Version 0.5.0 of tinydtls
Dependents: tinydtls_test_cellular tinydtls_test_ethernet tiny-dtls
Diff: ecc/ecc.c
- Revision:
- 0:ff9ebe0cf0e9
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ecc/ecc.c Fri Oct 18 13:18:30 2013 +0000 @@ -0,0 +1,720 @@ +/* + * Copyright (c) 2009 Chris K Cockrum <ckc@cockrum.net> + * + * Copyright (c) 2013 Jens Trillmann <jtrillma@tzi.de> + * Copyright (c) 2013 Marc Müller-Weinhardt <muewei@tzi.de> + * Copyright (c) 2013 Lars Schmertmann <lars@tzi.de> + * Copyright (c) 2013 Hauke Mehrtens <hauke@hauke-m.de> + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + * + * + * This implementation is based in part on the paper Implementation of an + * Elliptic Curve Cryptosystem on an 8-bit Microcontroller [0] by + * Chris K Cockrum <ckc@cockrum.net>. + * + * [0]: http://cockrum.net/Implementation_of_ECC_on_an_8-bit_microcontroller.pdf + * + * This is a efficient ECC implementation on the secp256r1 curve for 32 Bit CPU + * architectures. It provides basic operations on the secp256r1 curve and support + * for ECDH and ECDSA. + */ + +//big number functions +#include "ecc.h" + +static uint32_t add( const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length){ + uint64_t d = 0; //carry + int v = 0; + for(v = 0;v<length;v++){ + //printf("%02x + %02x + %01x = ", x[v], y[v], d); + d += (uint64_t) x[v] + (uint64_t) y[v]; + //printf("%02x\n", d); + result[v] = d; + d = d>>32; //save carry + } + + return (uint32_t)d; +} + +static uint32_t sub( const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length){ + uint64_t d = 0; + int v; + for(v = 0;v < length; v++){ + d = (uint64_t) x[v] - (uint64_t) y[v] - d; + result[v] = d & 0xFFFFFFFF; + d = d>>32; + d &= 0x1; + } + return (uint32_t)d; +} + +static void rshiftby(const uint32_t *in, uint8_t in_size, uint32_t *out, uint8_t out_size, uint8_t shift) { + int i; + + for (i = 0; i < (in_size - shift) && i < out_size; i++) + out[i] = in[i + shift]; + for (/* reuse i */; i < out_size; i++) + out[i] = 0; +} + +//finite field functions +//FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF +static const uint32_t ecc_prime_m[8] = {0xffffffff, 0xffffffff, 0xffffffff, 0x00000000, + 0x00000000, 0x00000000, 0x00000001, 0xffffffff}; + + +/* This is added after an static byte addition if the answer has a carry in MSB*/ +static const uint32_t ecc_prime_r[8] = {0x00000001, 0x00000000, 0x00000000, 0xffffffff, + 0xffffffff, 0xffffffff, 0xfffffffe, 0x00000000}; + +// ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 +static const uint32_t ecc_order_m[9] = {0xFC632551, 0xF3B9CAC2, 0xA7179E84, 0xBCE6FAAD, + 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, + 0x00000000}; + +static const uint32_t ecc_order_r[8] = {0x039CDAAF, 0x0C46353D, 0x58E8617B, 0x43190552, + 0x00000000, 0x00000000, 0xFFFFFFFF, 0x00000000}; + +static const uint32_t ecc_order_mu[9] = {0xEEDF9BFE, 0x012FFD85, 0xDF1A6C21, 0x43190552, + 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0x00000000, + 0x00000001}; + +static const uint8_t ecc_order_k = 8; + +const uint32_t ecc_g_point_x[8] = { 0xD898C296, 0xF4A13945, 0x2DEB33A0, 0x77037D81, + 0x63A440F2, 0xF8BCE6E5, 0xE12C4247, 0x6B17D1F2}; +const uint32_t ecc_g_point_y[8] = { 0x37BF51F5, 0xCBB64068, 0x6B315ECE, 0x2BCE3357, + 0x7C0F9E16, 0x8EE7EB4A, 0xFE1A7F9B, 0x4FE342E2}; + + +static void setZero(uint32_t *A, const int length){ + int i; + + for (i = 0; i < length; ++i) + { + A[i] = 0; + } +} + +/* + * copy one array to another + */ +static void copy(const uint32_t *from, uint32_t *to, uint8_t length){ + int i; + for (i = 0; i < length; ++i) + { + to[i] = from[i]; + } +} + +static int isSame(const uint32_t *A, const uint32_t *B, uint8_t length){ + int i; + + for(i = 0; i < length; i++){ + if (A[i] != B[i]) + return 0; + } + return 1; +} + +//is A greater than B? +static int isGreater(const uint32_t *A, const uint32_t *B, uint8_t length){ + int i; + for (i = length-1; i >= 0; --i) + { + if(A[i] > B[i]) + return 1; + if(A[i] < B[i]) + return -1; + } + return 0; +} + + +static int fieldAdd(const uint32_t *x, const uint32_t *y, const uint32_t *reducer, uint32_t *result){ + if(add(x, y, result, arrayLength)){ //add prime if carry is still set! + uint32_t tempas[8]; + setZero(tempas, 8); + add(result, reducer, tempas, arrayLength); + copy(tempas, result, arrayLength); + } + return 0; +} + +static int fieldSub(const uint32_t *x, const uint32_t *y, const uint32_t *modulus, uint32_t *result){ + if(sub(x, y, result, arrayLength)){ //add modulus if carry is set + uint32_t tempas[8]; + setZero(tempas, 8); + add(result, modulus, tempas, arrayLength); + copy(tempas, result, arrayLength); + } + return 0; +} + +//finite Field multiplication +//32bit * 32bit = 64bit +static int fieldMult(const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length){ + uint32_t temp[length * 2]; + setZero(temp, length * 2); + setZero(result, length * 2); + uint8_t k, n; + uint64_t l; + for (k = 0; k < length; k++){ + for (n = 0; n < length; n++){ + l = (uint64_t)x[n]*(uint64_t)y[k]; + temp[n+k] = l&0xFFFFFFFF; + temp[n+k+1] = l>>32; + add(&temp[n+k], &result[n+k], &result[n+k], (length * 2) - (n + k)); + + setZero(temp, length * 2); + } + } + return 0; +} + +//TODO: maximum: +//fffffffe00000002fffffffe0000000100000001fffffffe00000001fffffffe00000001fffffffefffffffffffffffffffffffe000000000000000000000001_16 +static void fieldModP(uint32_t *A, const uint32_t *B) +{ + uint32_t tempm[8]; + uint32_t tempm2[8]; + uint8_t n; + setZero(tempm, 8); + setZero(tempm2, 8); + /* A = T */ + copy(B,A,arrayLength); + + /* Form S1 */ + for(n=0;n<3;n++) tempm[n]=0; + for(n=3;n<8;n++) tempm[n]=B[n+8]; + + /* tempm2=T+S1 */ + fieldAdd(A,tempm,ecc_prime_r,tempm2); + /* A=T+S1+S1 */ + fieldAdd(tempm2,tempm,ecc_prime_r,A); + /* Form S2 */ + for(n=0;n<3;n++) tempm[n]=0; + for(n=3;n<7;n++) tempm[n]=B[n+9]; + for(n=7;n<8;n++) tempm[n]=0; + /* tempm2=T+S1+S1+S2 */ + fieldAdd(A,tempm,ecc_prime_r,tempm2); + /* A=T+S1+S1+S2+S2 */ + fieldAdd(tempm2,tempm,ecc_prime_r,A); + /* Form S3 */ + for(n=0;n<3;n++) tempm[n]=B[n+8]; + for(n=3;n<6;n++) tempm[n]=0; + for(n=6;n<8;n++) tempm[n]=B[n+8]; + /* tempm2=T+S1+S1+S2+S2+S3 */ + fieldAdd(A,tempm,ecc_prime_r,tempm2); + /* Form S4 */ + for(n=0;n<3;n++) tempm[n]=B[n+9]; + for(n=3;n<6;n++) tempm[n]=B[n+10]; + for(n=6;n<7;n++) tempm[n]=B[n+7]; + for(n=7;n<8;n++) tempm[n]=B[n+1]; + /* A=T+S1+S1+S2+S2+S3+S4 */ + fieldAdd(tempm2,tempm,ecc_prime_r,A); + /* Form D1 */ + for(n=0;n<3;n++) tempm[n]=B[n+11]; + for(n=3;n<6;n++) tempm[n]=0; + for(n=6;n<7;n++) tempm[n]=B[n+2]; + for(n=7;n<8;n++) tempm[n]=B[n+3]; + /* tempm2=T+S1+S1+S2+S2+S3+S4-D1 */ + fieldSub(A,tempm,ecc_prime_m,tempm2); + /* Form D2 */ + for(n=0;n<4;n++) tempm[n]=B[n+12]; + for(n=4;n<6;n++) tempm[n]=0; + for(n=6;n<7;n++) tempm[n]=B[n+3]; + for(n=7;n<8;n++) tempm[n]=B[n+4]; + /* A=T+S1+S1+S2+S2+S3+S4-D1-D2 */ + fieldSub(tempm2,tempm,ecc_prime_m,A); + /* Form D3 */ + for(n=0;n<3;n++) tempm[n]=B[n+13]; + for(n=3;n<6;n++) tempm[n]=B[n+5]; + for(n=6;n<7;n++) tempm[n]=0; + for(n=7;n<8;n++) tempm[n]=B[n+5]; + /* tempm2=T+S1+S1+S2+S2+S3+S4-D1-D2-D3 */ + fieldSub(A,tempm,ecc_prime_m,tempm2); + /* Form D4 */ + for(n=0;n<2;n++) tempm[n]=B[n+14]; + for(n=2;n<3;n++) tempm[n]=0; + for(n=3;n<6;n++) tempm[n]=B[n+6]; + for(n=6;n<7;n++) tempm[n]=0; + for(n=7;n<8;n++) tempm[n]=B[n+6]; + /* A=T+S1+S1+S2+S2+S3+S4-D1-D2-D3-D4 */ + fieldSub(tempm2,tempm,ecc_prime_m,A); + if(isGreater(A, ecc_prime_m, arrayLength) >= 0){ + fieldSub(A, ecc_prime_m, ecc_prime_m, tempm); + copy(tempm, A, arrayLength); + } +} + +/** + * calculate the result = A mod n. + * n is the order of the eliptic curve. + * A and result could point to the same value + * + * A: input value (max size * 4 bytes) + * result: result of modulo calculation (max 36 bytes) + * size: size of A + * + * This uses the Barrett modular reduction as described in the Handbook + * of Applied Cryptography 14.42 Algorithm Barrett modular reduction, + * see http://cacr.uwaterloo.ca/hac/about/chap14.pdf and + * http://everything2.com/title/Barrett+Reduction + * + * b = 32 (bite size of the processor architecture) + * mu (ecc_order_mu) was precomputed in a java program + */ +static void fieldModO(const uint32_t *A, uint32_t *result, uint8_t length) { + // This is used for value q1 and q3 + uint32_t q1_q3[9]; + // This is used for q2 and a temp var + uint32_t q2_tmp[18]; + + // return if the given value is smaller than the modulus + if (length == arrayLength && isGreater(A, ecc_order_m, arrayLength) <= 0) { + if (A != result) + copy(A, result, length); + return; + } + + rshiftby(A, length, q1_q3, 9, ecc_order_k - 1); + + fieldMult(ecc_order_mu, q1_q3, q2_tmp, 9); + + rshiftby(q2_tmp, 18, q1_q3, 8, ecc_order_k + 1); + + // r1 = first 9 blocks of A + + fieldMult(q1_q3, ecc_order_m, q2_tmp, 8); + + // r2 = first 9 blocks of q2_tmp + + sub(A, q2_tmp, result, 9); + + while (isGreater(result, ecc_order_m, 9) >= 0) + sub(result, ecc_order_m, result, 9); +} + +static int isOne(const uint32_t* A){ + uint8_t n; + for(n=1;n<8;n++) + if (A[n]!=0) + break; + + if ((n==8)&&(A[0]==1)) + return 1; + else + return 0; +} + +static int isZero(const uint32_t* A){ + uint8_t n, r=0; + for(n=0;n<8;n++){ + if (A[n] == 0) r++; + } + return r==8; +} + +static void rshift(uint32_t* A){ + int n, i, nOld=0; + for (i = 8; i--;) + { + n = A[i]&0x1; + A[i] = A[i]>>1 | nOld<<31; + nOld = n; + } +} + +static int fieldAddAndDivide(const uint32_t *x, const uint32_t *modulus, const uint32_t *reducer, uint32_t* result){ + uint32_t n = add(x, modulus, result, arrayLength); + rshift(result); + if(n){ //add prime if carry is still set! + result[7] |= 0x80000000;//add the carry + if (isGreater(result, modulus, arrayLength) == 1) + { + uint32_t tempas[8]; + setZero(tempas, 8); + add(result, reducer, tempas, 8); + copy(tempas, result, arrayLength); + } + + } + return 0; +} + +/* + * Inverse A and output to B + */ +static void fieldInv(const uint32_t *A, const uint32_t *modulus, const uint32_t *reducer, uint32_t *B){ + uint32_t u[8],v[8],x1[8],x2[8]; + uint32_t tempm[8]; + uint32_t tempm2[8]; + setZero(tempm, 8); + setZero(tempm2, 8); + setZero(u, 8); + setZero(v, 8); + + uint8_t t; + copy(A,u,arrayLength); + copy(modulus,v,arrayLength); + setZero(x1, 8); + setZero(x2, 8); + x1[0]=1; + /* While u !=1 and v !=1 */ + while ((isOne(u) || isOne(v))==0) { + while(!(u[0]&1)) { /* While u is even */ + rshift(u); /* divide by 2 */ + if (!(x1[0]&1)) /*ifx1iseven*/ + rshift(x1); /* Divide by 2 */ + else { + fieldAddAndDivide(x1,modulus,reducer,tempm); /* tempm=x1+p */ + copy(tempm,x1,arrayLength); /* x1=tempm */ + //rshift(x1); /* Divide by 2 */ + } + } + while(!(v[0]&1)) { /* While v is even */ + rshift(v); /* divide by 2 */ + if (!(x2[0]&1)) /*ifx1iseven*/ + rshift(x2); /* Divide by 2 */ + else + { + fieldAddAndDivide(x2,modulus,reducer,tempm); /* tempm=x1+p */ + copy(tempm,x2,arrayLength); /* x1=tempm */ + //rshift(x2); /* Divide by 2 */ + } + + } + t=sub(u,v,tempm,arrayLength); /* tempm=u-v */ + if (t==0) { /* If u > 0 */ + copy(tempm,u,arrayLength); /* u=u-v */ + fieldSub(x1,x2,modulus,tempm); /* tempm=x1-x2 */ + copy(tempm,x1,arrayLength); /* x1=x1-x2 */ + } else { + sub(v,u,tempm,arrayLength); /* tempm=v-u */ + copy(tempm,v,arrayLength); /* v=v-u */ + fieldSub(x2,x1,modulus,tempm); /* tempm=x2-x1 */ + copy(tempm,x2,arrayLength); /* x2=x2-x1 */ + } + } + if (isOne(u)) { + copy(x1,B,arrayLength); + } else { + copy(x2,B,arrayLength); + } +} + +void static ec_double(const uint32_t *px, const uint32_t *py, uint32_t *Dx, uint32_t *Dy){ + uint32_t tempA[8]; + uint32_t tempB[8]; + uint32_t tempC[8]; + uint32_t tempD[16]; + + if(isZero(px) && isZero(py)){ + copy(px, Dx,arrayLength); + copy(py, Dy,arrayLength); + return; + } + + fieldMult(px, px, tempD, arrayLength); + fieldModP(tempA, tempD); + setZero(tempB, 8); + tempB[0] = 0x00000001; + fieldSub(tempA, tempB, ecc_prime_m, tempC); //tempC = (qx^2-1) + tempB[0] = 0x00000003; + fieldMult(tempC, tempB, tempD, arrayLength); + fieldModP(tempA, tempD);//tempA = 3*(qx^2-1) + fieldAdd(py, py, ecc_prime_r, tempB); //tempB = 2*qy + fieldInv(tempB, ecc_prime_m, ecc_prime_r, tempC); //tempC = 1/(2*qy) + fieldMult(tempA, tempC, tempD, arrayLength); //tempB = lambda = (3*(qx^2-1))/(2*qy) + fieldModP(tempB, tempD); + + fieldMult(tempB, tempB, tempD, arrayLength); //tempC = lambda^2 + fieldModP(tempC, tempD); + fieldSub(tempC, px, ecc_prime_m, tempA); //lambda^2 - Px + fieldSub(tempA, px, ecc_prime_m, Dx); //lambda^2 - Px - Qx + + fieldSub(px, Dx, ecc_prime_m, tempA); //tempA = qx-dx + fieldMult(tempB, tempA, tempD, arrayLength); //tempC = lambda * (qx-dx) + fieldModP(tempC, tempD); + fieldSub(tempC, py, ecc_prime_m, Dy); //Dy = lambda * (qx-dx) - px +} + +void static ec_add(const uint32_t *px, const uint32_t *py, const uint32_t *qx, const uint32_t *qy, uint32_t *Sx, uint32_t *Sy){ + uint32_t tempA[8]; + uint32_t tempB[8]; + uint32_t tempC[8]; + uint32_t tempD[16]; + + if(isZero(px) && isZero(py)){ + copy(qx, Sx,arrayLength); + copy(qy, Sy,arrayLength); + return; + } else if(isZero(qx) && isZero(qy)) { + copy(px, Sx,arrayLength); + copy(py, Sy,arrayLength); + return; + } + + if(isSame(px, qx, arrayLength)){ + if(!isSame(py, qy, arrayLength)){ + setZero(Sx, 8); + setZero(Sy, 8); + return; + } else { + ec_double(px, py, Sx, Sy); + return; + } + } + + fieldSub(py, qy, ecc_prime_m, tempA); + fieldSub(px, qx, ecc_prime_m, tempB); + fieldInv(tempB, ecc_prime_m, ecc_prime_r, tempB); + fieldMult(tempA, tempB, tempD, arrayLength); + fieldModP(tempC, tempD); //tempC = lambda + + fieldMult(tempC, tempC, tempD, arrayLength); //tempA = lambda^2 + fieldModP(tempA, tempD); + fieldSub(tempA, px, ecc_prime_m, tempB); //lambda^2 - Px + fieldSub(tempB, qx, ecc_prime_m, Sx); //lambda^2 - Px - Qx + + fieldSub(qx, Sx, ecc_prime_m, tempB); + fieldMult(tempC, tempB, tempD, arrayLength); + fieldModP(tempC, tempD); + fieldSub(tempC, qy, ecc_prime_m, Sy); +} + +void ecc_ec_mult(const uint32_t *px, const uint32_t *py, const uint32_t *secret, uint32_t *resultx, uint32_t *resulty){ + uint32_t Qx[8]; + uint32_t Qy[8]; + setZero(Qx, 8); + setZero(Qy, 8); + + uint32_t tempx[8]; + uint32_t tempy[8]; + + int i; + for (i = 256;i--;){ + ec_double(Qx, Qy, tempx, tempy); + copy(tempx, Qx,arrayLength); + copy(tempy, Qy,arrayLength); + if ((((secret[i/32])>>(i%32)) & 0x01) == 1){ //<- TODO quark, muss anders gemacht werden + ec_add(Qx, Qy, px, py, tempx, tempy); //eccAdd + copy(tempx, Qx,arrayLength); + copy(tempy, Qy,arrayLength); + } + } + copy(Qx, resultx,arrayLength); + copy(Qy, resulty,arrayLength); +} + +/** + * Calculate the ecdsa signature. + * + * For a description of this algorithm see + * https://en.wikipedia.org/wiki/Elliptic_Curve_DSA#Signature_generation_algorithm + * + * input: + * d: private key on the curve secp256r1 (32 bytes) + * e: hash to sign (32 bytes) + * k: random data, this must be changed for every signature (32 bytes) + * + * output: + * r: r value of the signature (36 bytes) + * s: s value of the signature (36 bytes) + * + * return: + * 0: everything is ok + * -1: can not create signature, try again with different k. + */ +int ecc_ecdsa_sign(const uint32_t *d, const uint32_t *e, const uint32_t *k, uint32_t *r, uint32_t *s) +{ + uint32_t tmp1[16]; + uint32_t tmp2[9]; + uint32_t tmp3[9]; + + if (isZero(k)) + return -1; + + // 4. Calculate the curve point (x_1, y_1) = k * G. + ecc_ec_mult(ecc_g_point_x, ecc_g_point_y, k, r, tmp1); + + // 5. Calculate r = x_1 \pmod{n}. + fieldModO(r, r, 8); + + // 5. If r = 0, go back to step 3. + if (isZero(r)) + return -1; + + // 6. Calculate s = k^{-1}(z + r d_A) \pmod{n}. + // 6. r * d + fieldMult(r, d, tmp1, arrayLength); + fieldModO(tmp1, tmp2, 16); + + // 6. z + (r d) + tmp1[8] = add(e, tmp2, tmp1, 8); + fieldModO(tmp1, tmp3, 9); + + // 6. k^{-1} + fieldInv(k, ecc_order_m, ecc_order_r, tmp2); + + // 6. (k^{-1}) (z + (r d)) + fieldMult(tmp2, tmp3, tmp1, arrayLength); + fieldModO(tmp1, s, 16); + + // 6. If s = 0, go back to step 3. + if (isZero(s)) + return -1; + + return 0; +} + +/** + * Verifies a ecdsa signature. + * + * For a description of this algorithm see + * https://en.wikipedia.org/wiki/Elliptic_Curve_DSA#Signature_verification_algorithm + * + * input: + * x: x coordinate of the public key (32 bytes) + * y: y coordinate of the public key (32 bytes) + * e: hash to verify the signature of (32 bytes) + * r: r value of the signature (32 bytes) + * s: s value of the signature (32 bytes) + * + * return: + * 0: signature is ok + * -1: signature check failed the signature is invalid + */ +int ecc_ecdsa_validate(const uint32_t *x, const uint32_t *y, const uint32_t *e, const uint32_t *r, const uint32_t *s) +{ + uint32_t w[8]; + uint32_t tmp[16]; + uint32_t u1[9]; + uint32_t u2[9]; + uint32_t tmp1_x[8]; + uint32_t tmp1_y[8]; + uint32_t tmp2_x[8]; + uint32_t tmp2_y[8]; + uint32_t tmp3_x[8]; + uint32_t tmp3_y[8]; + + // 3. Calculate w = s^{-1} \pmod{n} + fieldInv(s, ecc_order_m, ecc_order_r, w); + + // 4. Calculate u_1 = zw \pmod{n} + fieldMult(e, w, tmp, arrayLength); + fieldModO(tmp, u1, 16); + + // 4. Calculate u_2 = rw \pmod{n} + fieldMult(r, w, tmp, arrayLength); + fieldModO(tmp, u2, 16); + + // 5. Calculate the curve point (x_1, y_1) = u_1 * G + u_2 * Q_A. + // tmp1 = u_1 * G + ecc_ec_mult(ecc_g_point_x, ecc_g_point_y, u1, tmp1_x, tmp1_y); + + // tmp2 = u_2 * Q_A + ecc_ec_mult(x, y, u2, tmp2_x, tmp2_y); + + // tmp3 = tmp1 + tmp2 + ec_add(tmp1_x, tmp1_y, tmp2_x, tmp2_y, tmp3_x, tmp3_y); + // TODO: this u_1 * G + u_2 * Q_A could be optimiced with Straus's algorithm. + + return isSame(tmp3_x, r, arrayLength) ? 0 : -1; +} + +int ecc_is_valid_key(const uint32_t * priv_key) +{ + return isGreater(ecc_order_m, priv_key, arrayLength) == 1; +} + +/* + * This exports the low level functions so the tests can use them. + * In real use the compiler is now bale to optimice the code better. + */ +#ifdef TEST_INCLUDE +uint32_t ecc_add( const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length) +{ + return add(x, y, result, length); +} +uint32_t ecc_sub( const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length) +{ + return sub(x, y, result, length); +} +int ecc_fieldAdd(const uint32_t *x, const uint32_t *y, const uint32_t *reducer, uint32_t *result) +{ + return fieldAdd(x, y, reducer, result); +} +int ecc_fieldSub(const uint32_t *x, const uint32_t *y, const uint32_t *modulus, uint32_t *result) +{ + return fieldSub(x, y, modulus, result); +} +int ecc_fieldMult(const uint32_t *x, const uint32_t *y, uint32_t *result, uint8_t length) +{ + return fieldMult(x, y, result, length); +} +void ecc_fieldModP(uint32_t *A, const uint32_t *B) +{ + fieldModP(A, B); +} +void ecc_fieldModO(const uint32_t *A, uint32_t *result, uint8_t length) +{ + fieldModO(A, result, length); +} +void ecc_fieldInv(const uint32_t *A, const uint32_t *modulus, const uint32_t *reducer, uint32_t *B) +{ + fieldInv(A, modulus, reducer, B); +} +void ecc_copy(const uint32_t *from, uint32_t *to, uint8_t length) +{ + copy(from, to, length); +} +int ecc_isSame(const uint32_t *A, const uint32_t *B, uint8_t length) +{ + return isSame(A, B, length); +} +void ecc_setZero(uint32_t *A, const int length) +{ + setZero(A, length); +} +int ecc_isOne(const uint32_t* A) +{ + return isOne(A); +} +void ecc_rshift(uint32_t* A) +{ + rshift(A); +} +int ecc_isGreater(const uint32_t *A, const uint32_t *B, uint8_t length) +{ + return isGreater(A, B , length); +} + +void ecc_ec_add(const uint32_t *px, const uint32_t *py, const uint32_t *qx, const uint32_t *qy, uint32_t *Sx, uint32_t *Sy) +{ + ec_add(px, py, qx, qy, Sx, Sy); +} +void ecc_ec_double(const uint32_t *px, const uint32_t *py, uint32_t *Dx, uint32_t *Dy) +{ + ec_double(px, py, Dx, Dy); +} + +#endif /* TEST_INCLUDE */