]; /* A=T+S1+S1+S2+S2+S3+S4-D1-D2 */ fieldSub(tempm2,tempm,ecc_prime_m,A); /* Form D3 */ for(n=0;n<3;n++) tempm[n]=B[n+13]; for(n=3;n<6;n++) tempm[n]=B[n+5]; for(n=6;n<7;n++) tempm[n]=0; for(n=7;n<8;n++) tempm[n]=B[n+5]; /* tempm2=T+S1+S1+S2+S2+S3+S4-D1-D2-D3 */ fieldSub(A,tempm,ecc_prime_m,tempm2); /* Form D4 */ for(n=0;n<2;n++) tempm[n]=B[n+14]; for(n=2;n<3;n++) tempm[n]=0; for(n=3;n<6;n++) tempm[n]=B[n+6]; for(n=6;n<7;n++) tempm[n]=0; for(n=7;n<8;n++) tempm[n]=B[n+6]; /* A=T+S1+S1+S2+S2+S3+S4-D1-D2-D3-D4 */ fieldSub(tempm2,tempm,ecc_prime_m,A); if(isGreater(A, ecc_prime_m, arrayLength) >= 0){ fieldSub(A, ecc_prime_m, ecc_prime_m, tempm); copy(tempm, A, arrayLength); } } /** * calculate the result = A mod n. * n is the order of the eliptic curve. * A and result could point to the same value * * A: input value (max size * 4 bytes) * result: result of modulo calculation (max 36 bytes) * size: size of A * * This uses the Barrett modular reduction as described in the Handbook * of Applied Cryptography 14.42 Algorithm Barrett modular reduction, * see http://cacr.uwaterloo.ca/hac/about/chap14.pdf and * http://everything2.com/title/Barrett+Reduction * * b = 32 (bite size of the processor architecture) * mu (ecc_order_mu) was precomputed in a java program */ static void fieldModO(const uint32_t *A, uint32_t *result, uint8_t length) { // This is used for value q1 and q3 uint32_t q1_q3[9]; // This is used for q2 and a temp var uint32_t q2_tmp[18]; // return if the given value is smaller than the modulus if (length == arrayLength && isGreater(A, ecc_order_m, arrayLength) <= 0) { if (A != result) copy(A, result, length); return; } rshiftby(A, length, q1_q3, 9, ecc_order_k - 1); fieldMult(ecc_order_mu, q1_q3, q2_tmp, 9); rshiftby(q2_tmp, 18, q1_q3, 8, ecc_order_k + 1); // r1 = first 9 blocks of A fieldMult(q1_q3, ecc_order_m, q2_tmp, 8); // r2 = first 9 blocks of q2_tmp sub(A, q2_tmp, result, 9); while (isGreater(result, ecc_order_m, 9) >= 0) sub(result, ecc_order_m, result, 9); } static int isOne(const uint32_t* A){ uint8_t n; for(n=1;n<8;n++) if (A[n]!=0) break; if ((n==8)&&(A[0]==1)) return 1; else return 0; } static int isZero(const uint32_t* A){ uint8_t n, r=0; for(n=0;n<8;n++){ if (A[n] == 0) r++; } return r==8; } static void rshift(uint32_t* A){ int n, i, nOld=0; for (i = 8; i--;) { n = A[i]&0x1; A[i] = A[i]>>1 | nOld<<31; nOld = n; } } static int fieldAddAndDivide(const uint32_t *x, const uint32_t *modulus, const uint32_t *reducer, uint32_t* result){ uint32_t n = add(x, modulus, result, arrayLength); rshift(result); if(n){ //add prime if carry is still set! result[7] |= 0x80000000;//add the carry if (isGreater(result, modulus, arrayLength) == 1) { uint32_t tempas[8]; setZero(tempas, 8); add(result, reducer, tempas, 8); copy(tempas, result, arrayLength); } } return 0; } /* * Inverse A and output to B */ static void fieldInv(const uint32_t *A, const uint32_t *modulus, const uint32_t *reducer, uint32_t *B){ uint32_t u[8],v[8],x1[8],x2[8]; uint32_t tempm[8]; uint32_t tempm2[8]; setZero(tempm, 8); setZero(tempm2, 8); setZero(u, 8); setZero(v, 8); uint8_t t; copy(A,u,arrayLength); copy(modulus,v,arrayLength); setZero(x1, 8); setZero(x2, 8); x1[0]=1; /* While u !=1 and v !=1 */ while ((isOne(u) || isOne(v))==0) { while(!(u[0]&1)) { /* While u is even */ rshift(u); /* divide by 2 */ if (!(x1[0]&1)) /*ifx1iseven*/ rshift(x1); /* Divide by 2 */ else { fieldAddAndDivide(x1,modulus,reducer,tempm); /* tempm=x1+p */ copy(tempm,x1,arrayLength); /* x1=tempm */ //rshift(x1); /* Divide by 2 */ } } while(!(v[0]&1)) { /* While v is even */ rshift(v); /* divide by 2 */ if (!(x2[0]&1)) /*ifx1iseven*/ rshift(x2); /* Divide by 2 */ else { fieldAddAndDivide(x2,modulus,reducer,tempm); /* tempm=x1+p */ copy(tempm,x2,arrayLength); /* x1=tempm */ //rshift(x2); /* Divide by 2 */ } } t=sub(u,v,tempm,arrayLength); /* tempm=u-v */ if (t==0) { /* If u > 0 */ copy(tempm,u,arrayLength); /* u=u-v */ fieldSub(x1,x2,modulus,tempm); /* tempm=x1-x2 */ copy(tempm,x1,arrayLength); /* x1=x1-x2 */ } else { sub(v,u,tempm,arrayLength); /* tempm=v-u */ copy(tempm,v,arrayLength); /* v=v-u */ fieldSub(x2,x1,modulus,tempm); /* tempm=x2-x1 */ copy(tempm,x2,arrayLength); /* x2=x2-x1 */ } } if (isOne(u)) { copy(x1,B,arrayLength); } else { copy(x2,B,arrayLength); } } void static ec_double(const uint32_t *px, const uint32_t *py, uint32_t *Dx, uint32_t *Dy){ uint32_t tempA[8]; uint32_t tempB[8]; uint32_t tempC[8]; uint32_t tempD[16]; if(isZero(px) && isZero(py)){ copy(px, Dx,arrayLength); copy(py, Dy,arrayLength); return; } fieldMult(px, px, tempD, arrayLength); fieldModP(tempA, tempD); setZero(tempB, 8); tempB[0] = 0x00000001; fieldSub(tempA, tempB, ecc_prime_m, tempC); //tempC = (qx^2-1) tempB[0] = 0x00000003; fieldMult(tempC, tempB, tempD, arrayLength); fieldModP(tempA, tempD);//tempA = 3*(qx^2-1) fieldAdd(py, py, ecc_prime_r, tempB); //tempB = 2*qy fieldInv(tempB, ecc_prime_m, ecc_prime_r, tempC); //tempC = 1/(2*qy) fieldMult(tempA, tempC, tempD, arrayLength); //tempB = lambda = (3*(qx^2-1))/(2*qy) fieldModP(tempB, tempD); fieldMult(tempB, tempB, tempD, arrayLength); //tempC = lambda^2 fieldModP(tempC, tempD); fieldSub(tempC, px, ecc_prime_m, tempA); //lambda^2 - Px fieldSub(tempA, px, ecc_prime_m, Dx); //lambda^2 - Px - Qx fieldSub(px, Dx, ecc_prime_m, tempA); //tempA = qx-dx fieldMult(tempB, tempA, tempD, arrayLength); //tempC = lambda * (qx-dx) fieldModP(tempC, tempD); fieldSub(tempC, py, ecc_prime_m, Dy); //Dy = lambda * (qx-dx) - px } void static ec_add(const uint32_t *px, const uint32_t *py, const uint32_t *qx, const uint32_t *qy, uint32_t *Sx, uint32_t *Sy){ uint32_t tempA[8]; uint32_t tempB[8]; uint32_t tempC[8]; uint32_t tempD[16]; if(isZero(px) && isZero(py)){ copy(qx, Sx,arrayLength); copy(qy, Sy,arrayLength); return; } else if(isZero(qx) && isZero(qy)) { copy(px, Sx,arrayLength); copy(py, Sy,arrayLength); return; } if(isSame(px, qx, arrayLength)){ if(!isSame(py, qy, arrayLength)){ setZero(Sx, 8); setZero(Sy, 8); return; } else { ec_double(px, py, Sx, Sy); return; } } fieldSub(py, qy, ecc_prime_m, tempA); fieldSub(px, qx, ecc_prime_m, tempB); fieldInv(tempB, ecc_prime_m, ecc_prime_r, tempB); fieldMult(tempA, tempB, tempD, arrayLength); fieldModP(tempC, tempD); //tempC = lambda fieldMult(tempC, tempC, tempD, arrayLength); //tempA = lambda^2 fieldModP(tempA, tempD); fieldSub(tempA, px, ecc_prime_m, tempB); //lambda^2 - Px fieldSub(tempB, qx, ecc_prime_m, Sx); //lambda^2 - Px - Qx fieldSub(qx, Sx, ecc_prime_m, tempB); fieldMult(tempC, tempB, tempD, arrayLength); fieldModP(tempC, tempD); fieldSub(tempC, qy, ecc_prime_m, Sy); } void ecc_ec_mult(const uint32_t *px, const uint32_t *py, const uint32_t *secret, uint32_t *resultx, uint32_t *resulty){ uint32_t Qx[8]; uint32_t Qy[8]; setZero(Qx, 8); setZero(Qy, 8); uint32_t tempx[8]; uint32_t tempy[8]; int i; for (i = 256;i--;){ ec_double(Qx, Qy, tempx, tempy); copy(tempx, Qx,arrayLength); copy(tempy, Qy,arrayLength); if ((((secret[i/32])>>(i%32)) & 0x01) == 1){ //<- TODO quark, muss anders gemacht werden ec_add(Qx, Qy, px, py, tempx, tempy); //eccAdd copy(tempx, Qx,arrayLength); copy(tempy, Qy,arrayLength); } } copy(Qx, resultx,arrayLength); copy(Qy, resulty,arrayLength); } /** * Calculate the ecdsa signature. * * For a description of this algorithm see * https://en.wikipedia.org/wiki/Elliptic_Curve_DSA#Signature_generation_algorithm * * input: * d: private key on the curve secp256r1 (32 bytes) * e: hash to sign (32 bytes) * k: random data, this must be changed for every signature (32 bytes) * * output: * r: r value of the signature (36 bytes) * s: s value of the signature (36 bytes) * * return: * 0: everything is ok * -1: can not create signature, try again with different k. */ int ecc_ecdsa_sign(const uint32_t *d, const uint32_t *e, const uint32_t *k, uint32_t *r, uint32_t *s) { uint32_t tmp1[16]; uint32_t tmp2[9]; uint32_t tmp3[9]; if (isZero(k)) return -1; // 4. Calculate the curve point (x_1, y_1) = k * G. ecc_ec_mult(ecc_g_point_x, ecc_g_point_y, k, r, tmp1); // 5. Calculate r = x_1 \pmod{n}. fieldModO(r, r, 8); // 5. If r = 0, go back to step 3. if (isZero(r)) return -1; // 6. Calculate s = k^{-1}(z + r d_A) \pmod{n}. // 6. r * d fieldMult(r, d, tmp1, arrayLength); fieldModO(tmp1, tmp2, 16); // 6. z + (r d) tmp1[8] = add(e, tmp2, tmp1, 8); fieldModO(tmp1, tmp3, 9); // 6. k^{-1} fieldInv(k, ecc_order_m, ecc_order_r, tmp2); // 6. (k^{-1}) (z + (r d)) fieldMult(tmp2, tmp3, tmp1, arrayLength); fieldModO(tmp1, s, 16); // 6. If s = 0, go back to step 3. if (isZero(s)) return -1; return 0; } /** * Verifies a ecdsa signature. * * For a description of this algorithm see * https://en.wikipedia.org/wiki/Elliptic_Curve_DSA#Signature_verification_algorithm * * input: * x: x coordinate of the public key (32 bytes) * y: y coordinate of the public key (32 bytes) * e: hash to verify the signature of (32 bytes) * r: r value of the signature (32 bytes) * s: s value of the signature (32 bytes) * * return: * 0: signature is ok * -1: signature check failed the signature is invalid */ int ecc_ecdsa_validate(const uint32_t *x, const uint32_t *y, const uint32_t *e, const uint32_t *r, const uint32_t *s) { uint32_t w[8]; uint32_t tmp[16]; uint32_t u1[9]; uint32_t u2[9]; uint32_t tmp1_x[8]; uint32_t tmp1_y[8]; uint32_t tmp2_x[8]; uint32_t tmp2_y[8]; uint32_t tmp3_x[8]; uint32_t tmp3_y[8]; // 3. Calculate w = s^{-1} \pmod{n} fieldInv(s, ecc_order_m, ecc_order_r, w); // 4. Calculate u_1 = zw \pmod{n} fieldMult(e, w, tmp, arrayLength); fieldModO(tmp, u1, 16); // 4. Calculate u_2 = rw \pmod{n} fieldMult(r, w, tmp, arrayLength); fieldModO(tmp, u2, 16); // 5. Calculate the curve point (x_1, y_1) = u_1 * G + u_2 * Q_A. // tmp1 = u_1 * G ecc_ec_mult(ecc_g_point_x, ecc_g_point_y, u1, tmp1_x, tmp1_y); // tmp2 = u_2 * Q_A ecc_ec_mult(x, y, u2, tmp2_x, tmp2_y); // tmp3 = tmp1 + tmp2 ec_add(tmp1_x, tmp1_y, tmp2_x, tmp2_y, tmp3_x, tmp3_y); // TODO: this u_1 * G + u_2 * Q_A could be optimiced with Straus's algorithm. return isSame(tmp3_x, r, arrayLength) ? 0 : -1; } int ecc_is_valid_key(const uint32_t * priv_key) { return isGreater(ecc_order_m, priv_key, arrayLength) == 1; } /* * This exports the low level functions so the tests can use them. * In real use the compiler is now bale to optimice the code better. */ #ifdef TEST_INCLUDE uint32_t ecc_add( const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length) { return add(x, y, result, length); } uint32_t ecc_sub( const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length) { return sub(x, y, result, length); } int ecc_fieldAdd(const uint32_t *x, const uint32_t *y, const uint32_t *reducer, uint32_t *result) { return fieldAdd(x, y, reducer, result); } int ecc_fieldSub(const uint32_t *x, const uint32_t *y, const uint32_t *modulus, uint32_t *result) { return fieldSub(x, y, modulus, result); } int ecc_fieldMult(const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length) { return fieldMult(x, y, result, length); } void ecc_fieldModP(uint32_t *A, const uint32_t *B) { fieldModP(A, B); } void ecc_fieldModO(const uint32_t *A, uint32_t *result, uint8_t length) { fieldModO(A, result, length); } void ecc_fieldInv(const uint32_t *A, const uint32_t *modulus, const uint32_t *reducer, uint32_t *B) { fieldInv(A, modulus, reducer, B); } void ecc_copy(const uint32_t *from, uint32_t *to, uint8_t length) { copy(from, to, length); } int ecc_isSame(const uint32_t *A, const uint32_t *B, uint8_t length) { return isSame(A, B, length); } void ecc_setZero(uint32_t *A, const int length) { setZero(A, length); } int ecc_isOne(const uint32_t* A) { return isOne(A); } void ecc_rshift(uint32_t* A) { rshift(A); } int ecc_isGreater(const uint32_t *A, const uint32_t *B, uint8_t length) { return isGreater(A, B , length); } void ecc_ec_add(const uint32_t *px, const uint32_t *py, const uint32_t *qx, const uint32_t *qy, uint32_t *Sx, uint32_t *Sy) { ec_add(px, py, qx, qy, Sx, Sy); } void ecc_ec_double(const uint32_t *px, const uint32_t *py, uint32_t *Dx, uint32_t *Dy) { ec_double(px, py, Dx, Dy); } #endif /* TEST_INCLUDE */