Mirror with some correction
Dependencies: mbed FastIO FastPWM USBDevice
main.cpp@48:058ace2aed1d, 2016-02-26 (annotated)
- Committer:
- mjr
- Date:
- Fri Feb 26 18:42:03 2016 +0000
- Revision:
- 48:058ace2aed1d
- Parent:
- 47:df7a88cd249c
- Child:
- 49:37bd97eb7688
New plunger processing 1
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 35:e959ffba78fd | 1 | /* Copyright 2014, 2015 M J Roberts, MIT License |
mjr | 5:a70c0bce770d | 2 | * |
mjr | 5:a70c0bce770d | 3 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software |
mjr | 5:a70c0bce770d | 4 | * and associated documentation files (the "Software"), to deal in the Software without |
mjr | 5:a70c0bce770d | 5 | * restriction, including without limitation the rights to use, copy, modify, merge, publish, |
mjr | 5:a70c0bce770d | 6 | * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the |
mjr | 5:a70c0bce770d | 7 | * Software is furnished to do so, subject to the following conditions: |
mjr | 5:a70c0bce770d | 8 | * |
mjr | 5:a70c0bce770d | 9 | * The above copyright notice and this permission notice shall be included in all copies or |
mjr | 5:a70c0bce770d | 10 | * substantial portions of the Software. |
mjr | 5:a70c0bce770d | 11 | * |
mjr | 5:a70c0bce770d | 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING |
mjr | 48:058ace2aed1d | 13 | * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND |
mjr | 5:a70c0bce770d | 14 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, |
mjr | 5:a70c0bce770d | 15 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
mjr | 5:a70c0bce770d | 16 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
mjr | 5:a70c0bce770d | 17 | */ |
mjr | 5:a70c0bce770d | 18 | |
mjr | 5:a70c0bce770d | 19 | // |
mjr | 35:e959ffba78fd | 20 | // The Pinscape Controller |
mjr | 35:e959ffba78fd | 21 | // A comprehensive input/output controller for virtual pinball machines |
mjr | 5:a70c0bce770d | 22 | // |
mjr | 48:058ace2aed1d | 23 | // This project implements an I/O controller for virtual pinball cabinets. The |
mjr | 48:058ace2aed1d | 24 | // controller's function is to connect Visual Pinball (and other Windows pinball |
mjr | 48:058ace2aed1d | 25 | // emulators) with physical devices in the cabinet: buttons, sensors, and |
mjr | 48:058ace2aed1d | 26 | // feedback devices that create visual or mechanical effects during play. |
mjr | 38:091e511ce8a0 | 27 | // |
mjr | 48:058ace2aed1d | 28 | // The controller can perform several different functions, which can be used |
mjr | 38:091e511ce8a0 | 29 | // individually or in any combination: |
mjr | 5:a70c0bce770d | 30 | // |
mjr | 38:091e511ce8a0 | 31 | // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the |
mjr | 38:091e511ce8a0 | 32 | // motion of the cabinet when you nudge it. Visual Pinball and other pinball |
mjr | 38:091e511ce8a0 | 33 | // emulators on the PC have native handling for this type of input, so that |
mjr | 38:091e511ce8a0 | 34 | // physical nudges on the cabinet turn into simulated effects on the virtual |
mjr | 38:091e511ce8a0 | 35 | // ball. The KL25Z measures accelerations as analog readings and is quite |
mjr | 38:091e511ce8a0 | 36 | // sensitive, so the effect of a nudge on the simulation is proportional |
mjr | 38:091e511ce8a0 | 37 | // to the strength of the nudge. Accelerations are reported to the PC via a |
mjr | 38:091e511ce8a0 | 38 | // simulated joystick (using the X and Y axes); you just have to set some |
mjr | 38:091e511ce8a0 | 39 | // preferences in your pinball software to tell it that an accelerometer |
mjr | 38:091e511ce8a0 | 40 | // is attached. |
mjr | 5:a70c0bce770d | 41 | // |
mjr | 38:091e511ce8a0 | 42 | // - Plunger position sensing, with mulitple sensor options. To use this feature, |
mjr | 35:e959ffba78fd | 43 | // you need to choose a sensor and set it up, connect the sensor electrically to |
mjr | 35:e959ffba78fd | 44 | // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how |
mjr | 35:e959ffba78fd | 45 | // the sensor is hooked up. The Pinscape software monitors the sensor and sends |
mjr | 35:e959ffba78fd | 46 | // readings to Visual Pinball via the joystick Z axis. VP and other PC software |
mjr | 38:091e511ce8a0 | 47 | // have native support for this type of input; as with the nudge setup, you just |
mjr | 38:091e511ce8a0 | 48 | // have to set some options in VP to activate the plunger. |
mjr | 17:ab3cec0c8bf4 | 49 | // |
mjr | 35:e959ffba78fd | 50 | // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R |
mjr | 35:e959ffba78fd | 51 | // linear sensor arrays) as well as slide potentiometers. The specific equipment |
mjr | 35:e959ffba78fd | 52 | // that's supported, along with physical mounting and wiring details, can be found |
mjr | 35:e959ffba78fd | 53 | // in the Build Guide. |
mjr | 35:e959ffba78fd | 54 | // |
mjr | 38:091e511ce8a0 | 55 | // Note VP has built-in support for plunger devices like this one, but some VP |
mjr | 38:091e511ce8a0 | 56 | // tables can't use it without some additional scripting work. The Build Guide has |
mjr | 38:091e511ce8a0 | 57 | // advice on adjusting tables to add plunger support when necessary. |
mjr | 5:a70c0bce770d | 58 | // |
mjr | 6:cc35eb643e8f | 59 | // For best results, the plunger sensor should be calibrated. The calibration |
mjr | 6:cc35eb643e8f | 60 | // is stored in non-volatile memory on board the KL25Z, so it's only necessary |
mjr | 6:cc35eb643e8f | 61 | // to do the calibration once, when you first install everything. (You might |
mjr | 6:cc35eb643e8f | 62 | // also want to re-calibrate if you physically remove and reinstall the CCD |
mjr | 17:ab3cec0c8bf4 | 63 | // sensor or the mechanical plunger, since their alignment shift change slightly |
mjr | 17:ab3cec0c8bf4 | 64 | // when you put everything back together.) You can optionally install a |
mjr | 17:ab3cec0c8bf4 | 65 | // dedicated momentary switch or pushbutton to activate the calibration mode; |
mjr | 17:ab3cec0c8bf4 | 66 | // this is describe in the project documentation. If you don't want to bother |
mjr | 17:ab3cec0c8bf4 | 67 | // with the extra button, you can also trigger calibration using the Windows |
mjr | 17:ab3cec0c8bf4 | 68 | // setup software, which you can find on the Pinscape project page. |
mjr | 6:cc35eb643e8f | 69 | // |
mjr | 17:ab3cec0c8bf4 | 70 | // The calibration procedure is described in the project documentation. Briefly, |
mjr | 17:ab3cec0c8bf4 | 71 | // when you trigger calibration mode, the software will scan the CCD for about |
mjr | 17:ab3cec0c8bf4 | 72 | // 15 seconds, during which you should simply pull the physical plunger back |
mjr | 17:ab3cec0c8bf4 | 73 | // all the way, hold it for a moment, and then slowly return it to the rest |
mjr | 17:ab3cec0c8bf4 | 74 | // position. (DON'T just release it from the retracted position, since that |
mjr | 17:ab3cec0c8bf4 | 75 | // let it shoot forward too far. We want to measure the range from the park |
mjr | 17:ab3cec0c8bf4 | 76 | // position to the fully retracted position only.) |
mjr | 5:a70c0bce770d | 77 | // |
mjr | 13:72dda449c3c0 | 78 | // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs |
mjr | 38:091e511ce8a0 | 79 | // for buttons and switches. You can wire each input to a physical pinball-style |
mjr | 38:091e511ce8a0 | 80 | // button or switch, such as flipper buttons, Start buttons, coin chute switches, |
mjr | 38:091e511ce8a0 | 81 | // tilt bobs, and service buttons. Each button can be configured to be reported |
mjr | 38:091e511ce8a0 | 82 | // to the PC as a joystick button or as a keyboard key (you can select which key |
mjr | 38:091e511ce8a0 | 83 | // is used for each button). |
mjr | 13:72dda449c3c0 | 84 | // |
mjr | 5:a70c0bce770d | 85 | // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will |
mjr | 5:a70c0bce770d | 86 | // accept and process LedWiz commands from the host. The software can turn digital |
mjr | 5:a70c0bce770d | 87 | // output ports on and off, and can set varying PWM intensitiy levels on a subset |
mjr | 40:cc0d9814522b | 88 | // of ports. The KL25Z hardware is limited to 10 PWM ports. Ports beyond the |
mjr | 40:cc0d9814522b | 89 | // 10 PWM ports are simple digital on/off ports. Intensity level settings on |
mjr | 40:cc0d9814522b | 90 | // digital ports is ignored, so such ports can only be used for devices such as |
mjr | 40:cc0d9814522b | 91 | // contactors and solenoids that don't need differeing intensities. |
mjr | 5:a70c0bce770d | 92 | // |
mjr | 40:cc0d9814522b | 93 | // Note that the KL25Z can only supply or sink 4mA on its output ports, so external |
mjr | 40:cc0d9814522b | 94 | // amplifier hardware is required to use the LedWiz emulation. Many different |
mjr | 40:cc0d9814522b | 95 | // hardware designs are possible, but there's a simple reference design in the |
mjr | 40:cc0d9814522b | 96 | // documentation that uses a Darlington array IC to increase the output from |
mjr | 40:cc0d9814522b | 97 | // each port to 500mA (the same level as the LedWiz), plus an extended design |
mjr | 40:cc0d9814522b | 98 | // that adds an optocoupler and MOSFET to provide very high power handling, up |
mjr | 40:cc0d9814522b | 99 | // to about 45A or 150W, with voltages up to 100V. That will handle just about |
mjr | 40:cc0d9814522b | 100 | // any DC device directly (wtihout relays or other amplifiers), and switches fast |
mjr | 40:cc0d9814522b | 101 | // enough to support PWM devices. For example, you can use it to drive a motor at |
mjr | 40:cc0d9814522b | 102 | // different speeds via the PWM intensity. |
mjr | 40:cc0d9814522b | 103 | // |
mjr | 40:cc0d9814522b | 104 | // The Controller device can report any desired LedWiz unit number to the host, |
mjr | 40:cc0d9814522b | 105 | // which makes it possible for one or more Pinscape Controller units to coexist |
mjr | 40:cc0d9814522b | 106 | // with one more more real LedWiz units in the same machine. The LedWiz design |
mjr | 40:cc0d9814522b | 107 | // allows for up to 16 units to be installed in one machine. Each device needs |
mjr | 40:cc0d9814522b | 108 | // to have a distinct LedWiz Unit Number, which allows software on the PC to |
mjr | 40:cc0d9814522b | 109 | // address each device independently. |
mjr | 5:a70c0bce770d | 110 | // |
mjr | 5:a70c0bce770d | 111 | // The LedWiz emulation features are of course optional. There's no need to |
mjr | 5:a70c0bce770d | 112 | // build any of the external port hardware (or attach anything to the output |
mjr | 40:cc0d9814522b | 113 | // ports at all) if the LedWiz features aren't needed. |
mjr | 6:cc35eb643e8f | 114 | // |
mjr | 26:cb71c4af2912 | 115 | // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach |
mjr | 26:cb71c4af2912 | 116 | // external PWM controller chips for controlling device outputs, instead of using |
mjr | 26:cb71c4af2912 | 117 | // the limited LedWiz emulation through the on-board GPIO ports as described above. |
mjr | 26:cb71c4af2912 | 118 | // The software can control a set of daisy-chained TLC5940 chips, which provide |
mjr | 26:cb71c4af2912 | 119 | // 16 PWM outputs per chip. Two of these chips give you the full complement |
mjr | 26:cb71c4af2912 | 120 | // of 32 output ports of an actual LedWiz, and four give you 64 ports, which |
mjr | 33:d832bcab089e | 121 | // should be plenty for nearly any virtual pinball project. A private, extended |
mjr | 33:d832bcab089e | 122 | // version of the LedWiz protocol lets the host control the extra outputs, up to |
mjr | 33:d832bcab089e | 123 | // 128 outputs per KL25Z (8 TLC5940s). To take advantage of the extra outputs |
mjr | 33:d832bcab089e | 124 | // on the PC side, you need software that knows about the protocol extensions, |
mjr | 33:d832bcab089e | 125 | // which means you need the latest version of DirectOutput Framework (DOF). VP |
mjr | 33:d832bcab089e | 126 | // uses DOF for its output, so VP will be able to use the added ports without any |
mjr | 33:d832bcab089e | 127 | // extra work on your part. Older software (e.g., Future Pinball) that doesn't |
mjr | 33:d832bcab089e | 128 | // use DOF will still be able to use the LedWiz-compatible protocol, so it'll be |
mjr | 33:d832bcab089e | 129 | // able to control your first 32 ports (numbered 1-32 in the LedWiz scheme), but |
mjr | 33:d832bcab089e | 130 | // older software won't be able to address higher-numbered ports. That shouldn't |
mjr | 33:d832bcab089e | 131 | // be a problem because older software wouldn't know what to do with the extra |
mjr | 33:d832bcab089e | 132 | // devices anyway - FP, for example, is limited to a pre-defined set of outputs. |
mjr | 33:d832bcab089e | 133 | // As long as you put the most common devices on the first 32 outputs, and use |
mjr | 33:d832bcab089e | 134 | // higher numbered ports for the less common devices that older software can't |
mjr | 33:d832bcab089e | 135 | // use anyway, you'll get maximum functionality out of software new and old. |
mjr | 26:cb71c4af2912 | 136 | // |
mjr | 38:091e511ce8a0 | 137 | // - Night Mode control for output devices. You can connect a switch or button |
mjr | 38:091e511ce8a0 | 138 | // to the controller to activate "Night Mode", which disables feedback devices |
mjr | 38:091e511ce8a0 | 139 | // that you designate as noisy. You can designate outputs individually as being |
mjr | 38:091e511ce8a0 | 140 | // included in this set or not. This is useful if you want to play a game on |
mjr | 38:091e511ce8a0 | 141 | // your cabinet late at night without waking the kids and annoying the neighbors. |
mjr | 38:091e511ce8a0 | 142 | // |
mjr | 38:091e511ce8a0 | 143 | // - TV ON switch. The controller can pulse a relay to turn on your TVs after |
mjr | 38:091e511ce8a0 | 144 | // power to the cabinet comes on, with a configurable delay timer. This feature |
mjr | 38:091e511ce8a0 | 145 | // is for TVs that don't turn themselves on automatically when first plugged in. |
mjr | 38:091e511ce8a0 | 146 | // To use this feature, you have to build some external circuitry to allow the |
mjr | 38:091e511ce8a0 | 147 | // software to sense the power supply status, and you have to run wires to your |
mjr | 38:091e511ce8a0 | 148 | // TV's on/off button, which requires opening the case on your TV. The Build |
mjr | 38:091e511ce8a0 | 149 | // Guide has details on the necessary circuitry and connections to the TV. |
mjr | 38:091e511ce8a0 | 150 | // |
mjr | 35:e959ffba78fd | 151 | // |
mjr | 35:e959ffba78fd | 152 | // |
mjr | 33:d832bcab089e | 153 | // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current |
mjr | 33:d832bcab089e | 154 | // device status. The flash patterns are: |
mjr | 6:cc35eb643e8f | 155 | // |
mjr | 48:058ace2aed1d | 156 | // short yellow flash = waiting to connect |
mjr | 6:cc35eb643e8f | 157 | // |
mjr | 48:058ace2aed1d | 158 | // short red flash = the connection is suspended (the host is in sleep |
mjr | 48:058ace2aed1d | 159 | // or suspend mode, the USB cable is unplugged after a connection |
mjr | 48:058ace2aed1d | 160 | // has been established) |
mjr | 48:058ace2aed1d | 161 | // |
mjr | 48:058ace2aed1d | 162 | // two short red flashes = connection lost (the device should immediately |
mjr | 48:058ace2aed1d | 163 | // go back to short-yellow "waiting to reconnect" mode when a connection |
mjr | 48:058ace2aed1d | 164 | // is lost, so this display shouldn't normally appear) |
mjr | 6:cc35eb643e8f | 165 | // |
mjr | 38:091e511ce8a0 | 166 | // long red/yellow = USB connection problem. The device still has a USB |
mjr | 48:058ace2aed1d | 167 | // connection to the host (or so it appears to the device), but data |
mjr | 48:058ace2aed1d | 168 | // transmissions are failing. |
mjr | 38:091e511ce8a0 | 169 | // |
mjr | 6:cc35eb643e8f | 170 | // long yellow/green = everything's working, but the plunger hasn't |
mjr | 38:091e511ce8a0 | 171 | // been calibrated. Follow the calibration procedure described in |
mjr | 38:091e511ce8a0 | 172 | // the project documentation. This flash mode won't appear if there's |
mjr | 38:091e511ce8a0 | 173 | // no plunger sensor configured. |
mjr | 6:cc35eb643e8f | 174 | // |
mjr | 38:091e511ce8a0 | 175 | // alternating blue/green = everything's working normally, and plunger |
mjr | 38:091e511ce8a0 | 176 | // calibration has been completed (or there's no plunger attached) |
mjr | 10:976666ffa4ef | 177 | // |
mjr | 48:058ace2aed1d | 178 | // fast red/purple = out of memory. The controller halts and displays |
mjr | 48:058ace2aed1d | 179 | // this diagnostic code until you manually reset it. If this happens, |
mjr | 48:058ace2aed1d | 180 | // it's probably because the configuration is too complex, in which |
mjr | 48:058ace2aed1d | 181 | // case the same error will occur after the reset. If it's stuck |
mjr | 48:058ace2aed1d | 182 | // in this cycle, you'll have to restore the default configuration |
mjr | 48:058ace2aed1d | 183 | // by re-installing the controller software (the Pinscape .bin file). |
mjr | 10:976666ffa4ef | 184 | // |
mjr | 48:058ace2aed1d | 185 | // |
mjr | 48:058ace2aed1d | 186 | // USB PROTOCOL: Most of our USB messaging is through standard USB HID |
mjr | 48:058ace2aed1d | 187 | // classes (joystick, keyboard). We also accept control messages on our |
mjr | 48:058ace2aed1d | 188 | // primary HID interface "OUT endpoint" using a custom protocol that's |
mjr | 48:058ace2aed1d | 189 | // not defined in any USB standards (we do have to provide a USB HID |
mjr | 48:058ace2aed1d | 190 | // Report Descriptor for it, but this just describes the protocol as |
mjr | 48:058ace2aed1d | 191 | // opaque vendor-defined bytes). The control protocol incorporates the |
mjr | 48:058ace2aed1d | 192 | // LedWiz protocol as a subset, and adds our own private extensions. |
mjr | 48:058ace2aed1d | 193 | // For full details, see USBProtocol.h. |
mjr | 33:d832bcab089e | 194 | |
mjr | 33:d832bcab089e | 195 | |
mjr | 0:5acbbe3f4cf4 | 196 | #include "mbed.h" |
mjr | 6:cc35eb643e8f | 197 | #include "math.h" |
mjr | 48:058ace2aed1d | 198 | #include "pinscape.h" |
mjr | 0:5acbbe3f4cf4 | 199 | #include "USBJoystick.h" |
mjr | 0:5acbbe3f4cf4 | 200 | #include "MMA8451Q.h" |
mjr | 1:d913e0afb2ac | 201 | #include "tsl1410r.h" |
mjr | 1:d913e0afb2ac | 202 | #include "FreescaleIAP.h" |
mjr | 2:c174f9ee414a | 203 | #include "crc32.h" |
mjr | 26:cb71c4af2912 | 204 | #include "TLC5940.h" |
mjr | 34:6b981a2afab7 | 205 | #include "74HC595.h" |
mjr | 35:e959ffba78fd | 206 | #include "nvm.h" |
mjr | 35:e959ffba78fd | 207 | #include "plunger.h" |
mjr | 35:e959ffba78fd | 208 | #include "ccdSensor.h" |
mjr | 35:e959ffba78fd | 209 | #include "potSensor.h" |
mjr | 35:e959ffba78fd | 210 | #include "nullSensor.h" |
mjr | 48:058ace2aed1d | 211 | #include "TinyDigitalIn.h" |
mjr | 2:c174f9ee414a | 212 | |
mjr | 21:5048e16cc9ef | 213 | #define DECL_EXTERNS |
mjr | 17:ab3cec0c8bf4 | 214 | #include "config.h" |
mjr | 17:ab3cec0c8bf4 | 215 | |
mjr | 48:058ace2aed1d | 216 | // -------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 217 | // |
mjr | 48:058ace2aed1d | 218 | // Custom memory allocator. We use our own version of malloc() to provide |
mjr | 48:058ace2aed1d | 219 | // diagnostics if we run out of heap. |
mjr | 48:058ace2aed1d | 220 | // |
mjr | 48:058ace2aed1d | 221 | void *xmalloc(size_t siz) |
mjr | 48:058ace2aed1d | 222 | { |
mjr | 48:058ace2aed1d | 223 | // allocate through the normal library malloc; if that succeeds, |
mjr | 48:058ace2aed1d | 224 | // simply return the pointer we got from malloc |
mjr | 48:058ace2aed1d | 225 | void *ptr = malloc(siz); |
mjr | 48:058ace2aed1d | 226 | if (ptr != 0) |
mjr | 48:058ace2aed1d | 227 | return ptr; |
mjr | 48:058ace2aed1d | 228 | |
mjr | 48:058ace2aed1d | 229 | // failed - display diagnostics |
mjr | 48:058ace2aed1d | 230 | for (;;) |
mjr | 48:058ace2aed1d | 231 | { |
mjr | 48:058ace2aed1d | 232 | diagLED(1, 0, 0); |
mjr | 48:058ace2aed1d | 233 | wait(.2); |
mjr | 48:058ace2aed1d | 234 | diagLED(1, 0, 1); |
mjr | 48:058ace2aed1d | 235 | wait(.2); |
mjr | 48:058ace2aed1d | 236 | } |
mjr | 48:058ace2aed1d | 237 | } |
mjr | 48:058ace2aed1d | 238 | |
mjr | 48:058ace2aed1d | 239 | // overload operator new to call our custom malloc |
mjr | 48:058ace2aed1d | 240 | void *operator new(size_t siz) { return xmalloc(siz); } |
mjr | 48:058ace2aed1d | 241 | void *operator new[](size_t siz) { return xmalloc(siz); } |
mjr | 5:a70c0bce770d | 242 | |
mjr | 5:a70c0bce770d | 243 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 244 | // |
mjr | 38:091e511ce8a0 | 245 | // Forward declarations |
mjr | 38:091e511ce8a0 | 246 | // |
mjr | 38:091e511ce8a0 | 247 | void setNightMode(bool on); |
mjr | 38:091e511ce8a0 | 248 | void toggleNightMode(); |
mjr | 38:091e511ce8a0 | 249 | |
mjr | 38:091e511ce8a0 | 250 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 251 | // utilities |
mjr | 17:ab3cec0c8bf4 | 252 | |
mjr | 26:cb71c4af2912 | 253 | // floating point square of a number |
mjr | 26:cb71c4af2912 | 254 | inline float square(float x) { return x*x; } |
mjr | 26:cb71c4af2912 | 255 | |
mjr | 26:cb71c4af2912 | 256 | // floating point rounding |
mjr | 26:cb71c4af2912 | 257 | inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); } |
mjr | 26:cb71c4af2912 | 258 | |
mjr | 17:ab3cec0c8bf4 | 259 | |
mjr | 33:d832bcab089e | 260 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 261 | // |
mjr | 40:cc0d9814522b | 262 | // Extended verison of Timer class. This adds the ability to interrogate |
mjr | 40:cc0d9814522b | 263 | // the running state. |
mjr | 40:cc0d9814522b | 264 | // |
mjr | 40:cc0d9814522b | 265 | class Timer2: public Timer |
mjr | 40:cc0d9814522b | 266 | { |
mjr | 40:cc0d9814522b | 267 | public: |
mjr | 40:cc0d9814522b | 268 | Timer2() : running(false) { } |
mjr | 40:cc0d9814522b | 269 | |
mjr | 40:cc0d9814522b | 270 | void start() { running = true; Timer::start(); } |
mjr | 40:cc0d9814522b | 271 | void stop() { running = false; Timer::stop(); } |
mjr | 40:cc0d9814522b | 272 | |
mjr | 40:cc0d9814522b | 273 | bool isRunning() const { return running; } |
mjr | 40:cc0d9814522b | 274 | |
mjr | 40:cc0d9814522b | 275 | private: |
mjr | 40:cc0d9814522b | 276 | bool running; |
mjr | 40:cc0d9814522b | 277 | }; |
mjr | 40:cc0d9814522b | 278 | |
mjr | 40:cc0d9814522b | 279 | // -------------------------------------------------------------------------- |
mjr | 40:cc0d9814522b | 280 | // |
mjr | 33:d832bcab089e | 281 | // USB product version number |
mjr | 5:a70c0bce770d | 282 | // |
mjr | 47:df7a88cd249c | 283 | const uint16_t USB_VERSION_NO = 0x000A; |
mjr | 33:d832bcab089e | 284 | |
mjr | 33:d832bcab089e | 285 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 286 | // |
mjr | 6:cc35eb643e8f | 287 | // Joystick axis report range - we report from -JOYMAX to +JOYMAX |
mjr | 33:d832bcab089e | 288 | // |
mjr | 6:cc35eb643e8f | 289 | #define JOYMAX 4096 |
mjr | 6:cc35eb643e8f | 290 | |
mjr | 9:fd65b0a94720 | 291 | |
mjr | 17:ab3cec0c8bf4 | 292 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 293 | // |
mjr | 40:cc0d9814522b | 294 | // Wire protocol value translations. These translate byte values to and |
mjr | 40:cc0d9814522b | 295 | // from the USB protocol to local native format. |
mjr | 35:e959ffba78fd | 296 | // |
mjr | 35:e959ffba78fd | 297 | |
mjr | 35:e959ffba78fd | 298 | // unsigned 16-bit integer |
mjr | 35:e959ffba78fd | 299 | inline uint16_t wireUI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 300 | { |
mjr | 35:e959ffba78fd | 301 | return b[0] | ((uint16_t)b[1] << 8); |
mjr | 35:e959ffba78fd | 302 | } |
mjr | 40:cc0d9814522b | 303 | inline void ui16Wire(uint8_t *b, uint16_t val) |
mjr | 40:cc0d9814522b | 304 | { |
mjr | 40:cc0d9814522b | 305 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 306 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 307 | } |
mjr | 35:e959ffba78fd | 308 | |
mjr | 35:e959ffba78fd | 309 | inline int16_t wireI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 310 | { |
mjr | 35:e959ffba78fd | 311 | return (int16_t)wireUI16(b); |
mjr | 35:e959ffba78fd | 312 | } |
mjr | 40:cc0d9814522b | 313 | inline void i16Wire(uint8_t *b, int16_t val) |
mjr | 40:cc0d9814522b | 314 | { |
mjr | 40:cc0d9814522b | 315 | ui16Wire(b, (uint16_t)val); |
mjr | 40:cc0d9814522b | 316 | } |
mjr | 35:e959ffba78fd | 317 | |
mjr | 35:e959ffba78fd | 318 | inline uint32_t wireUI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 319 | { |
mjr | 35:e959ffba78fd | 320 | return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24); |
mjr | 35:e959ffba78fd | 321 | } |
mjr | 40:cc0d9814522b | 322 | inline void ui32Wire(uint8_t *b, uint32_t val) |
mjr | 40:cc0d9814522b | 323 | { |
mjr | 40:cc0d9814522b | 324 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 325 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 326 | b[2] = (uint8_t)((val >> 16) & 0xff); |
mjr | 40:cc0d9814522b | 327 | b[3] = (uint8_t)((val >> 24) & 0xff); |
mjr | 40:cc0d9814522b | 328 | } |
mjr | 35:e959ffba78fd | 329 | |
mjr | 35:e959ffba78fd | 330 | inline int32_t wireI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 331 | { |
mjr | 35:e959ffba78fd | 332 | return (int32_t)wireUI32(b); |
mjr | 35:e959ffba78fd | 333 | } |
mjr | 35:e959ffba78fd | 334 | |
mjr | 40:cc0d9814522b | 335 | static const PinName pinNameMap[] = { |
mjr | 40:cc0d9814522b | 336 | NC, PTA1, PTA2, PTA4, PTA5, PTA12, PTA13, PTA16, PTA17, PTB0, // 0-9 |
mjr | 40:cc0d9814522b | 337 | PTB1, PTB2, PTB3, PTB8, PTB9, PTB10, PTB11, PTB18, PTB19, PTC0, // 10-19 |
mjr | 40:cc0d9814522b | 338 | PTC1, PTC2, PTC3, PTC4, PTC5, PTC6, PTC7, PTC8, PTC9, PTC10, // 20-29 |
mjr | 40:cc0d9814522b | 339 | PTC11, PTC12, PTC13, PTC16, PTC17, PTD0, PTD1, PTD2, PTD3, PTD4, // 30-39 |
mjr | 40:cc0d9814522b | 340 | PTD5, PTD6, PTD7, PTE0, PTE1, PTE2, PTE3, PTE4, PTE5, PTE20, // 40-49 |
mjr | 40:cc0d9814522b | 341 | PTE21, PTE22, PTE23, PTE29, PTE30, PTE31 // 50-55 |
mjr | 40:cc0d9814522b | 342 | }; |
mjr | 35:e959ffba78fd | 343 | inline PinName wirePinName(int c) |
mjr | 35:e959ffba78fd | 344 | { |
mjr | 40:cc0d9814522b | 345 | return (c < countof(pinNameMap) ? pinNameMap[c] : NC); |
mjr | 40:cc0d9814522b | 346 | } |
mjr | 40:cc0d9814522b | 347 | inline void pinNameWire(uint8_t *b, PinName n) |
mjr | 40:cc0d9814522b | 348 | { |
mjr | 40:cc0d9814522b | 349 | b[0] = 0; // presume invalid -> NC |
mjr | 40:cc0d9814522b | 350 | for (int i = 0 ; i < countof(pinNameMap) ; ++i) |
mjr | 40:cc0d9814522b | 351 | { |
mjr | 40:cc0d9814522b | 352 | if (pinNameMap[i] == n) |
mjr | 40:cc0d9814522b | 353 | { |
mjr | 40:cc0d9814522b | 354 | b[0] = i; |
mjr | 40:cc0d9814522b | 355 | return; |
mjr | 40:cc0d9814522b | 356 | } |
mjr | 40:cc0d9814522b | 357 | } |
mjr | 35:e959ffba78fd | 358 | } |
mjr | 35:e959ffba78fd | 359 | |
mjr | 35:e959ffba78fd | 360 | |
mjr | 35:e959ffba78fd | 361 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 362 | // |
mjr | 38:091e511ce8a0 | 363 | // On-board RGB LED elements - we use these for diagnostic displays. |
mjr | 38:091e511ce8a0 | 364 | // |
mjr | 38:091e511ce8a0 | 365 | // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1, |
mjr | 38:091e511ce8a0 | 366 | // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard |
mjr | 38:091e511ce8a0 | 367 | // input or a device output). This is kind of unfortunate in that it's |
mjr | 38:091e511ce8a0 | 368 | // one of only two ports exposed on the jumper pins that can be muxed to |
mjr | 38:091e511ce8a0 | 369 | // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the |
mjr | 38:091e511ce8a0 | 370 | // SPI capability. |
mjr | 38:091e511ce8a0 | 371 | // |
mjr | 38:091e511ce8a0 | 372 | DigitalOut *ledR, *ledG, *ledB; |
mjr | 38:091e511ce8a0 | 373 | |
mjr | 38:091e511ce8a0 | 374 | // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is |
mjr | 38:091e511ce8a0 | 375 | // on, and -1 is no change (leaves the current setting intact). |
mjr | 38:091e511ce8a0 | 376 | void diagLED(int r, int g, int b) |
mjr | 38:091e511ce8a0 | 377 | { |
mjr | 38:091e511ce8a0 | 378 | if (ledR != 0 && r != -1) ledR->write(!r); |
mjr | 38:091e511ce8a0 | 379 | if (ledG != 0 && g != -1) ledG->write(!g); |
mjr | 38:091e511ce8a0 | 380 | if (ledB != 0 && b != -1) ledB->write(!b); |
mjr | 38:091e511ce8a0 | 381 | } |
mjr | 38:091e511ce8a0 | 382 | |
mjr | 38:091e511ce8a0 | 383 | // check an output port assignment to see if it conflicts with |
mjr | 38:091e511ce8a0 | 384 | // an on-board LED segment |
mjr | 38:091e511ce8a0 | 385 | struct LedSeg |
mjr | 38:091e511ce8a0 | 386 | { |
mjr | 38:091e511ce8a0 | 387 | bool r, g, b; |
mjr | 38:091e511ce8a0 | 388 | LedSeg() { r = g = b = false; } |
mjr | 38:091e511ce8a0 | 389 | |
mjr | 38:091e511ce8a0 | 390 | void check(LedWizPortCfg &pc) |
mjr | 38:091e511ce8a0 | 391 | { |
mjr | 38:091e511ce8a0 | 392 | // if it's a GPIO, check to see if it's assigned to one of |
mjr | 38:091e511ce8a0 | 393 | // our on-board LED segments |
mjr | 38:091e511ce8a0 | 394 | int t = pc.typ; |
mjr | 38:091e511ce8a0 | 395 | if (t == PortTypeGPIOPWM || t == PortTypeGPIODig) |
mjr | 38:091e511ce8a0 | 396 | { |
mjr | 38:091e511ce8a0 | 397 | // it's a GPIO port - check for a matching pin assignment |
mjr | 38:091e511ce8a0 | 398 | PinName pin = wirePinName(pc.pin); |
mjr | 38:091e511ce8a0 | 399 | if (pin == LED1) |
mjr | 38:091e511ce8a0 | 400 | r = true; |
mjr | 38:091e511ce8a0 | 401 | else if (pin == LED2) |
mjr | 38:091e511ce8a0 | 402 | g = true; |
mjr | 38:091e511ce8a0 | 403 | else if (pin == LED3) |
mjr | 38:091e511ce8a0 | 404 | b = true; |
mjr | 38:091e511ce8a0 | 405 | } |
mjr | 38:091e511ce8a0 | 406 | } |
mjr | 38:091e511ce8a0 | 407 | }; |
mjr | 38:091e511ce8a0 | 408 | |
mjr | 38:091e511ce8a0 | 409 | // Initialize the diagnostic LEDs. By default, we use the on-board |
mjr | 38:091e511ce8a0 | 410 | // RGB LED to display the microcontroller status. However, we allow |
mjr | 38:091e511ce8a0 | 411 | // the user to commandeer the on-board LED as an LedWiz output device, |
mjr | 38:091e511ce8a0 | 412 | // which can be useful for testing a new installation. So we'll check |
mjr | 38:091e511ce8a0 | 413 | // for LedWiz outputs assigned to the on-board LED segments, and turn |
mjr | 38:091e511ce8a0 | 414 | // off the diagnostic use for any so assigned. |
mjr | 38:091e511ce8a0 | 415 | void initDiagLEDs(Config &cfg) |
mjr | 38:091e511ce8a0 | 416 | { |
mjr | 38:091e511ce8a0 | 417 | // run through the configuration list and cross off any of the |
mjr | 38:091e511ce8a0 | 418 | // LED segments assigned to LedWiz ports |
mjr | 38:091e511ce8a0 | 419 | LedSeg l; |
mjr | 38:091e511ce8a0 | 420 | for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i) |
mjr | 38:091e511ce8a0 | 421 | l.check(cfg.outPort[i]); |
mjr | 38:091e511ce8a0 | 422 | |
mjr | 38:091e511ce8a0 | 423 | // check the special ports |
mjr | 38:091e511ce8a0 | 424 | for (int i = 0 ; i < countof(cfg.specialPort) ; ++i) |
mjr | 38:091e511ce8a0 | 425 | l.check(cfg.specialPort[i]); |
mjr | 38:091e511ce8a0 | 426 | |
mjr | 38:091e511ce8a0 | 427 | // We now know which segments are taken for LedWiz use and which |
mjr | 38:091e511ce8a0 | 428 | // are free. Create diagnostic ports for the ones not claimed for |
mjr | 38:091e511ce8a0 | 429 | // LedWiz use. |
mjr | 38:091e511ce8a0 | 430 | if (!l.r) ledR = new DigitalOut(LED1, 1); |
mjr | 38:091e511ce8a0 | 431 | if (!l.g) ledG = new DigitalOut(LED2, 1); |
mjr | 38:091e511ce8a0 | 432 | if (!l.b) ledB = new DigitalOut(LED3, 1); |
mjr | 38:091e511ce8a0 | 433 | } |
mjr | 38:091e511ce8a0 | 434 | |
mjr | 38:091e511ce8a0 | 435 | |
mjr | 38:091e511ce8a0 | 436 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 437 | // |
mjr | 29:582472d0bc57 | 438 | // LedWiz emulation, and enhanced TLC5940 output controller |
mjr | 5:a70c0bce770d | 439 | // |
mjr | 26:cb71c4af2912 | 440 | // There are two modes for this feature. The default mode uses the on-board |
mjr | 26:cb71c4af2912 | 441 | // GPIO ports to implement device outputs - each LedWiz software port is |
mjr | 26:cb71c4af2912 | 442 | // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10 |
mjr | 26:cb71c4af2912 | 443 | // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the |
mjr | 26:cb71c4af2912 | 444 | // rest are strictly on/off. The KL25Z also has a limited number of GPIO |
mjr | 26:cb71c4af2912 | 445 | // ports overall - not enough for the full complement of 32 LedWiz ports |
mjr | 26:cb71c4af2912 | 446 | // and 24 VP joystick inputs, so it's necessary to trade one against the |
mjr | 26:cb71c4af2912 | 447 | // other if both features are to be used. |
mjr | 26:cb71c4af2912 | 448 | // |
mjr | 26:cb71c4af2912 | 449 | // The alternative, enhanced mode uses external TLC5940 PWM controller |
mjr | 26:cb71c4af2912 | 450 | // chips to control device outputs. In this mode, each LedWiz software |
mjr | 26:cb71c4af2912 | 451 | // port is mapped to an output on one of the external TLC5940 chips. |
mjr | 26:cb71c4af2912 | 452 | // Two 5940s is enough for the full set of 32 LedWiz ports, and we can |
mjr | 26:cb71c4af2912 | 453 | // support even more chips for even more outputs (although doing so requires |
mjr | 26:cb71c4af2912 | 454 | // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired |
mjr | 26:cb71c4af2912 | 455 | // for 32 outputs). Every port in this mode has full PWM support. |
mjr | 26:cb71c4af2912 | 456 | // |
mjr | 5:a70c0bce770d | 457 | |
mjr | 29:582472d0bc57 | 458 | |
mjr | 26:cb71c4af2912 | 459 | // Current starting output index for "PBA" messages from the PC (using |
mjr | 26:cb71c4af2912 | 460 | // the LedWiz USB protocol). Each PBA message implicitly uses the |
mjr | 26:cb71c4af2912 | 461 | // current index as the starting point for the ports referenced in |
mjr | 26:cb71c4af2912 | 462 | // the message, and increases it (by 8) for the next call. |
mjr | 0:5acbbe3f4cf4 | 463 | static int pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 464 | |
mjr | 26:cb71c4af2912 | 465 | // Generic LedWiz output port interface. We create a cover class to |
mjr | 26:cb71c4af2912 | 466 | // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external |
mjr | 26:cb71c4af2912 | 467 | // TLC5940 outputs, and give them all a common interface. |
mjr | 6:cc35eb643e8f | 468 | class LwOut |
mjr | 6:cc35eb643e8f | 469 | { |
mjr | 6:cc35eb643e8f | 470 | public: |
mjr | 40:cc0d9814522b | 471 | // Set the output intensity. 'val' is 0 for fully off, 255 for |
mjr | 40:cc0d9814522b | 472 | // fully on, with values in between signifying lower intensity. |
mjr | 40:cc0d9814522b | 473 | virtual void set(uint8_t val) = 0; |
mjr | 6:cc35eb643e8f | 474 | }; |
mjr | 26:cb71c4af2912 | 475 | |
mjr | 35:e959ffba78fd | 476 | // LwOut class for virtual ports. This type of port is visible to |
mjr | 35:e959ffba78fd | 477 | // the host software, but isn't connected to any physical output. |
mjr | 35:e959ffba78fd | 478 | // This can be used for special software-only ports like the ZB |
mjr | 35:e959ffba78fd | 479 | // Launch Ball output, or simply for placeholders in the LedWiz port |
mjr | 35:e959ffba78fd | 480 | // numbering. |
mjr | 35:e959ffba78fd | 481 | class LwVirtualOut: public LwOut |
mjr | 33:d832bcab089e | 482 | { |
mjr | 33:d832bcab089e | 483 | public: |
mjr | 35:e959ffba78fd | 484 | LwVirtualOut() { } |
mjr | 40:cc0d9814522b | 485 | virtual void set(uint8_t ) { } |
mjr | 33:d832bcab089e | 486 | }; |
mjr | 26:cb71c4af2912 | 487 | |
mjr | 34:6b981a2afab7 | 488 | // Active Low out. For any output marked as active low, we layer this |
mjr | 34:6b981a2afab7 | 489 | // on top of the physical pin interface. This simply inverts the value of |
mjr | 40:cc0d9814522b | 490 | // the output value, so that 255 means fully off and 0 means fully on. |
mjr | 34:6b981a2afab7 | 491 | class LwInvertedOut: public LwOut |
mjr | 34:6b981a2afab7 | 492 | { |
mjr | 34:6b981a2afab7 | 493 | public: |
mjr | 34:6b981a2afab7 | 494 | LwInvertedOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 495 | virtual void set(uint8_t val) { out->set(255 - val); } |
mjr | 34:6b981a2afab7 | 496 | |
mjr | 34:6b981a2afab7 | 497 | private: |
mjr | 34:6b981a2afab7 | 498 | LwOut *out; |
mjr | 34:6b981a2afab7 | 499 | }; |
mjr | 34:6b981a2afab7 | 500 | |
mjr | 40:cc0d9814522b | 501 | // Gamma correction table for 8-bit input values |
mjr | 40:cc0d9814522b | 502 | static const uint8_t gamma[] = { |
mjr | 40:cc0d9814522b | 503 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 40:cc0d9814522b | 504 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 505 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, |
mjr | 40:cc0d9814522b | 506 | 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, |
mjr | 40:cc0d9814522b | 507 | 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, |
mjr | 40:cc0d9814522b | 508 | 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, |
mjr | 40:cc0d9814522b | 509 | 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, |
mjr | 40:cc0d9814522b | 510 | 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, |
mjr | 40:cc0d9814522b | 511 | 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, |
mjr | 40:cc0d9814522b | 512 | 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, |
mjr | 40:cc0d9814522b | 513 | 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, |
mjr | 40:cc0d9814522b | 514 | 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114, |
mjr | 40:cc0d9814522b | 515 | 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, |
mjr | 40:cc0d9814522b | 516 | 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, |
mjr | 40:cc0d9814522b | 517 | 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, |
mjr | 40:cc0d9814522b | 518 | 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255 |
mjr | 40:cc0d9814522b | 519 | }; |
mjr | 40:cc0d9814522b | 520 | |
mjr | 40:cc0d9814522b | 521 | // Gamma-corrected out. This is a filter object that we layer on top |
mjr | 40:cc0d9814522b | 522 | // of a physical pin interface. This applies gamma correction to the |
mjr | 40:cc0d9814522b | 523 | // input value and then passes it along to the underlying pin object. |
mjr | 40:cc0d9814522b | 524 | class LwGammaOut: public LwOut |
mjr | 40:cc0d9814522b | 525 | { |
mjr | 40:cc0d9814522b | 526 | public: |
mjr | 40:cc0d9814522b | 527 | LwGammaOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 528 | virtual void set(uint8_t val) { out->set(gamma[val]); } |
mjr | 40:cc0d9814522b | 529 | |
mjr | 40:cc0d9814522b | 530 | private: |
mjr | 40:cc0d9814522b | 531 | LwOut *out; |
mjr | 40:cc0d9814522b | 532 | }; |
mjr | 40:cc0d9814522b | 533 | |
mjr | 40:cc0d9814522b | 534 | // Noisy output. This is a filter object that we layer on top of |
mjr | 40:cc0d9814522b | 535 | // a physical pin output. This filter disables the port when night |
mjr | 40:cc0d9814522b | 536 | // mode is engaged. |
mjr | 40:cc0d9814522b | 537 | class LwNoisyOut: public LwOut |
mjr | 40:cc0d9814522b | 538 | { |
mjr | 40:cc0d9814522b | 539 | public: |
mjr | 40:cc0d9814522b | 540 | LwNoisyOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 541 | virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); } |
mjr | 40:cc0d9814522b | 542 | |
mjr | 40:cc0d9814522b | 543 | static bool nightMode; |
mjr | 40:cc0d9814522b | 544 | |
mjr | 40:cc0d9814522b | 545 | private: |
mjr | 40:cc0d9814522b | 546 | LwOut *out; |
mjr | 40:cc0d9814522b | 547 | }; |
mjr | 40:cc0d9814522b | 548 | |
mjr | 40:cc0d9814522b | 549 | // global night mode flag |
mjr | 40:cc0d9814522b | 550 | bool LwNoisyOut::nightMode = false; |
mjr | 40:cc0d9814522b | 551 | |
mjr | 26:cb71c4af2912 | 552 | |
mjr | 35:e959ffba78fd | 553 | // |
mjr | 35:e959ffba78fd | 554 | // The TLC5940 interface object. We'll set this up with the port |
mjr | 35:e959ffba78fd | 555 | // assignments set in config.h. |
mjr | 33:d832bcab089e | 556 | // |
mjr | 35:e959ffba78fd | 557 | TLC5940 *tlc5940 = 0; |
mjr | 35:e959ffba78fd | 558 | void init_tlc5940(Config &cfg) |
mjr | 35:e959ffba78fd | 559 | { |
mjr | 35:e959ffba78fd | 560 | if (cfg.tlc5940.nchips != 0) |
mjr | 35:e959ffba78fd | 561 | { |
mjr | 35:e959ffba78fd | 562 | tlc5940 = new TLC5940(cfg.tlc5940.sclk, cfg.tlc5940.sin, cfg.tlc5940.gsclk, |
mjr | 35:e959ffba78fd | 563 | cfg.tlc5940.blank, cfg.tlc5940.xlat, cfg.tlc5940.nchips); |
mjr | 35:e959ffba78fd | 564 | } |
mjr | 35:e959ffba78fd | 565 | } |
mjr | 26:cb71c4af2912 | 566 | |
mjr | 40:cc0d9814522b | 567 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level |
mjr | 40:cc0d9814522b | 568 | static const uint16_t dof_to_tlc[] = { |
mjr | 40:cc0d9814522b | 569 | 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241, |
mjr | 40:cc0d9814522b | 570 | 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498, |
mjr | 40:cc0d9814522b | 571 | 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755, |
mjr | 40:cc0d9814522b | 572 | 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012, |
mjr | 40:cc0d9814522b | 573 | 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269, |
mjr | 40:cc0d9814522b | 574 | 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526, |
mjr | 40:cc0d9814522b | 575 | 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783, |
mjr | 40:cc0d9814522b | 576 | 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039, |
mjr | 40:cc0d9814522b | 577 | 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296, |
mjr | 40:cc0d9814522b | 578 | 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553, |
mjr | 40:cc0d9814522b | 579 | 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810, |
mjr | 40:cc0d9814522b | 580 | 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067, |
mjr | 40:cc0d9814522b | 581 | 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324, |
mjr | 40:cc0d9814522b | 582 | 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581, |
mjr | 40:cc0d9814522b | 583 | 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838, |
mjr | 40:cc0d9814522b | 584 | 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095 |
mjr | 40:cc0d9814522b | 585 | }; |
mjr | 40:cc0d9814522b | 586 | |
mjr | 40:cc0d9814522b | 587 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with |
mjr | 40:cc0d9814522b | 588 | // gamma correction. Note that the output layering scheme can handle |
mjr | 40:cc0d9814522b | 589 | // this without a separate table, by first applying gamma to the DOF |
mjr | 40:cc0d9814522b | 590 | // level to produce an 8-bit gamma-corrected value, then convert that |
mjr | 40:cc0d9814522b | 591 | // to the 12-bit TLC5940 value. But we get better precision by doing |
mjr | 40:cc0d9814522b | 592 | // the gamma correction in the 12-bit TLC5940 domain. We can only |
mjr | 40:cc0d9814522b | 593 | // get the 12-bit domain by combining both steps into one layering |
mjr | 40:cc0d9814522b | 594 | // object, though, since the intermediate values in the layering system |
mjr | 40:cc0d9814522b | 595 | // are always 8 bits. |
mjr | 40:cc0d9814522b | 596 | static const uint16_t dof_to_gamma_tlc[] = { |
mjr | 40:cc0d9814522b | 597 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 598 | 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, |
mjr | 40:cc0d9814522b | 599 | 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36, |
mjr | 40:cc0d9814522b | 600 | 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82, |
mjr | 40:cc0d9814522b | 601 | 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154, |
mjr | 40:cc0d9814522b | 602 | 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258, |
mjr | 40:cc0d9814522b | 603 | 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399, |
mjr | 40:cc0d9814522b | 604 | 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582, |
mjr | 40:cc0d9814522b | 605 | 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811, |
mjr | 40:cc0d9814522b | 606 | 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091, |
mjr | 40:cc0d9814522b | 607 | 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427, |
mjr | 40:cc0d9814522b | 608 | 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823, |
mjr | 40:cc0d9814522b | 609 | 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284, |
mjr | 40:cc0d9814522b | 610 | 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813, |
mjr | 40:cc0d9814522b | 611 | 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416, |
mjr | 40:cc0d9814522b | 612 | 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095 |
mjr | 40:cc0d9814522b | 613 | }; |
mjr | 40:cc0d9814522b | 614 | |
mjr | 40:cc0d9814522b | 615 | |
mjr | 26:cb71c4af2912 | 616 | // LwOut class for TLC5940 outputs. These are fully PWM capable. |
mjr | 26:cb71c4af2912 | 617 | // The 'idx' value in the constructor is the output index in the |
mjr | 26:cb71c4af2912 | 618 | // daisy-chained TLC5940 array. 0 is output #0 on the first chip, |
mjr | 26:cb71c4af2912 | 619 | // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is |
mjr | 26:cb71c4af2912 | 620 | // #0 on the second chip, 32 is #0 on the third chip, etc. |
mjr | 26:cb71c4af2912 | 621 | class Lw5940Out: public LwOut |
mjr | 26:cb71c4af2912 | 622 | { |
mjr | 26:cb71c4af2912 | 623 | public: |
mjr | 40:cc0d9814522b | 624 | Lw5940Out(int idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 625 | virtual void set(uint8_t val) |
mjr | 26:cb71c4af2912 | 626 | { |
mjr | 26:cb71c4af2912 | 627 | if (val != prv) |
mjr | 40:cc0d9814522b | 628 | tlc5940->set(idx, dof_to_tlc[prv = val]); |
mjr | 26:cb71c4af2912 | 629 | } |
mjr | 26:cb71c4af2912 | 630 | int idx; |
mjr | 40:cc0d9814522b | 631 | uint8_t prv; |
mjr | 26:cb71c4af2912 | 632 | }; |
mjr | 26:cb71c4af2912 | 633 | |
mjr | 40:cc0d9814522b | 634 | // LwOut class for TLC5940 gamma-corrected outputs. |
mjr | 40:cc0d9814522b | 635 | class Lw5940GammaOut: public LwOut |
mjr | 40:cc0d9814522b | 636 | { |
mjr | 40:cc0d9814522b | 637 | public: |
mjr | 40:cc0d9814522b | 638 | Lw5940GammaOut(int idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 639 | virtual void set(uint8_t val) |
mjr | 40:cc0d9814522b | 640 | { |
mjr | 40:cc0d9814522b | 641 | if (val != prv) |
mjr | 40:cc0d9814522b | 642 | tlc5940->set(idx, dof_to_gamma_tlc[prv = val]); |
mjr | 40:cc0d9814522b | 643 | } |
mjr | 40:cc0d9814522b | 644 | int idx; |
mjr | 40:cc0d9814522b | 645 | uint8_t prv; |
mjr | 40:cc0d9814522b | 646 | }; |
mjr | 40:cc0d9814522b | 647 | |
mjr | 40:cc0d9814522b | 648 | |
mjr | 33:d832bcab089e | 649 | |
mjr | 34:6b981a2afab7 | 650 | // 74HC595 interface object. Set this up with the port assignments in |
mjr | 34:6b981a2afab7 | 651 | // config.h. |
mjr | 35:e959ffba78fd | 652 | HC595 *hc595 = 0; |
mjr | 35:e959ffba78fd | 653 | |
mjr | 35:e959ffba78fd | 654 | // initialize the 74HC595 interface |
mjr | 35:e959ffba78fd | 655 | void init_hc595(Config &cfg) |
mjr | 35:e959ffba78fd | 656 | { |
mjr | 35:e959ffba78fd | 657 | if (cfg.hc595.nchips != 0) |
mjr | 35:e959ffba78fd | 658 | { |
mjr | 35:e959ffba78fd | 659 | hc595 = new HC595(cfg.hc595.nchips, cfg.hc595.sin, cfg.hc595.sclk, cfg.hc595.latch, cfg.hc595.ena); |
mjr | 35:e959ffba78fd | 660 | hc595->init(); |
mjr | 35:e959ffba78fd | 661 | hc595->update(); |
mjr | 35:e959ffba78fd | 662 | } |
mjr | 35:e959ffba78fd | 663 | } |
mjr | 34:6b981a2afab7 | 664 | |
mjr | 34:6b981a2afab7 | 665 | // LwOut class for 74HC595 outputs. These are simple digial outs. |
mjr | 34:6b981a2afab7 | 666 | // The 'idx' value in the constructor is the output index in the |
mjr | 34:6b981a2afab7 | 667 | // daisy-chained 74HC595 array. 0 is output #0 on the first chip, |
mjr | 34:6b981a2afab7 | 668 | // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is |
mjr | 34:6b981a2afab7 | 669 | // #0 on the second chip, etc. |
mjr | 34:6b981a2afab7 | 670 | class Lw595Out: public LwOut |
mjr | 33:d832bcab089e | 671 | { |
mjr | 33:d832bcab089e | 672 | public: |
mjr | 40:cc0d9814522b | 673 | Lw595Out(int idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 674 | virtual void set(uint8_t val) |
mjr | 34:6b981a2afab7 | 675 | { |
mjr | 34:6b981a2afab7 | 676 | if (val != prv) |
mjr | 40:cc0d9814522b | 677 | hc595->set(idx, (prv = val) == 0 ? 0 : 1); |
mjr | 34:6b981a2afab7 | 678 | } |
mjr | 34:6b981a2afab7 | 679 | int idx; |
mjr | 40:cc0d9814522b | 680 | uint8_t prv; |
mjr | 33:d832bcab089e | 681 | }; |
mjr | 33:d832bcab089e | 682 | |
mjr | 26:cb71c4af2912 | 683 | |
mjr | 40:cc0d9814522b | 684 | |
mjr | 40:cc0d9814522b | 685 | // Conversion table - 8-bit DOF output level to PWM float level |
mjr | 40:cc0d9814522b | 686 | // (normalized to 0.0..1.0 scale) |
mjr | 40:cc0d9814522b | 687 | static const float pwm_level[] = { |
mjr | 40:cc0d9814522b | 688 | 0.000000, 0.003922, 0.007843, 0.011765, 0.015686, 0.019608, 0.023529, 0.027451, |
mjr | 40:cc0d9814522b | 689 | 0.031373, 0.035294, 0.039216, 0.043137, 0.047059, 0.050980, 0.054902, 0.058824, |
mjr | 40:cc0d9814522b | 690 | 0.062745, 0.066667, 0.070588, 0.074510, 0.078431, 0.082353, 0.086275, 0.090196, |
mjr | 40:cc0d9814522b | 691 | 0.094118, 0.098039, 0.101961, 0.105882, 0.109804, 0.113725, 0.117647, 0.121569, |
mjr | 40:cc0d9814522b | 692 | 0.125490, 0.129412, 0.133333, 0.137255, 0.141176, 0.145098, 0.149020, 0.152941, |
mjr | 40:cc0d9814522b | 693 | 0.156863, 0.160784, 0.164706, 0.168627, 0.172549, 0.176471, 0.180392, 0.184314, |
mjr | 40:cc0d9814522b | 694 | 0.188235, 0.192157, 0.196078, 0.200000, 0.203922, 0.207843, 0.211765, 0.215686, |
mjr | 40:cc0d9814522b | 695 | 0.219608, 0.223529, 0.227451, 0.231373, 0.235294, 0.239216, 0.243137, 0.247059, |
mjr | 40:cc0d9814522b | 696 | 0.250980, 0.254902, 0.258824, 0.262745, 0.266667, 0.270588, 0.274510, 0.278431, |
mjr | 40:cc0d9814522b | 697 | 0.282353, 0.286275, 0.290196, 0.294118, 0.298039, 0.301961, 0.305882, 0.309804, |
mjr | 40:cc0d9814522b | 698 | 0.313725, 0.317647, 0.321569, 0.325490, 0.329412, 0.333333, 0.337255, 0.341176, |
mjr | 40:cc0d9814522b | 699 | 0.345098, 0.349020, 0.352941, 0.356863, 0.360784, 0.364706, 0.368627, 0.372549, |
mjr | 40:cc0d9814522b | 700 | 0.376471, 0.380392, 0.384314, 0.388235, 0.392157, 0.396078, 0.400000, 0.403922, |
mjr | 40:cc0d9814522b | 701 | 0.407843, 0.411765, 0.415686, 0.419608, 0.423529, 0.427451, 0.431373, 0.435294, |
mjr | 40:cc0d9814522b | 702 | 0.439216, 0.443137, 0.447059, 0.450980, 0.454902, 0.458824, 0.462745, 0.466667, |
mjr | 40:cc0d9814522b | 703 | 0.470588, 0.474510, 0.478431, 0.482353, 0.486275, 0.490196, 0.494118, 0.498039, |
mjr | 40:cc0d9814522b | 704 | 0.501961, 0.505882, 0.509804, 0.513725, 0.517647, 0.521569, 0.525490, 0.529412, |
mjr | 40:cc0d9814522b | 705 | 0.533333, 0.537255, 0.541176, 0.545098, 0.549020, 0.552941, 0.556863, 0.560784, |
mjr | 40:cc0d9814522b | 706 | 0.564706, 0.568627, 0.572549, 0.576471, 0.580392, 0.584314, 0.588235, 0.592157, |
mjr | 40:cc0d9814522b | 707 | 0.596078, 0.600000, 0.603922, 0.607843, 0.611765, 0.615686, 0.619608, 0.623529, |
mjr | 40:cc0d9814522b | 708 | 0.627451, 0.631373, 0.635294, 0.639216, 0.643137, 0.647059, 0.650980, 0.654902, |
mjr | 40:cc0d9814522b | 709 | 0.658824, 0.662745, 0.666667, 0.670588, 0.674510, 0.678431, 0.682353, 0.686275, |
mjr | 40:cc0d9814522b | 710 | 0.690196, 0.694118, 0.698039, 0.701961, 0.705882, 0.709804, 0.713725, 0.717647, |
mjr | 40:cc0d9814522b | 711 | 0.721569, 0.725490, 0.729412, 0.733333, 0.737255, 0.741176, 0.745098, 0.749020, |
mjr | 40:cc0d9814522b | 712 | 0.752941, 0.756863, 0.760784, 0.764706, 0.768627, 0.772549, 0.776471, 0.780392, |
mjr | 40:cc0d9814522b | 713 | 0.784314, 0.788235, 0.792157, 0.796078, 0.800000, 0.803922, 0.807843, 0.811765, |
mjr | 40:cc0d9814522b | 714 | 0.815686, 0.819608, 0.823529, 0.827451, 0.831373, 0.835294, 0.839216, 0.843137, |
mjr | 40:cc0d9814522b | 715 | 0.847059, 0.850980, 0.854902, 0.858824, 0.862745, 0.866667, 0.870588, 0.874510, |
mjr | 40:cc0d9814522b | 716 | 0.878431, 0.882353, 0.886275, 0.890196, 0.894118, 0.898039, 0.901961, 0.905882, |
mjr | 40:cc0d9814522b | 717 | 0.909804, 0.913725, 0.917647, 0.921569, 0.925490, 0.929412, 0.933333, 0.937255, |
mjr | 40:cc0d9814522b | 718 | 0.941176, 0.945098, 0.949020, 0.952941, 0.956863, 0.960784, 0.964706, 0.968627, |
mjr | 40:cc0d9814522b | 719 | 0.972549, 0.976471, 0.980392, 0.984314, 0.988235, 0.992157, 0.996078, 1.000000 |
mjr | 40:cc0d9814522b | 720 | }; |
mjr | 26:cb71c4af2912 | 721 | |
mjr | 26:cb71c4af2912 | 722 | // LwOut class for a PWM-capable GPIO port |
mjr | 6:cc35eb643e8f | 723 | class LwPwmOut: public LwOut |
mjr | 6:cc35eb643e8f | 724 | { |
mjr | 6:cc35eb643e8f | 725 | public: |
mjr | 43:7a6364d82a41 | 726 | LwPwmOut(PinName pin, uint8_t initVal) : p(pin) |
mjr | 43:7a6364d82a41 | 727 | { |
mjr | 43:7a6364d82a41 | 728 | prv = initVal ^ 0xFF; |
mjr | 43:7a6364d82a41 | 729 | set(initVal); |
mjr | 43:7a6364d82a41 | 730 | } |
mjr | 40:cc0d9814522b | 731 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 732 | { |
mjr | 13:72dda449c3c0 | 733 | if (val != prv) |
mjr | 40:cc0d9814522b | 734 | p.write(pwm_level[prv = val]); |
mjr | 13:72dda449c3c0 | 735 | } |
mjr | 6:cc35eb643e8f | 736 | PwmOut p; |
mjr | 40:cc0d9814522b | 737 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 738 | }; |
mjr | 26:cb71c4af2912 | 739 | |
mjr | 26:cb71c4af2912 | 740 | // LwOut class for a Digital-Only (Non-PWM) GPIO port |
mjr | 6:cc35eb643e8f | 741 | class LwDigOut: public LwOut |
mjr | 6:cc35eb643e8f | 742 | { |
mjr | 6:cc35eb643e8f | 743 | public: |
mjr | 43:7a6364d82a41 | 744 | LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; } |
mjr | 40:cc0d9814522b | 745 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 746 | { |
mjr | 13:72dda449c3c0 | 747 | if (val != prv) |
mjr | 40:cc0d9814522b | 748 | p.write((prv = val) == 0 ? 0 : 1); |
mjr | 13:72dda449c3c0 | 749 | } |
mjr | 6:cc35eb643e8f | 750 | DigitalOut p; |
mjr | 40:cc0d9814522b | 751 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 752 | }; |
mjr | 26:cb71c4af2912 | 753 | |
mjr | 29:582472d0bc57 | 754 | // Array of output physical pin assignments. This array is indexed |
mjr | 29:582472d0bc57 | 755 | // by LedWiz logical port number - lwPin[n] is the maping for LedWiz |
mjr | 35:e959ffba78fd | 756 | // port n (0-based). |
mjr | 35:e959ffba78fd | 757 | // |
mjr | 35:e959ffba78fd | 758 | // Each pin is handled by an interface object for the physical output |
mjr | 35:e959ffba78fd | 759 | // type for the port, as set in the configuration. The interface |
mjr | 35:e959ffba78fd | 760 | // objects handle the specifics of addressing the different hardware |
mjr | 35:e959ffba78fd | 761 | // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and |
mjr | 35:e959ffba78fd | 762 | // 74HC595 ports). |
mjr | 33:d832bcab089e | 763 | static int numOutputs; |
mjr | 33:d832bcab089e | 764 | static LwOut **lwPin; |
mjr | 33:d832bcab089e | 765 | |
mjr | 38:091e511ce8a0 | 766 | // Special output ports: |
mjr | 38:091e511ce8a0 | 767 | // |
mjr | 38:091e511ce8a0 | 768 | // [0] = Night Mode indicator light |
mjr | 38:091e511ce8a0 | 769 | // |
mjr | 38:091e511ce8a0 | 770 | static LwOut *specialPin[1]; |
mjr | 40:cc0d9814522b | 771 | const int SPECIAL_PIN_NIGHTMODE = 0; |
mjr | 38:091e511ce8a0 | 772 | |
mjr | 38:091e511ce8a0 | 773 | |
mjr | 35:e959ffba78fd | 774 | // Number of LedWiz emulation outputs. This is the number of ports |
mjr | 35:e959ffba78fd | 775 | // accessible through the standard (non-extended) LedWiz protocol |
mjr | 35:e959ffba78fd | 776 | // messages. The protocol has a fixed set of 32 outputs, but we |
mjr | 35:e959ffba78fd | 777 | // might have fewer actual outputs. This is therefore set to the |
mjr | 35:e959ffba78fd | 778 | // lower of 32 or the actual number of outputs. |
mjr | 35:e959ffba78fd | 779 | static int numLwOutputs; |
mjr | 35:e959ffba78fd | 780 | |
mjr | 40:cc0d9814522b | 781 | // Current absolute brightness level for an output. This is a DOF |
mjr | 40:cc0d9814522b | 782 | // brightness level value, from 0 for fully off to 255 for fully on. |
mjr | 40:cc0d9814522b | 783 | // This is used for all extended ports (33 and above), and for any |
mjr | 40:cc0d9814522b | 784 | // LedWiz port with wizVal == 255. |
mjr | 40:cc0d9814522b | 785 | static uint8_t *outLevel; |
mjr | 38:091e511ce8a0 | 786 | |
mjr | 38:091e511ce8a0 | 787 | // create a single output pin |
mjr | 38:091e511ce8a0 | 788 | LwOut *createLwPin(LedWizPortCfg &pc, Config &cfg) |
mjr | 38:091e511ce8a0 | 789 | { |
mjr | 38:091e511ce8a0 | 790 | // get this item's values |
mjr | 38:091e511ce8a0 | 791 | int typ = pc.typ; |
mjr | 38:091e511ce8a0 | 792 | int pin = pc.pin; |
mjr | 38:091e511ce8a0 | 793 | int flags = pc.flags; |
mjr | 40:cc0d9814522b | 794 | int noisy = flags & PortFlagNoisemaker; |
mjr | 38:091e511ce8a0 | 795 | int activeLow = flags & PortFlagActiveLow; |
mjr | 40:cc0d9814522b | 796 | int gamma = flags & PortFlagGamma; |
mjr | 38:091e511ce8a0 | 797 | |
mjr | 38:091e511ce8a0 | 798 | // create the pin interface object according to the port type |
mjr | 38:091e511ce8a0 | 799 | LwOut *lwp; |
mjr | 38:091e511ce8a0 | 800 | switch (typ) |
mjr | 38:091e511ce8a0 | 801 | { |
mjr | 38:091e511ce8a0 | 802 | case PortTypeGPIOPWM: |
mjr | 48:058ace2aed1d | 803 | // PWM GPIO port - assign if we have a valid pin |
mjr | 48:058ace2aed1d | 804 | if (pin != 0) |
mjr | 48:058ace2aed1d | 805 | lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 806 | else |
mjr | 48:058ace2aed1d | 807 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 808 | break; |
mjr | 38:091e511ce8a0 | 809 | |
mjr | 38:091e511ce8a0 | 810 | case PortTypeGPIODig: |
mjr | 38:091e511ce8a0 | 811 | // Digital GPIO port |
mjr | 48:058ace2aed1d | 812 | if (pin != 0) |
mjr | 48:058ace2aed1d | 813 | lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 814 | else |
mjr | 48:058ace2aed1d | 815 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 816 | break; |
mjr | 38:091e511ce8a0 | 817 | |
mjr | 38:091e511ce8a0 | 818 | case PortTypeTLC5940: |
mjr | 38:091e511ce8a0 | 819 | // TLC5940 port (if we don't have a TLC controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 820 | // output port number on the chips we have, create a virtual port) |
mjr | 38:091e511ce8a0 | 821 | if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16) |
mjr | 40:cc0d9814522b | 822 | { |
mjr | 40:cc0d9814522b | 823 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 40:cc0d9814522b | 824 | // use the combined TLC4950 + Gamma output class. Otherwise use the plain |
mjr | 40:cc0d9814522b | 825 | // TLC5940 output. We skip the combined class if the output is inverted |
mjr | 40:cc0d9814522b | 826 | // because we need to apply gamma BEFORE the inversion to get the right |
mjr | 40:cc0d9814522b | 827 | // results, but the combined class would apply it after because of the |
mjr | 40:cc0d9814522b | 828 | // layering scheme - the combined class is a physical device output class, |
mjr | 40:cc0d9814522b | 829 | // and a physical device output class is necessarily at the bottom of |
mjr | 40:cc0d9814522b | 830 | // the stack. We don't have a combined inverted+gamma+TLC class, because |
mjr | 40:cc0d9814522b | 831 | // inversion isn't recommended for TLC5940 chips in the first place, so |
mjr | 40:cc0d9814522b | 832 | // it's not worth the extra memory footprint to have a dedicated table |
mjr | 40:cc0d9814522b | 833 | // for this unlikely case. |
mjr | 40:cc0d9814522b | 834 | if (gamma && !activeLow) |
mjr | 40:cc0d9814522b | 835 | { |
mjr | 40:cc0d9814522b | 836 | // use the gamma-corrected 5940 output mapper |
mjr | 40:cc0d9814522b | 837 | lwp = new Lw5940GammaOut(pin); |
mjr | 40:cc0d9814522b | 838 | |
mjr | 40:cc0d9814522b | 839 | // DON'T apply further gamma correction to this output |
mjr | 40:cc0d9814522b | 840 | gamma = false; |
mjr | 40:cc0d9814522b | 841 | } |
mjr | 40:cc0d9814522b | 842 | else |
mjr | 40:cc0d9814522b | 843 | { |
mjr | 40:cc0d9814522b | 844 | // no gamma - use the plain (linear) 5940 output class |
mjr | 40:cc0d9814522b | 845 | lwp = new Lw5940Out(pin); |
mjr | 40:cc0d9814522b | 846 | } |
mjr | 40:cc0d9814522b | 847 | } |
mjr | 38:091e511ce8a0 | 848 | else |
mjr | 40:cc0d9814522b | 849 | { |
mjr | 40:cc0d9814522b | 850 | // no TLC5940 chips, or invalid port number - use a virtual out |
mjr | 38:091e511ce8a0 | 851 | lwp = new LwVirtualOut(); |
mjr | 40:cc0d9814522b | 852 | } |
mjr | 38:091e511ce8a0 | 853 | break; |
mjr | 38:091e511ce8a0 | 854 | |
mjr | 38:091e511ce8a0 | 855 | case PortType74HC595: |
mjr | 38:091e511ce8a0 | 856 | // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 857 | // output number, create a virtual port) |
mjr | 38:091e511ce8a0 | 858 | if (hc595 != 0 && pin < cfg.hc595.nchips*8) |
mjr | 38:091e511ce8a0 | 859 | lwp = new Lw595Out(pin); |
mjr | 38:091e511ce8a0 | 860 | else |
mjr | 38:091e511ce8a0 | 861 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 862 | break; |
mjr | 38:091e511ce8a0 | 863 | |
mjr | 38:091e511ce8a0 | 864 | case PortTypeVirtual: |
mjr | 43:7a6364d82a41 | 865 | case PortTypeDisabled: |
mjr | 38:091e511ce8a0 | 866 | default: |
mjr | 38:091e511ce8a0 | 867 | // virtual or unknown |
mjr | 38:091e511ce8a0 | 868 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 869 | break; |
mjr | 38:091e511ce8a0 | 870 | } |
mjr | 38:091e511ce8a0 | 871 | |
mjr | 40:cc0d9814522b | 872 | // If it's Active Low, layer on an inverter. Note that an inverter |
mjr | 40:cc0d9814522b | 873 | // needs to be the bottom-most layer, since all of the other filters |
mjr | 40:cc0d9814522b | 874 | // assume that they're working with normal (non-inverted) values. |
mjr | 38:091e511ce8a0 | 875 | if (activeLow) |
mjr | 38:091e511ce8a0 | 876 | lwp = new LwInvertedOut(lwp); |
mjr | 40:cc0d9814522b | 877 | |
mjr | 40:cc0d9814522b | 878 | // If it's a noisemaker, layer on a night mode switch. Note that this |
mjr | 40:cc0d9814522b | 879 | // needs to be |
mjr | 40:cc0d9814522b | 880 | if (noisy) |
mjr | 40:cc0d9814522b | 881 | lwp = new LwNoisyOut(lwp); |
mjr | 40:cc0d9814522b | 882 | |
mjr | 40:cc0d9814522b | 883 | // If it's gamma-corrected, layer on a gamma corrector |
mjr | 40:cc0d9814522b | 884 | if (gamma) |
mjr | 40:cc0d9814522b | 885 | lwp = new LwGammaOut(lwp); |
mjr | 38:091e511ce8a0 | 886 | |
mjr | 38:091e511ce8a0 | 887 | // turn it off initially |
mjr | 38:091e511ce8a0 | 888 | lwp->set(0); |
mjr | 38:091e511ce8a0 | 889 | |
mjr | 38:091e511ce8a0 | 890 | // return the pin |
mjr | 38:091e511ce8a0 | 891 | return lwp; |
mjr | 38:091e511ce8a0 | 892 | } |
mjr | 38:091e511ce8a0 | 893 | |
mjr | 6:cc35eb643e8f | 894 | // initialize the output pin array |
mjr | 35:e959ffba78fd | 895 | void initLwOut(Config &cfg) |
mjr | 6:cc35eb643e8f | 896 | { |
mjr | 35:e959ffba78fd | 897 | // Count the outputs. The first disabled output determines the |
mjr | 35:e959ffba78fd | 898 | // total number of ports. |
mjr | 35:e959ffba78fd | 899 | numOutputs = MAX_OUT_PORTS; |
mjr | 33:d832bcab089e | 900 | int i; |
mjr | 35:e959ffba78fd | 901 | for (i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 6:cc35eb643e8f | 902 | { |
mjr | 35:e959ffba78fd | 903 | if (cfg.outPort[i].typ == PortTypeDisabled) |
mjr | 34:6b981a2afab7 | 904 | { |
mjr | 35:e959ffba78fd | 905 | numOutputs = i; |
mjr | 34:6b981a2afab7 | 906 | break; |
mjr | 34:6b981a2afab7 | 907 | } |
mjr | 33:d832bcab089e | 908 | } |
mjr | 33:d832bcab089e | 909 | |
mjr | 35:e959ffba78fd | 910 | // the real LedWiz protocol can access at most 32 ports, or the |
mjr | 35:e959ffba78fd | 911 | // actual number of outputs, whichever is lower |
mjr | 35:e959ffba78fd | 912 | numLwOutputs = (numOutputs < 32 ? numOutputs : 32); |
mjr | 35:e959ffba78fd | 913 | |
mjr | 33:d832bcab089e | 914 | // allocate the pin array |
mjr | 33:d832bcab089e | 915 | lwPin = new LwOut*[numOutputs]; |
mjr | 33:d832bcab089e | 916 | |
mjr | 38:091e511ce8a0 | 917 | // Allocate the current brightness array. For these, allocate at |
mjr | 38:091e511ce8a0 | 918 | // least 32, so that we have enough for all LedWiz messages, but |
mjr | 38:091e511ce8a0 | 919 | // allocate the full set of actual ports if we have more than the |
mjr | 38:091e511ce8a0 | 920 | // LedWiz complement. |
mjr | 38:091e511ce8a0 | 921 | int minOuts = numOutputs < 32 ? 32 : numOutputs; |
mjr | 40:cc0d9814522b | 922 | outLevel = new uint8_t[minOuts]; |
mjr | 33:d832bcab089e | 923 | |
mjr | 35:e959ffba78fd | 924 | // create the pin interface object for each port |
mjr | 35:e959ffba78fd | 925 | for (i = 0 ; i < numOutputs ; ++i) |
mjr | 38:091e511ce8a0 | 926 | lwPin[i] = createLwPin(cfg.outPort[i], cfg); |
mjr | 34:6b981a2afab7 | 927 | |
mjr | 38:091e511ce8a0 | 928 | // create the pin interface for each special port |
mjr | 38:091e511ce8a0 | 929 | for (i = 0 ; i < countof(cfg.specialPort) ; ++i) |
mjr | 38:091e511ce8a0 | 930 | specialPin[i] = createLwPin(cfg.specialPort[i], cfg); |
mjr | 6:cc35eb643e8f | 931 | } |
mjr | 6:cc35eb643e8f | 932 | |
mjr | 29:582472d0bc57 | 933 | // LedWiz output states. |
mjr | 29:582472d0bc57 | 934 | // |
mjr | 29:582472d0bc57 | 935 | // The LedWiz protocol has two separate control axes for each output. |
mjr | 29:582472d0bc57 | 936 | // One axis is its on/off state; the other is its "profile" state, which |
mjr | 29:582472d0bc57 | 937 | // is either a fixed brightness or a blinking pattern for the light. |
mjr | 29:582472d0bc57 | 938 | // The two axes are independent. |
mjr | 29:582472d0bc57 | 939 | // |
mjr | 29:582472d0bc57 | 940 | // Note that the LedWiz protocol can only address 32 outputs, so the |
mjr | 29:582472d0bc57 | 941 | // wizOn and wizVal arrays have fixed sizes of 32 elements no matter |
mjr | 29:582472d0bc57 | 942 | // how many physical outputs we're using. |
mjr | 29:582472d0bc57 | 943 | |
mjr | 0:5acbbe3f4cf4 | 944 | // on/off state for each LedWiz output |
mjr | 1:d913e0afb2ac | 945 | static uint8_t wizOn[32]; |
mjr | 0:5acbbe3f4cf4 | 946 | |
mjr | 40:cc0d9814522b | 947 | // LedWiz "Profile State" (the LedWiz brightness level or blink mode) |
mjr | 40:cc0d9814522b | 948 | // for each LedWiz output. If the output was last updated through an |
mjr | 40:cc0d9814522b | 949 | // LedWiz protocol message, it will have one of these values: |
mjr | 29:582472d0bc57 | 950 | // |
mjr | 29:582472d0bc57 | 951 | // 0-48 = fixed brightness 0% to 100% |
mjr | 40:cc0d9814522b | 952 | // 49 = fixed brightness 100% (equivalent to 48) |
mjr | 29:582472d0bc57 | 953 | // 129 = ramp up / ramp down |
mjr | 29:582472d0bc57 | 954 | // 130 = flash on / off |
mjr | 29:582472d0bc57 | 955 | // 131 = on / ramp down |
mjr | 29:582472d0bc57 | 956 | // 132 = ramp up / on |
mjr | 29:582472d0bc57 | 957 | // |
mjr | 40:cc0d9814522b | 958 | // If the output was last updated through an extended protocol message, |
mjr | 40:cc0d9814522b | 959 | // it will have the special value 255. This means that we use the |
mjr | 40:cc0d9814522b | 960 | // outLevel[] value for the port instead of an LedWiz setting. |
mjr | 29:582472d0bc57 | 961 | // |
mjr | 40:cc0d9814522b | 962 | // (Note that value 49 isn't documented in the LedWiz spec, but real |
mjr | 40:cc0d9814522b | 963 | // LedWiz units treat it as equivalent to 48, and some PC software uses |
mjr | 40:cc0d9814522b | 964 | // it, so we need to accept it for compatibility.) |
mjr | 1:d913e0afb2ac | 965 | static uint8_t wizVal[32] = { |
mjr | 13:72dda449c3c0 | 966 | 48, 48, 48, 48, 48, 48, 48, 48, |
mjr | 13:72dda449c3c0 | 967 | 48, 48, 48, 48, 48, 48, 48, 48, |
mjr | 13:72dda449c3c0 | 968 | 48, 48, 48, 48, 48, 48, 48, 48, |
mjr | 13:72dda449c3c0 | 969 | 48, 48, 48, 48, 48, 48, 48, 48 |
mjr | 0:5acbbe3f4cf4 | 970 | }; |
mjr | 0:5acbbe3f4cf4 | 971 | |
mjr | 29:582472d0bc57 | 972 | // LedWiz flash speed. This is a value from 1 to 7 giving the pulse |
mjr | 29:582472d0bc57 | 973 | // rate for lights in blinking states. |
mjr | 29:582472d0bc57 | 974 | static uint8_t wizSpeed = 2; |
mjr | 29:582472d0bc57 | 975 | |
mjr | 40:cc0d9814522b | 976 | // Current LedWiz flash cycle counter. This runs from 0 to 255 |
mjr | 40:cc0d9814522b | 977 | // during each cycle. |
mjr | 29:582472d0bc57 | 978 | static uint8_t wizFlashCounter = 0; |
mjr | 29:582472d0bc57 | 979 | |
mjr | 40:cc0d9814522b | 980 | // translate an LedWiz brightness level (0-49) to a DOF brightness |
mjr | 40:cc0d9814522b | 981 | // level (0-255) |
mjr | 40:cc0d9814522b | 982 | static const uint8_t lw_to_dof[] = { |
mjr | 40:cc0d9814522b | 983 | 0, 5, 11, 16, 21, 27, 32, 37, |
mjr | 40:cc0d9814522b | 984 | 43, 48, 53, 58, 64, 69, 74, 80, |
mjr | 40:cc0d9814522b | 985 | 85, 90, 96, 101, 106, 112, 117, 122, |
mjr | 40:cc0d9814522b | 986 | 128, 133, 138, 143, 149, 154, 159, 165, |
mjr | 40:cc0d9814522b | 987 | 170, 175, 181, 186, 191, 197, 202, 207, |
mjr | 40:cc0d9814522b | 988 | 213, 218, 223, 228, 234, 239, 244, 250, |
mjr | 40:cc0d9814522b | 989 | 255, 255 |
mjr | 40:cc0d9814522b | 990 | }; |
mjr | 40:cc0d9814522b | 991 | |
mjr | 40:cc0d9814522b | 992 | // Translate an LedWiz output (ports 1-32) to a DOF brightness level. |
mjr | 40:cc0d9814522b | 993 | static uint8_t wizState(int idx) |
mjr | 0:5acbbe3f4cf4 | 994 | { |
mjr | 29:582472d0bc57 | 995 | // if the output was last set with an extended protocol message, |
mjr | 29:582472d0bc57 | 996 | // use the value set there, ignoring the output's LedWiz state |
mjr | 29:582472d0bc57 | 997 | if (wizVal[idx] == 255) |
mjr | 29:582472d0bc57 | 998 | return outLevel[idx]; |
mjr | 29:582472d0bc57 | 999 | |
mjr | 29:582472d0bc57 | 1000 | // if it's off, show at zero intensity |
mjr | 29:582472d0bc57 | 1001 | if (!wizOn[idx]) |
mjr | 29:582472d0bc57 | 1002 | return 0; |
mjr | 29:582472d0bc57 | 1003 | |
mjr | 29:582472d0bc57 | 1004 | // check the state |
mjr | 29:582472d0bc57 | 1005 | uint8_t val = wizVal[idx]; |
mjr | 40:cc0d9814522b | 1006 | if (val <= 49) |
mjr | 29:582472d0bc57 | 1007 | { |
mjr | 29:582472d0bc57 | 1008 | // PWM brightness/intensity level. Rescale from the LedWiz |
mjr | 29:582472d0bc57 | 1009 | // 0..48 integer range to our internal PwmOut 0..1 float range. |
mjr | 29:582472d0bc57 | 1010 | // Note that on the actual LedWiz, level 48 is actually about |
mjr | 29:582472d0bc57 | 1011 | // 98% on - contrary to the LedWiz documentation, level 49 is |
mjr | 29:582472d0bc57 | 1012 | // the true 100% level. (In the documentation, level 49 is |
mjr | 29:582472d0bc57 | 1013 | // simply not a valid setting.) Even so, we treat level 48 as |
mjr | 29:582472d0bc57 | 1014 | // 100% on to match the documentation. This won't be perfectly |
mjr | 29:582472d0bc57 | 1015 | // ocmpatible with the actual LedWiz, but it makes for such a |
mjr | 29:582472d0bc57 | 1016 | // small difference in brightness (if the output device is an |
mjr | 29:582472d0bc57 | 1017 | // LED, say) that no one should notice. It seems better to |
mjr | 29:582472d0bc57 | 1018 | // err in this direction, because while the difference in |
mjr | 29:582472d0bc57 | 1019 | // brightness when attached to an LED won't be noticeable, the |
mjr | 29:582472d0bc57 | 1020 | // difference in duty cycle when attached to something like a |
mjr | 29:582472d0bc57 | 1021 | // contactor *can* be noticeable - anything less than 100% |
mjr | 29:582472d0bc57 | 1022 | // can cause a contactor or relay to chatter. There's almost |
mjr | 29:582472d0bc57 | 1023 | // never a situation where you'd want values other than 0% and |
mjr | 29:582472d0bc57 | 1024 | // 100% for a contactor or relay, so treating level 48 as 100% |
mjr | 29:582472d0bc57 | 1025 | // makes us work properly with software that's expecting the |
mjr | 29:582472d0bc57 | 1026 | // documented LedWiz behavior and therefore uses level 48 to |
mjr | 29:582472d0bc57 | 1027 | // turn a contactor or relay fully on. |
mjr | 40:cc0d9814522b | 1028 | // |
mjr | 40:cc0d9814522b | 1029 | // Note that value 49 is undefined in the LedWiz documentation, |
mjr | 40:cc0d9814522b | 1030 | // but real LedWiz units treat it as 100%, equivalent to 48. |
mjr | 40:cc0d9814522b | 1031 | // Some software on the PC side uses this, so we need to treat |
mjr | 40:cc0d9814522b | 1032 | // it the same way for compatibility. |
mjr | 40:cc0d9814522b | 1033 | return lw_to_dof[val]; |
mjr | 29:582472d0bc57 | 1034 | } |
mjr | 29:582472d0bc57 | 1035 | else if (val == 129) |
mjr | 29:582472d0bc57 | 1036 | { |
mjr | 40:cc0d9814522b | 1037 | // 129 = ramp up / ramp down |
mjr | 30:6e9902f06f48 | 1038 | return wizFlashCounter < 128 |
mjr | 40:cc0d9814522b | 1039 | ? wizFlashCounter*2 + 1 |
mjr | 40:cc0d9814522b | 1040 | : (255 - wizFlashCounter)*2; |
mjr | 29:582472d0bc57 | 1041 | } |
mjr | 29:582472d0bc57 | 1042 | else if (val == 130) |
mjr | 29:582472d0bc57 | 1043 | { |
mjr | 40:cc0d9814522b | 1044 | // 130 = flash on / off |
mjr | 40:cc0d9814522b | 1045 | return wizFlashCounter < 128 ? 255 : 0; |
mjr | 29:582472d0bc57 | 1046 | } |
mjr | 29:582472d0bc57 | 1047 | else if (val == 131) |
mjr | 29:582472d0bc57 | 1048 | { |
mjr | 40:cc0d9814522b | 1049 | // 131 = on / ramp down |
mjr | 40:cc0d9814522b | 1050 | return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2; |
mjr | 0:5acbbe3f4cf4 | 1051 | } |
mjr | 29:582472d0bc57 | 1052 | else if (val == 132) |
mjr | 29:582472d0bc57 | 1053 | { |
mjr | 40:cc0d9814522b | 1054 | // 132 = ramp up / on |
mjr | 40:cc0d9814522b | 1055 | return wizFlashCounter < 128 ? wizFlashCounter*2 : 255; |
mjr | 29:582472d0bc57 | 1056 | } |
mjr | 29:582472d0bc57 | 1057 | else |
mjr | 13:72dda449c3c0 | 1058 | { |
mjr | 29:582472d0bc57 | 1059 | // Other values are undefined in the LedWiz documentation. Hosts |
mjr | 29:582472d0bc57 | 1060 | // *should* never send undefined values, since whatever behavior an |
mjr | 29:582472d0bc57 | 1061 | // LedWiz unit exhibits in response is accidental and could change |
mjr | 29:582472d0bc57 | 1062 | // in a future version. We'll treat all undefined values as equivalent |
mjr | 29:582472d0bc57 | 1063 | // to 48 (fully on). |
mjr | 40:cc0d9814522b | 1064 | return 255; |
mjr | 0:5acbbe3f4cf4 | 1065 | } |
mjr | 0:5acbbe3f4cf4 | 1066 | } |
mjr | 0:5acbbe3f4cf4 | 1067 | |
mjr | 29:582472d0bc57 | 1068 | // LedWiz flash timer pulse. This fires periodically to update |
mjr | 29:582472d0bc57 | 1069 | // LedWiz flashing outputs. At the slowest pulse speed set via |
mjr | 29:582472d0bc57 | 1070 | // the SBA command, each waveform cycle has 256 steps, so we |
mjr | 29:582472d0bc57 | 1071 | // choose the pulse time base so that the slowest cycle completes |
mjr | 29:582472d0bc57 | 1072 | // in 2 seconds. This seems to roughly match the real LedWiz |
mjr | 29:582472d0bc57 | 1073 | // behavior. We run the pulse timer at the same rate regardless |
mjr | 29:582472d0bc57 | 1074 | // of the pulse speed; at higher pulse speeds, we simply use |
mjr | 29:582472d0bc57 | 1075 | // larger steps through the cycle on each interrupt. Running |
mjr | 29:582472d0bc57 | 1076 | // every 1/127 of a second = 8ms seems to be a pretty light load. |
mjr | 29:582472d0bc57 | 1077 | Timeout wizPulseTimer; |
mjr | 38:091e511ce8a0 | 1078 | #define WIZ_PULSE_TIME_BASE (1.0f/127.0f) |
mjr | 29:582472d0bc57 | 1079 | static void wizPulse() |
mjr | 29:582472d0bc57 | 1080 | { |
mjr | 29:582472d0bc57 | 1081 | // increase the counter by the speed increment, and wrap at 256 |
mjr | 29:582472d0bc57 | 1082 | wizFlashCounter += wizSpeed; |
mjr | 29:582472d0bc57 | 1083 | wizFlashCounter &= 0xff; |
mjr | 29:582472d0bc57 | 1084 | |
mjr | 29:582472d0bc57 | 1085 | // if we have any flashing lights, update them |
mjr | 29:582472d0bc57 | 1086 | int ena = false; |
mjr | 35:e959ffba78fd | 1087 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 29:582472d0bc57 | 1088 | { |
mjr | 29:582472d0bc57 | 1089 | if (wizOn[i]) |
mjr | 29:582472d0bc57 | 1090 | { |
mjr | 29:582472d0bc57 | 1091 | uint8_t s = wizVal[i]; |
mjr | 29:582472d0bc57 | 1092 | if (s >= 129 && s <= 132) |
mjr | 29:582472d0bc57 | 1093 | { |
mjr | 40:cc0d9814522b | 1094 | lwPin[i]->set(wizState(i)); |
mjr | 29:582472d0bc57 | 1095 | ena = true; |
mjr | 29:582472d0bc57 | 1096 | } |
mjr | 29:582472d0bc57 | 1097 | } |
mjr | 29:582472d0bc57 | 1098 | } |
mjr | 29:582472d0bc57 | 1099 | |
mjr | 29:582472d0bc57 | 1100 | // Set up the next timer pulse only if we found anything flashing. |
mjr | 29:582472d0bc57 | 1101 | // To minimize overhead from this feature, we only enable the interrupt |
mjr | 29:582472d0bc57 | 1102 | // when we need it. This eliminates any performance penalty to other |
mjr | 29:582472d0bc57 | 1103 | // features when the host software doesn't care about the flashing |
mjr | 29:582472d0bc57 | 1104 | // modes. For example, DOF never uses these modes, so there's no |
mjr | 29:582472d0bc57 | 1105 | // need for them when running Visual Pinball. |
mjr | 29:582472d0bc57 | 1106 | if (ena) |
mjr | 29:582472d0bc57 | 1107 | wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE); |
mjr | 29:582472d0bc57 | 1108 | } |
mjr | 29:582472d0bc57 | 1109 | |
mjr | 29:582472d0bc57 | 1110 | // Update the physical outputs connected to the LedWiz ports. This is |
mjr | 29:582472d0bc57 | 1111 | // called after any update from an LedWiz protocol message. |
mjr | 1:d913e0afb2ac | 1112 | static void updateWizOuts() |
mjr | 1:d913e0afb2ac | 1113 | { |
mjr | 29:582472d0bc57 | 1114 | // update each output |
mjr | 29:582472d0bc57 | 1115 | int pulse = false; |
mjr | 35:e959ffba78fd | 1116 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 29:582472d0bc57 | 1117 | { |
mjr | 29:582472d0bc57 | 1118 | pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132); |
mjr | 40:cc0d9814522b | 1119 | lwPin[i]->set(wizState(i)); |
mjr | 29:582472d0bc57 | 1120 | } |
mjr | 29:582472d0bc57 | 1121 | |
mjr | 29:582472d0bc57 | 1122 | // if any outputs are set to flashing mode, and the pulse timer |
mjr | 29:582472d0bc57 | 1123 | // isn't running, turn it on |
mjr | 29:582472d0bc57 | 1124 | if (pulse) |
mjr | 29:582472d0bc57 | 1125 | wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE); |
mjr | 34:6b981a2afab7 | 1126 | |
mjr | 34:6b981a2afab7 | 1127 | // flush changes to 74HC595 chips, if attached |
mjr | 35:e959ffba78fd | 1128 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 1129 | hc595->update(); |
mjr | 1:d913e0afb2ac | 1130 | } |
mjr | 38:091e511ce8a0 | 1131 | |
mjr | 38:091e511ce8a0 | 1132 | // Update all physical outputs. This is called after a change to a global |
mjr | 38:091e511ce8a0 | 1133 | // setting that affects all outputs, such as engaging or canceling Night Mode. |
mjr | 38:091e511ce8a0 | 1134 | static void updateAllOuts() |
mjr | 38:091e511ce8a0 | 1135 | { |
mjr | 38:091e511ce8a0 | 1136 | // uddate each LedWiz output |
mjr | 38:091e511ce8a0 | 1137 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 40:cc0d9814522b | 1138 | lwPin[i]->set(wizState(i)); |
mjr | 34:6b981a2afab7 | 1139 | |
mjr | 38:091e511ce8a0 | 1140 | // update each extended output |
mjr | 38:091e511ce8a0 | 1141 | for (int i = 33 ; i < numOutputs ; ++i) |
mjr | 40:cc0d9814522b | 1142 | lwPin[i]->set(outLevel[i]); |
mjr | 38:091e511ce8a0 | 1143 | |
mjr | 38:091e511ce8a0 | 1144 | // flush 74HC595 changes, if necessary |
mjr | 38:091e511ce8a0 | 1145 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 1146 | hc595->update(); |
mjr | 38:091e511ce8a0 | 1147 | } |
mjr | 38:091e511ce8a0 | 1148 | |
mjr | 11:bd9da7088e6e | 1149 | // --------------------------------------------------------------------------- |
mjr | 11:bd9da7088e6e | 1150 | // |
mjr | 11:bd9da7088e6e | 1151 | // Button input |
mjr | 11:bd9da7088e6e | 1152 | // |
mjr | 11:bd9da7088e6e | 1153 | |
mjr | 18:5e890ebd0023 | 1154 | // button state |
mjr | 18:5e890ebd0023 | 1155 | struct ButtonState |
mjr | 18:5e890ebd0023 | 1156 | { |
mjr | 38:091e511ce8a0 | 1157 | ButtonState() |
mjr | 38:091e511ce8a0 | 1158 | { |
mjr | 38:091e511ce8a0 | 1159 | di = NULL; |
mjr | 38:091e511ce8a0 | 1160 | on = 0; |
mjr | 38:091e511ce8a0 | 1161 | pressed = prev = 0; |
mjr | 38:091e511ce8a0 | 1162 | dbstate = 0; |
mjr | 38:091e511ce8a0 | 1163 | js = 0; |
mjr | 38:091e511ce8a0 | 1164 | keymod = 0; |
mjr | 38:091e511ce8a0 | 1165 | keycode = 0; |
mjr | 38:091e511ce8a0 | 1166 | special = 0; |
mjr | 38:091e511ce8a0 | 1167 | pulseState = 0; |
mjr | 38:091e511ce8a0 | 1168 | pulseTime = 0.0f; |
mjr | 38:091e511ce8a0 | 1169 | } |
mjr | 35:e959ffba78fd | 1170 | |
mjr | 35:e959ffba78fd | 1171 | // DigitalIn for the button |
mjr | 48:058ace2aed1d | 1172 | TinyDigitalIn *di; |
mjr | 38:091e511ce8a0 | 1173 | |
mjr | 38:091e511ce8a0 | 1174 | // current PHYSICAL on/off state, after debouncing |
mjr | 48:058ace2aed1d | 1175 | uint8_t on : 1; |
mjr | 18:5e890ebd0023 | 1176 | |
mjr | 38:091e511ce8a0 | 1177 | // current LOGICAL on/off state as reported to the host. |
mjr | 48:058ace2aed1d | 1178 | uint8_t pressed : 1; |
mjr | 38:091e511ce8a0 | 1179 | |
mjr | 38:091e511ce8a0 | 1180 | // previous logical on/off state, when keys were last processed for USB |
mjr | 38:091e511ce8a0 | 1181 | // reports and local effects |
mjr | 48:058ace2aed1d | 1182 | uint8_t prev : 1; |
mjr | 38:091e511ce8a0 | 1183 | |
mjr | 38:091e511ce8a0 | 1184 | // Debounce history. On each scan, we shift in a 1 bit to the lsb if |
mjr | 38:091e511ce8a0 | 1185 | // the physical key is reporting ON, and shift in a 0 bit if the physical |
mjr | 38:091e511ce8a0 | 1186 | // key is reporting OFF. We consider the key to have a new stable state |
mjr | 38:091e511ce8a0 | 1187 | // if we have N consecutive 0's or 1's in the low N bits (where N is |
mjr | 38:091e511ce8a0 | 1188 | // a parameter that determines how long we wait for transients to settle). |
mjr | 38:091e511ce8a0 | 1189 | uint8_t dbstate; |
mjr | 35:e959ffba78fd | 1190 | |
mjr | 35:e959ffba78fd | 1191 | // joystick button mask for the button, if mapped as a joystick button |
mjr | 35:e959ffba78fd | 1192 | uint32_t js; |
mjr | 35:e959ffba78fd | 1193 | |
mjr | 35:e959ffba78fd | 1194 | // keyboard modifier bits and scan code for the button, if mapped as a keyboard key |
mjr | 35:e959ffba78fd | 1195 | uint8_t keymod; |
mjr | 35:e959ffba78fd | 1196 | uint8_t keycode; |
mjr | 35:e959ffba78fd | 1197 | |
mjr | 35:e959ffba78fd | 1198 | // media control key code |
mjr | 35:e959ffba78fd | 1199 | uint8_t mediakey; |
mjr | 35:e959ffba78fd | 1200 | |
mjr | 38:091e511ce8a0 | 1201 | // special key code |
mjr | 38:091e511ce8a0 | 1202 | uint8_t special; |
mjr | 38:091e511ce8a0 | 1203 | |
mjr | 38:091e511ce8a0 | 1204 | // Pulse mode: a button in pulse mode transmits a brief logical button press and |
mjr | 38:091e511ce8a0 | 1205 | // release each time the attached physical switch changes state. This is useful |
mjr | 38:091e511ce8a0 | 1206 | // for cases where the host expects a key press for each change in the state of |
mjr | 38:091e511ce8a0 | 1207 | // the physical switch. The canonical example is the Coin Door switch in VPinMAME, |
mjr | 38:091e511ce8a0 | 1208 | // which requires pressing the END key to toggle the open/closed state. This |
mjr | 38:091e511ce8a0 | 1209 | // software design isn't easily implemented in a physical coin door, though - |
mjr | 38:091e511ce8a0 | 1210 | // the easiest way to sense a physical coin door's state is with a simple on/off |
mjr | 38:091e511ce8a0 | 1211 | // switch. Pulse mode bridges that divide by converting a physical switch state |
mjr | 38:091e511ce8a0 | 1212 | // to on/off toggle key reports to the host. |
mjr | 38:091e511ce8a0 | 1213 | // |
mjr | 38:091e511ce8a0 | 1214 | // Pulse state: |
mjr | 38:091e511ce8a0 | 1215 | // 0 -> not a pulse switch - logical key state equals physical switch state |
mjr | 38:091e511ce8a0 | 1216 | // 1 -> off |
mjr | 38:091e511ce8a0 | 1217 | // 2 -> transitioning off-on |
mjr | 38:091e511ce8a0 | 1218 | // 3 -> on |
mjr | 38:091e511ce8a0 | 1219 | // 4 -> transitioning on-off |
mjr | 38:091e511ce8a0 | 1220 | // |
mjr | 38:091e511ce8a0 | 1221 | // Each state change sticks for a minimum period; when the timer expires, |
mjr | 38:091e511ce8a0 | 1222 | // if the underlying physical switch is in a different state, we switch |
mjr | 38:091e511ce8a0 | 1223 | // to the next state and restart the timer. pulseTime is the amount of |
mjr | 38:091e511ce8a0 | 1224 | // time remaining before we can make another state transition. The state |
mjr | 38:091e511ce8a0 | 1225 | // transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; this |
mjr | 38:091e511ce8a0 | 1226 | // guarantees that the parity of the pulse count always matches the |
mjr | 38:091e511ce8a0 | 1227 | // current physical switch state when the latter is stable, which makes |
mjr | 38:091e511ce8a0 | 1228 | // it impossible to "trick" the host by rapidly toggling the switch state. |
mjr | 38:091e511ce8a0 | 1229 | // (On my original Pinscape cabinet, I had a hardware pulse generator |
mjr | 38:091e511ce8a0 | 1230 | // for coin door, and that *was* possible to trick by rapid toggling. |
mjr | 38:091e511ce8a0 | 1231 | // This software system can't be fooled that way.) |
mjr | 38:091e511ce8a0 | 1232 | uint8_t pulseState; |
mjr | 38:091e511ce8a0 | 1233 | float pulseTime; |
mjr | 38:091e511ce8a0 | 1234 | |
mjr | 48:058ace2aed1d | 1235 | } __attribute__((packed)) buttonState[MAX_BUTTONS]; |
mjr | 18:5e890ebd0023 | 1236 | |
mjr | 38:091e511ce8a0 | 1237 | |
mjr | 38:091e511ce8a0 | 1238 | // Button data |
mjr | 38:091e511ce8a0 | 1239 | uint32_t jsButtons = 0; |
mjr | 38:091e511ce8a0 | 1240 | |
mjr | 38:091e511ce8a0 | 1241 | // Keyboard report state. This tracks the USB keyboard state. We can |
mjr | 38:091e511ce8a0 | 1242 | // report at most 6 simultaneous non-modifier keys here, plus the 8 |
mjr | 38:091e511ce8a0 | 1243 | // modifier keys. |
mjr | 38:091e511ce8a0 | 1244 | struct |
mjr | 38:091e511ce8a0 | 1245 | { |
mjr | 38:091e511ce8a0 | 1246 | bool changed; // flag: changed since last report sent |
mjr | 48:058ace2aed1d | 1247 | uint8_t nkeys; // number of active keys in the list |
mjr | 38:091e511ce8a0 | 1248 | uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask, |
mjr | 38:091e511ce8a0 | 1249 | // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes |
mjr | 38:091e511ce8a0 | 1250 | } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } }; |
mjr | 38:091e511ce8a0 | 1251 | |
mjr | 38:091e511ce8a0 | 1252 | // Media key state |
mjr | 38:091e511ce8a0 | 1253 | struct |
mjr | 38:091e511ce8a0 | 1254 | { |
mjr | 38:091e511ce8a0 | 1255 | bool changed; // flag: changed since last report sent |
mjr | 38:091e511ce8a0 | 1256 | uint8_t data; // key state byte for USB reports |
mjr | 38:091e511ce8a0 | 1257 | } mediaState = { false, 0 }; |
mjr | 38:091e511ce8a0 | 1258 | |
mjr | 38:091e511ce8a0 | 1259 | // button scan interrupt ticker |
mjr | 38:091e511ce8a0 | 1260 | Ticker buttonTicker; |
mjr | 38:091e511ce8a0 | 1261 | |
mjr | 38:091e511ce8a0 | 1262 | // Button scan interrupt handler. We call this periodically via |
mjr | 38:091e511ce8a0 | 1263 | // a timer interrupt to scan the physical button states. |
mjr | 38:091e511ce8a0 | 1264 | void scanButtons() |
mjr | 38:091e511ce8a0 | 1265 | { |
mjr | 38:091e511ce8a0 | 1266 | // scan all button input pins |
mjr | 38:091e511ce8a0 | 1267 | ButtonState *bs = buttonState; |
mjr | 38:091e511ce8a0 | 1268 | for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs) |
mjr | 38:091e511ce8a0 | 1269 | { |
mjr | 38:091e511ce8a0 | 1270 | // if it's connected, check its physical state |
mjr | 38:091e511ce8a0 | 1271 | if (bs->di != NULL) |
mjr | 38:091e511ce8a0 | 1272 | { |
mjr | 38:091e511ce8a0 | 1273 | // Shift the new state into the debounce history. Note that |
mjr | 38:091e511ce8a0 | 1274 | // the physical pin inputs are active low (0V/GND = ON), so invert |
mjr | 38:091e511ce8a0 | 1275 | // the reading by XOR'ing the low bit with 1. And of course we |
mjr | 38:091e511ce8a0 | 1276 | // only want the low bit (since the history is effectively a bit |
mjr | 38:091e511ce8a0 | 1277 | // vector), so mask the whole thing with 0x01 as well. |
mjr | 38:091e511ce8a0 | 1278 | uint8_t db = bs->dbstate; |
mjr | 38:091e511ce8a0 | 1279 | db <<= 1; |
mjr | 38:091e511ce8a0 | 1280 | db |= (bs->di->read() & 0x01) ^ 0x01; |
mjr | 38:091e511ce8a0 | 1281 | bs->dbstate = db; |
mjr | 38:091e511ce8a0 | 1282 | |
mjr | 38:091e511ce8a0 | 1283 | // if we have all 0's or 1's in the history for the required |
mjr | 38:091e511ce8a0 | 1284 | // debounce period, the key state is stable - check for a change |
mjr | 38:091e511ce8a0 | 1285 | // to the last stable state |
mjr | 38:091e511ce8a0 | 1286 | const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings |
mjr | 38:091e511ce8a0 | 1287 | db &= stable; |
mjr | 38:091e511ce8a0 | 1288 | if (db == 0 || db == stable) |
mjr | 38:091e511ce8a0 | 1289 | bs->on = db; |
mjr | 38:091e511ce8a0 | 1290 | } |
mjr | 38:091e511ce8a0 | 1291 | } |
mjr | 38:091e511ce8a0 | 1292 | } |
mjr | 38:091e511ce8a0 | 1293 | |
mjr | 38:091e511ce8a0 | 1294 | // Button state transition timer. This is used for pulse buttons, to |
mjr | 38:091e511ce8a0 | 1295 | // control the timing of the logical key presses generated by transitions |
mjr | 38:091e511ce8a0 | 1296 | // in the physical button state. |
mjr | 38:091e511ce8a0 | 1297 | Timer buttonTimer; |
mjr | 12:669df364a565 | 1298 | |
mjr | 11:bd9da7088e6e | 1299 | // initialize the button inputs |
mjr | 35:e959ffba78fd | 1300 | void initButtons(Config &cfg, bool &kbKeys) |
mjr | 11:bd9da7088e6e | 1301 | { |
mjr | 35:e959ffba78fd | 1302 | // presume we'll find no keyboard keys |
mjr | 35:e959ffba78fd | 1303 | kbKeys = false; |
mjr | 35:e959ffba78fd | 1304 | |
mjr | 11:bd9da7088e6e | 1305 | // create the digital inputs |
mjr | 35:e959ffba78fd | 1306 | ButtonState *bs = buttonState; |
mjr | 35:e959ffba78fd | 1307 | for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs) |
mjr | 11:bd9da7088e6e | 1308 | { |
mjr | 35:e959ffba78fd | 1309 | PinName pin = wirePinName(cfg.button[i].pin); |
mjr | 35:e959ffba78fd | 1310 | if (pin != NC) |
mjr | 35:e959ffba78fd | 1311 | { |
mjr | 35:e959ffba78fd | 1312 | // set up the GPIO input pin for this button |
mjr | 48:058ace2aed1d | 1313 | bs->di = new TinyDigitalIn(pin); |
mjr | 35:e959ffba78fd | 1314 | |
mjr | 38:091e511ce8a0 | 1315 | // if it's a pulse mode button, set the initial pulse state to Off |
mjr | 38:091e511ce8a0 | 1316 | if (cfg.button[i].flags & BtnFlagPulse) |
mjr | 38:091e511ce8a0 | 1317 | bs->pulseState = 1; |
mjr | 38:091e511ce8a0 | 1318 | |
mjr | 35:e959ffba78fd | 1319 | // note if it's a keyboard key of some kind (including media keys) |
mjr | 35:e959ffba78fd | 1320 | uint8_t val = cfg.button[i].val; |
mjr | 35:e959ffba78fd | 1321 | switch (cfg.button[i].typ) |
mjr | 35:e959ffba78fd | 1322 | { |
mjr | 35:e959ffba78fd | 1323 | case BtnTypeJoystick: |
mjr | 35:e959ffba78fd | 1324 | // joystick button - get the button bit mask |
mjr | 35:e959ffba78fd | 1325 | bs->js = 1 << val; |
mjr | 35:e959ffba78fd | 1326 | break; |
mjr | 35:e959ffba78fd | 1327 | |
mjr | 35:e959ffba78fd | 1328 | case BtnTypeKey: |
mjr | 35:e959ffba78fd | 1329 | // regular keyboard key - note the scan code |
mjr | 35:e959ffba78fd | 1330 | bs->keycode = val; |
mjr | 35:e959ffba78fd | 1331 | kbKeys = true; |
mjr | 35:e959ffba78fd | 1332 | break; |
mjr | 35:e959ffba78fd | 1333 | |
mjr | 35:e959ffba78fd | 1334 | case BtnTypeModKey: |
mjr | 35:e959ffba78fd | 1335 | // keyboard mod key - note the modifier mask |
mjr | 35:e959ffba78fd | 1336 | bs->keymod = val; |
mjr | 35:e959ffba78fd | 1337 | kbKeys = true; |
mjr | 35:e959ffba78fd | 1338 | break; |
mjr | 35:e959ffba78fd | 1339 | |
mjr | 35:e959ffba78fd | 1340 | case BtnTypeMedia: |
mjr | 35:e959ffba78fd | 1341 | // media key - note the code |
mjr | 35:e959ffba78fd | 1342 | bs->mediakey = val; |
mjr | 35:e959ffba78fd | 1343 | kbKeys = true; |
mjr | 35:e959ffba78fd | 1344 | break; |
mjr | 39:b3815a1c3802 | 1345 | |
mjr | 39:b3815a1c3802 | 1346 | case BtnTypeSpecial: |
mjr | 39:b3815a1c3802 | 1347 | // special key |
mjr | 39:b3815a1c3802 | 1348 | bs->special = val; |
mjr | 39:b3815a1c3802 | 1349 | break; |
mjr | 35:e959ffba78fd | 1350 | } |
mjr | 35:e959ffba78fd | 1351 | } |
mjr | 11:bd9da7088e6e | 1352 | } |
mjr | 12:669df364a565 | 1353 | |
mjr | 38:091e511ce8a0 | 1354 | // start the button scan thread |
mjr | 38:091e511ce8a0 | 1355 | buttonTicker.attach_us(scanButtons, 1000); |
mjr | 38:091e511ce8a0 | 1356 | |
mjr | 38:091e511ce8a0 | 1357 | // start the button state transition timer |
mjr | 12:669df364a565 | 1358 | buttonTimer.start(); |
mjr | 11:bd9da7088e6e | 1359 | } |
mjr | 11:bd9da7088e6e | 1360 | |
mjr | 38:091e511ce8a0 | 1361 | // Process the button state. This sets up the joystick, keyboard, and |
mjr | 38:091e511ce8a0 | 1362 | // media control descriptors with the current state of keys mapped to |
mjr | 38:091e511ce8a0 | 1363 | // those HID interfaces, and executes the local effects for any keys |
mjr | 38:091e511ce8a0 | 1364 | // mapped to special device functions (e.g., Night Mode). |
mjr | 38:091e511ce8a0 | 1365 | void processButtons() |
mjr | 35:e959ffba78fd | 1366 | { |
mjr | 35:e959ffba78fd | 1367 | // start with an empty list of USB key codes |
mjr | 35:e959ffba78fd | 1368 | uint8_t modkeys = 0; |
mjr | 35:e959ffba78fd | 1369 | uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 }; |
mjr | 35:e959ffba78fd | 1370 | int nkeys = 0; |
mjr | 11:bd9da7088e6e | 1371 | |
mjr | 35:e959ffba78fd | 1372 | // clear the joystick buttons |
mjr | 36:b9747461331e | 1373 | uint32_t newjs = 0; |
mjr | 35:e959ffba78fd | 1374 | |
mjr | 35:e959ffba78fd | 1375 | // start with no media keys pressed |
mjr | 35:e959ffba78fd | 1376 | uint8_t mediakeys = 0; |
mjr | 38:091e511ce8a0 | 1377 | |
mjr | 38:091e511ce8a0 | 1378 | // calculate the time since the last run |
mjr | 35:e959ffba78fd | 1379 | float dt = buttonTimer.read(); |
mjr | 18:5e890ebd0023 | 1380 | buttonTimer.reset(); |
mjr | 38:091e511ce8a0 | 1381 | |
mjr | 11:bd9da7088e6e | 1382 | // scan the button list |
mjr | 18:5e890ebd0023 | 1383 | ButtonState *bs = buttonState; |
mjr | 35:e959ffba78fd | 1384 | for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs) |
mjr | 11:bd9da7088e6e | 1385 | { |
mjr | 38:091e511ce8a0 | 1386 | // if it's a pulse-mode switch, get the virtual pressed state |
mjr | 38:091e511ce8a0 | 1387 | if (bs->pulseState != 0) |
mjr | 18:5e890ebd0023 | 1388 | { |
mjr | 38:091e511ce8a0 | 1389 | // deduct the time to the next state change |
mjr | 38:091e511ce8a0 | 1390 | bs->pulseTime -= dt; |
mjr | 38:091e511ce8a0 | 1391 | if (bs->pulseTime < 0) |
mjr | 38:091e511ce8a0 | 1392 | bs->pulseTime = 0; |
mjr | 38:091e511ce8a0 | 1393 | |
mjr | 38:091e511ce8a0 | 1394 | // if the timer has expired, check for state changes |
mjr | 38:091e511ce8a0 | 1395 | if (bs->pulseTime == 0) |
mjr | 18:5e890ebd0023 | 1396 | { |
mjr | 38:091e511ce8a0 | 1397 | const float pulseLength = 0.2; |
mjr | 38:091e511ce8a0 | 1398 | switch (bs->pulseState) |
mjr | 18:5e890ebd0023 | 1399 | { |
mjr | 38:091e511ce8a0 | 1400 | case 1: |
mjr | 38:091e511ce8a0 | 1401 | // off - if the physical switch is now on, start a button pulse |
mjr | 38:091e511ce8a0 | 1402 | if (bs->on) { |
mjr | 38:091e511ce8a0 | 1403 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 1404 | bs->pulseState = 2; |
mjr | 38:091e511ce8a0 | 1405 | bs->pressed = 1; |
mjr | 38:091e511ce8a0 | 1406 | } |
mjr | 38:091e511ce8a0 | 1407 | break; |
mjr | 18:5e890ebd0023 | 1408 | |
mjr | 38:091e511ce8a0 | 1409 | case 2: |
mjr | 38:091e511ce8a0 | 1410 | // transitioning off to on - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 1411 | // equal to the pulse time so that the host can observe the |
mjr | 38:091e511ce8a0 | 1412 | // change in state in the logical button |
mjr | 38:091e511ce8a0 | 1413 | bs->pulseState = 3; |
mjr | 38:091e511ce8a0 | 1414 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 1415 | bs->pressed = 0; |
mjr | 38:091e511ce8a0 | 1416 | break; |
mjr | 38:091e511ce8a0 | 1417 | |
mjr | 38:091e511ce8a0 | 1418 | case 3: |
mjr | 38:091e511ce8a0 | 1419 | // on - if the physical switch is now off, start a button pulse |
mjr | 38:091e511ce8a0 | 1420 | if (!bs->on) { |
mjr | 38:091e511ce8a0 | 1421 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 1422 | bs->pulseState = 4; |
mjr | 38:091e511ce8a0 | 1423 | bs->pressed = 1; |
mjr | 38:091e511ce8a0 | 1424 | } |
mjr | 38:091e511ce8a0 | 1425 | break; |
mjr | 38:091e511ce8a0 | 1426 | |
mjr | 38:091e511ce8a0 | 1427 | case 4: |
mjr | 38:091e511ce8a0 | 1428 | // transitioning on to off - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 1429 | bs->pulseState = 1; |
mjr | 38:091e511ce8a0 | 1430 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 1431 | bs->pressed = 0; |
mjr | 38:091e511ce8a0 | 1432 | break; |
mjr | 18:5e890ebd0023 | 1433 | } |
mjr | 18:5e890ebd0023 | 1434 | } |
mjr | 38:091e511ce8a0 | 1435 | } |
mjr | 38:091e511ce8a0 | 1436 | else |
mjr | 38:091e511ce8a0 | 1437 | { |
mjr | 38:091e511ce8a0 | 1438 | // not a pulse switch - the logical state is the same as the physical state |
mjr | 38:091e511ce8a0 | 1439 | bs->pressed = bs->on; |
mjr | 38:091e511ce8a0 | 1440 | } |
mjr | 35:e959ffba78fd | 1441 | |
mjr | 38:091e511ce8a0 | 1442 | // carry out any edge effects from buttons changing states |
mjr | 38:091e511ce8a0 | 1443 | if (bs->pressed != bs->prev) |
mjr | 38:091e511ce8a0 | 1444 | { |
mjr | 38:091e511ce8a0 | 1445 | // check for special key transitions |
mjr | 38:091e511ce8a0 | 1446 | switch (bs->special) |
mjr | 35:e959ffba78fd | 1447 | { |
mjr | 38:091e511ce8a0 | 1448 | case 1: |
mjr | 38:091e511ce8a0 | 1449 | // night mode momentary switch - when the button transitions from |
mjr | 38:091e511ce8a0 | 1450 | // OFF to ON, invert night mode |
mjr | 38:091e511ce8a0 | 1451 | if (bs->pressed) |
mjr | 38:091e511ce8a0 | 1452 | toggleNightMode(); |
mjr | 38:091e511ce8a0 | 1453 | break; |
mjr | 35:e959ffba78fd | 1454 | |
mjr | 38:091e511ce8a0 | 1455 | case 2: |
mjr | 38:091e511ce8a0 | 1456 | // night mode toggle switch - when the button changes state, change |
mjr | 38:091e511ce8a0 | 1457 | // night mode to match the new state |
mjr | 38:091e511ce8a0 | 1458 | setNightMode(bs->pressed); |
mjr | 38:091e511ce8a0 | 1459 | break; |
mjr | 35:e959ffba78fd | 1460 | } |
mjr | 38:091e511ce8a0 | 1461 | |
mjr | 38:091e511ce8a0 | 1462 | // remember the new state for comparison on the next run |
mjr | 38:091e511ce8a0 | 1463 | bs->prev = bs->pressed; |
mjr | 38:091e511ce8a0 | 1464 | } |
mjr | 38:091e511ce8a0 | 1465 | |
mjr | 38:091e511ce8a0 | 1466 | // if it's pressed, add it to the appropriate key state list |
mjr | 38:091e511ce8a0 | 1467 | if (bs->pressed) |
mjr | 38:091e511ce8a0 | 1468 | { |
mjr | 38:091e511ce8a0 | 1469 | // OR in the joystick button bit, mod key bits, and media key bits |
mjr | 38:091e511ce8a0 | 1470 | newjs |= bs->js; |
mjr | 38:091e511ce8a0 | 1471 | modkeys |= bs->keymod; |
mjr | 38:091e511ce8a0 | 1472 | mediakeys |= bs->mediakey; |
mjr | 38:091e511ce8a0 | 1473 | |
mjr | 38:091e511ce8a0 | 1474 | // if it has a keyboard key, add the scan code to the active list |
mjr | 38:091e511ce8a0 | 1475 | if (bs->keycode != 0 && nkeys < 7) |
mjr | 38:091e511ce8a0 | 1476 | keys[nkeys++] = bs->keycode; |
mjr | 18:5e890ebd0023 | 1477 | } |
mjr | 11:bd9da7088e6e | 1478 | } |
mjr | 36:b9747461331e | 1479 | |
mjr | 36:b9747461331e | 1480 | // check for joystick button changes |
mjr | 36:b9747461331e | 1481 | if (jsButtons != newjs) |
mjr | 36:b9747461331e | 1482 | jsButtons = newjs; |
mjr | 11:bd9da7088e6e | 1483 | |
mjr | 35:e959ffba78fd | 1484 | // Check for changes to the keyboard keys |
mjr | 35:e959ffba78fd | 1485 | if (kbState.data[0] != modkeys |
mjr | 35:e959ffba78fd | 1486 | || kbState.nkeys != nkeys |
mjr | 35:e959ffba78fd | 1487 | || memcmp(keys, &kbState.data[2], 6) != 0) |
mjr | 35:e959ffba78fd | 1488 | { |
mjr | 35:e959ffba78fd | 1489 | // we have changes - set the change flag and store the new key data |
mjr | 35:e959ffba78fd | 1490 | kbState.changed = true; |
mjr | 35:e959ffba78fd | 1491 | kbState.data[0] = modkeys; |
mjr | 35:e959ffba78fd | 1492 | if (nkeys <= 6) { |
mjr | 35:e959ffba78fd | 1493 | // 6 or fewer simultaneous keys - report the key codes |
mjr | 35:e959ffba78fd | 1494 | kbState.nkeys = nkeys; |
mjr | 35:e959ffba78fd | 1495 | memcpy(&kbState.data[2], keys, 6); |
mjr | 35:e959ffba78fd | 1496 | } |
mjr | 35:e959ffba78fd | 1497 | else { |
mjr | 35:e959ffba78fd | 1498 | // more than 6 simultaneous keys - report rollover (all '1' key codes) |
mjr | 35:e959ffba78fd | 1499 | kbState.nkeys = 6; |
mjr | 35:e959ffba78fd | 1500 | memset(&kbState.data[2], 1, 6); |
mjr | 35:e959ffba78fd | 1501 | } |
mjr | 35:e959ffba78fd | 1502 | } |
mjr | 35:e959ffba78fd | 1503 | |
mjr | 35:e959ffba78fd | 1504 | // Check for changes to media keys |
mjr | 35:e959ffba78fd | 1505 | if (mediaState.data != mediakeys) |
mjr | 35:e959ffba78fd | 1506 | { |
mjr | 35:e959ffba78fd | 1507 | mediaState.changed = true; |
mjr | 35:e959ffba78fd | 1508 | mediaState.data = mediakeys; |
mjr | 35:e959ffba78fd | 1509 | } |
mjr | 11:bd9da7088e6e | 1510 | } |
mjr | 11:bd9da7088e6e | 1511 | |
mjr | 5:a70c0bce770d | 1512 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 1513 | // |
mjr | 5:a70c0bce770d | 1514 | // Customization joystick subbclass |
mjr | 5:a70c0bce770d | 1515 | // |
mjr | 5:a70c0bce770d | 1516 | |
mjr | 5:a70c0bce770d | 1517 | class MyUSBJoystick: public USBJoystick |
mjr | 5:a70c0bce770d | 1518 | { |
mjr | 5:a70c0bce770d | 1519 | public: |
mjr | 35:e959ffba78fd | 1520 | MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release, |
mjr | 35:e959ffba78fd | 1521 | bool waitForConnect, bool enableJoystick, bool useKB) |
mjr | 35:e959ffba78fd | 1522 | : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB) |
mjr | 5:a70c0bce770d | 1523 | { |
mjr | 5:a70c0bce770d | 1524 | suspended_ = false; |
mjr | 5:a70c0bce770d | 1525 | } |
mjr | 5:a70c0bce770d | 1526 | |
mjr | 5:a70c0bce770d | 1527 | // are we connected? |
mjr | 5:a70c0bce770d | 1528 | int isConnected() { return configured(); } |
mjr | 5:a70c0bce770d | 1529 | |
mjr | 5:a70c0bce770d | 1530 | // Are we in suspend mode? |
mjr | 5:a70c0bce770d | 1531 | int isSuspended() const { return suspended_; } |
mjr | 5:a70c0bce770d | 1532 | |
mjr | 5:a70c0bce770d | 1533 | protected: |
mjr | 5:a70c0bce770d | 1534 | virtual void suspendStateChanged(unsigned int suspended) |
mjr | 5:a70c0bce770d | 1535 | { suspended_ = suspended; } |
mjr | 5:a70c0bce770d | 1536 | |
mjr | 5:a70c0bce770d | 1537 | // are we suspended? |
mjr | 5:a70c0bce770d | 1538 | int suspended_; |
mjr | 5:a70c0bce770d | 1539 | }; |
mjr | 5:a70c0bce770d | 1540 | |
mjr | 5:a70c0bce770d | 1541 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 1542 | // |
mjr | 5:a70c0bce770d | 1543 | // Accelerometer (MMA8451Q) |
mjr | 5:a70c0bce770d | 1544 | // |
mjr | 5:a70c0bce770d | 1545 | |
mjr | 5:a70c0bce770d | 1546 | // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer. |
mjr | 5:a70c0bce770d | 1547 | // |
mjr | 5:a70c0bce770d | 1548 | // This is a custom wrapper for the library code to interface to the |
mjr | 6:cc35eb643e8f | 1549 | // MMA8451Q. This class encapsulates an interrupt handler and |
mjr | 6:cc35eb643e8f | 1550 | // automatic calibration. |
mjr | 5:a70c0bce770d | 1551 | // |
mjr | 5:a70c0bce770d | 1552 | // We install an interrupt handler on the accelerometer "data ready" |
mjr | 6:cc35eb643e8f | 1553 | // interrupt to ensure that we fetch each sample immediately when it |
mjr | 6:cc35eb643e8f | 1554 | // becomes available. The accelerometer data rate is fiarly high |
mjr | 6:cc35eb643e8f | 1555 | // (800 Hz), so it's not practical to keep up with it by polling. |
mjr | 6:cc35eb643e8f | 1556 | // Using an interrupt handler lets us respond quickly and read |
mjr | 6:cc35eb643e8f | 1557 | // every sample. |
mjr | 5:a70c0bce770d | 1558 | // |
mjr | 6:cc35eb643e8f | 1559 | // We automatically calibrate the accelerometer so that it's not |
mjr | 6:cc35eb643e8f | 1560 | // necessary to get it exactly level when installing it, and so |
mjr | 6:cc35eb643e8f | 1561 | // that it's also not necessary to calibrate it manually. There's |
mjr | 6:cc35eb643e8f | 1562 | // lots of experience that tells us that manual calibration is a |
mjr | 6:cc35eb643e8f | 1563 | // terrible solution, mostly because cabinets tend to shift slightly |
mjr | 6:cc35eb643e8f | 1564 | // during use, requiring frequent recalibration. Instead, we |
mjr | 6:cc35eb643e8f | 1565 | // calibrate automatically. We continuously monitor the acceleration |
mjr | 6:cc35eb643e8f | 1566 | // data, watching for periods of constant (or nearly constant) values. |
mjr | 6:cc35eb643e8f | 1567 | // Any time it appears that the machine has been at rest for a while |
mjr | 6:cc35eb643e8f | 1568 | // (about 5 seconds), we'll average the readings during that rest |
mjr | 6:cc35eb643e8f | 1569 | // period and use the result as the level rest position. This is |
mjr | 6:cc35eb643e8f | 1570 | // is ongoing, so we'll quickly find the center point again if the |
mjr | 6:cc35eb643e8f | 1571 | // machine is moved during play (by an especially aggressive bout |
mjr | 6:cc35eb643e8f | 1572 | // of nudging, say). |
mjr | 5:a70c0bce770d | 1573 | // |
mjr | 5:a70c0bce770d | 1574 | |
mjr | 17:ab3cec0c8bf4 | 1575 | // I2C address of the accelerometer (this is a constant of the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 1576 | const int MMA8451_I2C_ADDRESS = (0x1d<<1); |
mjr | 17:ab3cec0c8bf4 | 1577 | |
mjr | 17:ab3cec0c8bf4 | 1578 | // SCL and SDA pins for the accelerometer (constant for the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 1579 | #define MMA8451_SCL_PIN PTE25 |
mjr | 17:ab3cec0c8bf4 | 1580 | #define MMA8451_SDA_PIN PTE24 |
mjr | 17:ab3cec0c8bf4 | 1581 | |
mjr | 17:ab3cec0c8bf4 | 1582 | // Digital in pin to use for the accelerometer interrupt. For the KL25Z, |
mjr | 17:ab3cec0c8bf4 | 1583 | // this can be either PTA14 or PTA15, since those are the pins physically |
mjr | 17:ab3cec0c8bf4 | 1584 | // wired on this board to the MMA8451 interrupt controller. |
mjr | 17:ab3cec0c8bf4 | 1585 | #define MMA8451_INT_PIN PTA15 |
mjr | 17:ab3cec0c8bf4 | 1586 | |
mjr | 17:ab3cec0c8bf4 | 1587 | |
mjr | 6:cc35eb643e8f | 1588 | // accelerometer input history item, for gathering calibration data |
mjr | 6:cc35eb643e8f | 1589 | struct AccHist |
mjr | 5:a70c0bce770d | 1590 | { |
mjr | 6:cc35eb643e8f | 1591 | AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; } |
mjr | 6:cc35eb643e8f | 1592 | void set(float x, float y, AccHist *prv) |
mjr | 6:cc35eb643e8f | 1593 | { |
mjr | 6:cc35eb643e8f | 1594 | // save the raw position |
mjr | 6:cc35eb643e8f | 1595 | this->x = x; |
mjr | 6:cc35eb643e8f | 1596 | this->y = y; |
mjr | 6:cc35eb643e8f | 1597 | this->d = distance(prv); |
mjr | 6:cc35eb643e8f | 1598 | } |
mjr | 6:cc35eb643e8f | 1599 | |
mjr | 6:cc35eb643e8f | 1600 | // reading for this entry |
mjr | 5:a70c0bce770d | 1601 | float x, y; |
mjr | 5:a70c0bce770d | 1602 | |
mjr | 6:cc35eb643e8f | 1603 | // distance from previous entry |
mjr | 6:cc35eb643e8f | 1604 | float d; |
mjr | 5:a70c0bce770d | 1605 | |
mjr | 6:cc35eb643e8f | 1606 | // total and count of samples averaged over this period |
mjr | 6:cc35eb643e8f | 1607 | float xtot, ytot; |
mjr | 6:cc35eb643e8f | 1608 | int cnt; |
mjr | 6:cc35eb643e8f | 1609 | |
mjr | 6:cc35eb643e8f | 1610 | void clearAvg() { xtot = ytot = 0.0; cnt = 0; } |
mjr | 6:cc35eb643e8f | 1611 | void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; } |
mjr | 6:cc35eb643e8f | 1612 | float xAvg() const { return xtot/cnt; } |
mjr | 6:cc35eb643e8f | 1613 | float yAvg() const { return ytot/cnt; } |
mjr | 5:a70c0bce770d | 1614 | |
mjr | 6:cc35eb643e8f | 1615 | float distance(AccHist *p) |
mjr | 6:cc35eb643e8f | 1616 | { return sqrt(square(p->x - x) + square(p->y - y)); } |
mjr | 5:a70c0bce770d | 1617 | }; |
mjr | 5:a70c0bce770d | 1618 | |
mjr | 5:a70c0bce770d | 1619 | // accelerometer wrapper class |
mjr | 3:3514575d4f86 | 1620 | class Accel |
mjr | 3:3514575d4f86 | 1621 | { |
mjr | 3:3514575d4f86 | 1622 | public: |
mjr | 3:3514575d4f86 | 1623 | Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin) |
mjr | 3:3514575d4f86 | 1624 | : mma_(sda, scl, i2cAddr), intIn_(irqPin) |
mjr | 3:3514575d4f86 | 1625 | { |
mjr | 5:a70c0bce770d | 1626 | // remember the interrupt pin assignment |
mjr | 5:a70c0bce770d | 1627 | irqPin_ = irqPin; |
mjr | 5:a70c0bce770d | 1628 | |
mjr | 5:a70c0bce770d | 1629 | // reset and initialize |
mjr | 5:a70c0bce770d | 1630 | reset(); |
mjr | 5:a70c0bce770d | 1631 | } |
mjr | 5:a70c0bce770d | 1632 | |
mjr | 5:a70c0bce770d | 1633 | void reset() |
mjr | 5:a70c0bce770d | 1634 | { |
mjr | 6:cc35eb643e8f | 1635 | // clear the center point |
mjr | 6:cc35eb643e8f | 1636 | cx_ = cy_ = 0.0; |
mjr | 6:cc35eb643e8f | 1637 | |
mjr | 6:cc35eb643e8f | 1638 | // start the calibration timer |
mjr | 5:a70c0bce770d | 1639 | tCenter_.start(); |
mjr | 5:a70c0bce770d | 1640 | iAccPrv_ = nAccPrv_ = 0; |
mjr | 6:cc35eb643e8f | 1641 | |
mjr | 5:a70c0bce770d | 1642 | // reset and initialize the MMA8451Q |
mjr | 5:a70c0bce770d | 1643 | mma_.init(); |
mjr | 6:cc35eb643e8f | 1644 | |
mjr | 6:cc35eb643e8f | 1645 | // set the initial integrated velocity reading to zero |
mjr | 6:cc35eb643e8f | 1646 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 1647 | |
mjr | 6:cc35eb643e8f | 1648 | // set up our accelerometer interrupt handling |
mjr | 6:cc35eb643e8f | 1649 | intIn_.rise(this, &Accel::isr); |
mjr | 5:a70c0bce770d | 1650 | mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2); |
mjr | 3:3514575d4f86 | 1651 | |
mjr | 3:3514575d4f86 | 1652 | // read the current registers to clear the data ready flag |
mjr | 6:cc35eb643e8f | 1653 | mma_.getAccXYZ(ax_, ay_, az_); |
mjr | 3:3514575d4f86 | 1654 | |
mjr | 3:3514575d4f86 | 1655 | // start our timers |
mjr | 3:3514575d4f86 | 1656 | tGet_.start(); |
mjr | 3:3514575d4f86 | 1657 | tInt_.start(); |
mjr | 3:3514575d4f86 | 1658 | } |
mjr | 3:3514575d4f86 | 1659 | |
mjr | 9:fd65b0a94720 | 1660 | void get(int &x, int &y) |
mjr | 3:3514575d4f86 | 1661 | { |
mjr | 3:3514575d4f86 | 1662 | // disable interrupts while manipulating the shared data |
mjr | 3:3514575d4f86 | 1663 | __disable_irq(); |
mjr | 3:3514575d4f86 | 1664 | |
mjr | 3:3514575d4f86 | 1665 | // read the shared data and store locally for calculations |
mjr | 6:cc35eb643e8f | 1666 | float ax = ax_, ay = ay_; |
mjr | 6:cc35eb643e8f | 1667 | float vx = vx_, vy = vy_; |
mjr | 5:a70c0bce770d | 1668 | |
mjr | 6:cc35eb643e8f | 1669 | // reset the velocity sum for the next run |
mjr | 6:cc35eb643e8f | 1670 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 1671 | |
mjr | 3:3514575d4f86 | 1672 | // get the time since the last get() sample |
mjr | 38:091e511ce8a0 | 1673 | float dt = tGet_.read_us()/1.0e6f; |
mjr | 3:3514575d4f86 | 1674 | tGet_.reset(); |
mjr | 3:3514575d4f86 | 1675 | |
mjr | 3:3514575d4f86 | 1676 | // done manipulating the shared data |
mjr | 3:3514575d4f86 | 1677 | __enable_irq(); |
mjr | 3:3514575d4f86 | 1678 | |
mjr | 6:cc35eb643e8f | 1679 | // adjust the readings for the integration time |
mjr | 6:cc35eb643e8f | 1680 | vx /= dt; |
mjr | 6:cc35eb643e8f | 1681 | vy /= dt; |
mjr | 6:cc35eb643e8f | 1682 | |
mjr | 6:cc35eb643e8f | 1683 | // add this sample to the current calibration interval's running total |
mjr | 6:cc35eb643e8f | 1684 | AccHist *p = accPrv_ + iAccPrv_; |
mjr | 6:cc35eb643e8f | 1685 | p->addAvg(ax, ay); |
mjr | 6:cc35eb643e8f | 1686 | |
mjr | 5:a70c0bce770d | 1687 | // check for auto-centering every so often |
mjr | 48:058ace2aed1d | 1688 | if (tCenter_.read_us() > 1000000) |
mjr | 5:a70c0bce770d | 1689 | { |
mjr | 5:a70c0bce770d | 1690 | // add the latest raw sample to the history list |
mjr | 6:cc35eb643e8f | 1691 | AccHist *prv = p; |
mjr | 5:a70c0bce770d | 1692 | iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv; |
mjr | 6:cc35eb643e8f | 1693 | p = accPrv_ + iAccPrv_; |
mjr | 6:cc35eb643e8f | 1694 | p->set(ax, ay, prv); |
mjr | 5:a70c0bce770d | 1695 | |
mjr | 5:a70c0bce770d | 1696 | // if we have a full complement, check for stability |
mjr | 5:a70c0bce770d | 1697 | if (nAccPrv_ >= maxAccPrv) |
mjr | 5:a70c0bce770d | 1698 | { |
mjr | 5:a70c0bce770d | 1699 | // check if we've been stable for all recent samples |
mjr | 6:cc35eb643e8f | 1700 | static const float accTol = .01; |
mjr | 6:cc35eb643e8f | 1701 | AccHist *p0 = accPrv_; |
mjr | 6:cc35eb643e8f | 1702 | if (p0[0].d < accTol |
mjr | 6:cc35eb643e8f | 1703 | && p0[1].d < accTol |
mjr | 6:cc35eb643e8f | 1704 | && p0[2].d < accTol |
mjr | 6:cc35eb643e8f | 1705 | && p0[3].d < accTol |
mjr | 6:cc35eb643e8f | 1706 | && p0[4].d < accTol) |
mjr | 5:a70c0bce770d | 1707 | { |
mjr | 6:cc35eb643e8f | 1708 | // Figure the new calibration point as the average of |
mjr | 6:cc35eb643e8f | 1709 | // the samples over the rest period |
mjr | 6:cc35eb643e8f | 1710 | cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0; |
mjr | 6:cc35eb643e8f | 1711 | cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0; |
mjr | 5:a70c0bce770d | 1712 | } |
mjr | 5:a70c0bce770d | 1713 | } |
mjr | 5:a70c0bce770d | 1714 | else |
mjr | 5:a70c0bce770d | 1715 | { |
mjr | 5:a70c0bce770d | 1716 | // not enough samples yet; just up the count |
mjr | 5:a70c0bce770d | 1717 | ++nAccPrv_; |
mjr | 5:a70c0bce770d | 1718 | } |
mjr | 6:cc35eb643e8f | 1719 | |
mjr | 6:cc35eb643e8f | 1720 | // clear the new item's running totals |
mjr | 6:cc35eb643e8f | 1721 | p->clearAvg(); |
mjr | 5:a70c0bce770d | 1722 | |
mjr | 5:a70c0bce770d | 1723 | // reset the timer |
mjr | 5:a70c0bce770d | 1724 | tCenter_.reset(); |
mjr | 39:b3815a1c3802 | 1725 | |
mjr | 39:b3815a1c3802 | 1726 | // If we haven't seen an interrupt in a while, do an explicit read to |
mjr | 39:b3815a1c3802 | 1727 | // "unstick" the device. The device can become stuck - which is to say, |
mjr | 39:b3815a1c3802 | 1728 | // it will stop delivering data-ready interrupts - if we fail to service |
mjr | 39:b3815a1c3802 | 1729 | // one data-ready interrupt before the next one occurs. Reading a sample |
mjr | 39:b3815a1c3802 | 1730 | // will clear up this overrun condition and allow normal interrupt |
mjr | 39:b3815a1c3802 | 1731 | // generation to continue. |
mjr | 39:b3815a1c3802 | 1732 | // |
mjr | 39:b3815a1c3802 | 1733 | // Note that this stuck condition *shouldn't* ever occur - if it does, |
mjr | 39:b3815a1c3802 | 1734 | // it means that we're spending a long period with interrupts disabled |
mjr | 39:b3815a1c3802 | 1735 | // (either in a critical section or in another interrupt handler), which |
mjr | 39:b3815a1c3802 | 1736 | // will likely cause other worse problems beyond the sticky accelerometer. |
mjr | 39:b3815a1c3802 | 1737 | // Even so, it's easy to detect and correct, so we'll do so for the sake |
mjr | 39:b3815a1c3802 | 1738 | // of making the system more fault-tolerant. |
mjr | 39:b3815a1c3802 | 1739 | if (tInt_.read() > 1.0f) |
mjr | 39:b3815a1c3802 | 1740 | { |
mjr | 39:b3815a1c3802 | 1741 | float x, y, z; |
mjr | 39:b3815a1c3802 | 1742 | mma_.getAccXYZ(x, y, z); |
mjr | 39:b3815a1c3802 | 1743 | } |
mjr | 5:a70c0bce770d | 1744 | } |
mjr | 5:a70c0bce770d | 1745 | |
mjr | 6:cc35eb643e8f | 1746 | // report our integrated velocity reading in x,y |
mjr | 6:cc35eb643e8f | 1747 | x = rawToReport(vx); |
mjr | 6:cc35eb643e8f | 1748 | y = rawToReport(vy); |
mjr | 5:a70c0bce770d | 1749 | |
mjr | 6:cc35eb643e8f | 1750 | #ifdef DEBUG_PRINTF |
mjr | 6:cc35eb643e8f | 1751 | if (x != 0 || y != 0) |
mjr | 6:cc35eb643e8f | 1752 | printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt); |
mjr | 6:cc35eb643e8f | 1753 | #endif |
mjr | 3:3514575d4f86 | 1754 | } |
mjr | 29:582472d0bc57 | 1755 | |
mjr | 3:3514575d4f86 | 1756 | private: |
mjr | 6:cc35eb643e8f | 1757 | // adjust a raw acceleration figure to a usb report value |
mjr | 6:cc35eb643e8f | 1758 | int rawToReport(float v) |
mjr | 5:a70c0bce770d | 1759 | { |
mjr | 6:cc35eb643e8f | 1760 | // scale to the joystick report range and round to integer |
mjr | 6:cc35eb643e8f | 1761 | int i = int(round(v*JOYMAX)); |
mjr | 5:a70c0bce770d | 1762 | |
mjr | 6:cc35eb643e8f | 1763 | // if it's near the center, scale it roughly as 20*(i/20)^2, |
mjr | 6:cc35eb643e8f | 1764 | // to suppress noise near the rest position |
mjr | 6:cc35eb643e8f | 1765 | static const int filter[] = { |
mjr | 6:cc35eb643e8f | 1766 | -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0, |
mjr | 6:cc35eb643e8f | 1767 | 0, |
mjr | 6:cc35eb643e8f | 1768 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18 |
mjr | 6:cc35eb643e8f | 1769 | }; |
mjr | 6:cc35eb643e8f | 1770 | return (i > 20 || i < -20 ? i : filter[i+20]); |
mjr | 5:a70c0bce770d | 1771 | } |
mjr | 5:a70c0bce770d | 1772 | |
mjr | 3:3514575d4f86 | 1773 | // interrupt handler |
mjr | 3:3514575d4f86 | 1774 | void isr() |
mjr | 3:3514575d4f86 | 1775 | { |
mjr | 3:3514575d4f86 | 1776 | // Read the axes. Note that we have to read all three axes |
mjr | 3:3514575d4f86 | 1777 | // (even though we only really use x and y) in order to clear |
mjr | 3:3514575d4f86 | 1778 | // the "data ready" status bit in the accelerometer. The |
mjr | 3:3514575d4f86 | 1779 | // interrupt only occurs when the "ready" bit transitions from |
mjr | 3:3514575d4f86 | 1780 | // off to on, so we have to make sure it's off. |
mjr | 5:a70c0bce770d | 1781 | float x, y, z; |
mjr | 5:a70c0bce770d | 1782 | mma_.getAccXYZ(x, y, z); |
mjr | 3:3514575d4f86 | 1783 | |
mjr | 3:3514575d4f86 | 1784 | // calculate the time since the last interrupt |
mjr | 39:b3815a1c3802 | 1785 | float dt = tInt_.read(); |
mjr | 3:3514575d4f86 | 1786 | tInt_.reset(); |
mjr | 6:cc35eb643e8f | 1787 | |
mjr | 6:cc35eb643e8f | 1788 | // integrate the time slice from the previous reading to this reading |
mjr | 6:cc35eb643e8f | 1789 | vx_ += (x + ax_ - 2*cx_)*dt/2; |
mjr | 6:cc35eb643e8f | 1790 | vy_ += (y + ay_ - 2*cy_)*dt/2; |
mjr | 3:3514575d4f86 | 1791 | |
mjr | 6:cc35eb643e8f | 1792 | // store the updates |
mjr | 6:cc35eb643e8f | 1793 | ax_ = x; |
mjr | 6:cc35eb643e8f | 1794 | ay_ = y; |
mjr | 6:cc35eb643e8f | 1795 | az_ = z; |
mjr | 3:3514575d4f86 | 1796 | } |
mjr | 3:3514575d4f86 | 1797 | |
mjr | 3:3514575d4f86 | 1798 | // underlying accelerometer object |
mjr | 3:3514575d4f86 | 1799 | MMA8451Q mma_; |
mjr | 3:3514575d4f86 | 1800 | |
mjr | 5:a70c0bce770d | 1801 | // last raw acceleration readings |
mjr | 6:cc35eb643e8f | 1802 | float ax_, ay_, az_; |
mjr | 5:a70c0bce770d | 1803 | |
mjr | 6:cc35eb643e8f | 1804 | // integrated velocity reading since last get() |
mjr | 6:cc35eb643e8f | 1805 | float vx_, vy_; |
mjr | 6:cc35eb643e8f | 1806 | |
mjr | 3:3514575d4f86 | 1807 | // timer for measuring time between get() samples |
mjr | 3:3514575d4f86 | 1808 | Timer tGet_; |
mjr | 3:3514575d4f86 | 1809 | |
mjr | 3:3514575d4f86 | 1810 | // timer for measuring time between interrupts |
mjr | 3:3514575d4f86 | 1811 | Timer tInt_; |
mjr | 5:a70c0bce770d | 1812 | |
mjr | 6:cc35eb643e8f | 1813 | // Calibration reference point for accelerometer. This is the |
mjr | 6:cc35eb643e8f | 1814 | // average reading on the accelerometer when in the neutral position |
mjr | 6:cc35eb643e8f | 1815 | // at rest. |
mjr | 6:cc35eb643e8f | 1816 | float cx_, cy_; |
mjr | 5:a70c0bce770d | 1817 | |
mjr | 5:a70c0bce770d | 1818 | // timer for atuo-centering |
mjr | 5:a70c0bce770d | 1819 | Timer tCenter_; |
mjr | 6:cc35eb643e8f | 1820 | |
mjr | 6:cc35eb643e8f | 1821 | // Auto-centering history. This is a separate history list that |
mjr | 6:cc35eb643e8f | 1822 | // records results spaced out sparesely over time, so that we can |
mjr | 6:cc35eb643e8f | 1823 | // watch for long-lasting periods of rest. When we observe nearly |
mjr | 6:cc35eb643e8f | 1824 | // no motion for an extended period (on the order of 5 seconds), we |
mjr | 6:cc35eb643e8f | 1825 | // take this to mean that the cabinet is at rest in its neutral |
mjr | 6:cc35eb643e8f | 1826 | // position, so we take this as the calibration zero point for the |
mjr | 6:cc35eb643e8f | 1827 | // accelerometer. We update this history continuously, which allows |
mjr | 6:cc35eb643e8f | 1828 | // us to continuously re-calibrate the accelerometer. This ensures |
mjr | 6:cc35eb643e8f | 1829 | // that we'll automatically adjust to any actual changes in the |
mjr | 6:cc35eb643e8f | 1830 | // cabinet's orientation (e.g., if it gets moved slightly by an |
mjr | 6:cc35eb643e8f | 1831 | // especially strong nudge) as well as any systematic drift in the |
mjr | 6:cc35eb643e8f | 1832 | // accelerometer measurement bias (e.g., from temperature changes). |
mjr | 5:a70c0bce770d | 1833 | int iAccPrv_, nAccPrv_; |
mjr | 5:a70c0bce770d | 1834 | static const int maxAccPrv = 5; |
mjr | 6:cc35eb643e8f | 1835 | AccHist accPrv_[maxAccPrv]; |
mjr | 6:cc35eb643e8f | 1836 | |
mjr | 5:a70c0bce770d | 1837 | // interurupt pin name |
mjr | 5:a70c0bce770d | 1838 | PinName irqPin_; |
mjr | 5:a70c0bce770d | 1839 | |
mjr | 5:a70c0bce770d | 1840 | // interrupt router |
mjr | 5:a70c0bce770d | 1841 | InterruptIn intIn_; |
mjr | 3:3514575d4f86 | 1842 | }; |
mjr | 3:3514575d4f86 | 1843 | |
mjr | 5:a70c0bce770d | 1844 | |
mjr | 5:a70c0bce770d | 1845 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 1846 | // |
mjr | 14:df700b22ca08 | 1847 | // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time |
mjr | 5:a70c0bce770d | 1848 | // for reasons that aren't clear to me. Doing a hard power cycle has the same |
mjr | 5:a70c0bce770d | 1849 | // effect, but when we do a soft reset, the hardware sometimes seems to leave |
mjr | 5:a70c0bce770d | 1850 | // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through |
mjr | 14:df700b22ca08 | 1851 | // the SCL line is supposed to clear this condition. I'm not convinced this |
mjr | 14:df700b22ca08 | 1852 | // actually works with the way this component is wired on the KL25Z, but it |
mjr | 14:df700b22ca08 | 1853 | // seems harmless, so we'll do it on reset in case it does some good. What |
mjr | 14:df700b22ca08 | 1854 | // we really seem to need is a way to power cycle the MMA8451Q if it ever |
mjr | 14:df700b22ca08 | 1855 | // gets stuck, but this is simply not possible in software on the KL25Z. |
mjr | 14:df700b22ca08 | 1856 | // |
mjr | 14:df700b22ca08 | 1857 | // If the accelerometer does get stuck, and a software reboot doesn't reset |
mjr | 14:df700b22ca08 | 1858 | // it, the only workaround is to manually power cycle the whole KL25Z by |
mjr | 14:df700b22ca08 | 1859 | // unplugging both of its USB connections. |
mjr | 5:a70c0bce770d | 1860 | // |
mjr | 5:a70c0bce770d | 1861 | void clear_i2c() |
mjr | 5:a70c0bce770d | 1862 | { |
mjr | 38:091e511ce8a0 | 1863 | // set up general-purpose output pins to the I2C lines |
mjr | 5:a70c0bce770d | 1864 | DigitalOut scl(MMA8451_SCL_PIN); |
mjr | 5:a70c0bce770d | 1865 | DigitalIn sda(MMA8451_SDA_PIN); |
mjr | 5:a70c0bce770d | 1866 | |
mjr | 5:a70c0bce770d | 1867 | // clock the SCL 9 times |
mjr | 5:a70c0bce770d | 1868 | for (int i = 0 ; i < 9 ; ++i) |
mjr | 5:a70c0bce770d | 1869 | { |
mjr | 5:a70c0bce770d | 1870 | scl = 1; |
mjr | 5:a70c0bce770d | 1871 | wait_us(20); |
mjr | 5:a70c0bce770d | 1872 | scl = 0; |
mjr | 5:a70c0bce770d | 1873 | wait_us(20); |
mjr | 5:a70c0bce770d | 1874 | } |
mjr | 5:a70c0bce770d | 1875 | } |
mjr | 14:df700b22ca08 | 1876 | |
mjr | 14:df700b22ca08 | 1877 | // --------------------------------------------------------------------------- |
mjr | 14:df700b22ca08 | 1878 | // |
mjr | 33:d832bcab089e | 1879 | // Simple binary (on/off) input debouncer. Requires an input to be stable |
mjr | 33:d832bcab089e | 1880 | // for a given interval before allowing an update. |
mjr | 33:d832bcab089e | 1881 | // |
mjr | 33:d832bcab089e | 1882 | class Debouncer |
mjr | 33:d832bcab089e | 1883 | { |
mjr | 33:d832bcab089e | 1884 | public: |
mjr | 33:d832bcab089e | 1885 | Debouncer(bool initVal, float tmin) |
mjr | 33:d832bcab089e | 1886 | { |
mjr | 33:d832bcab089e | 1887 | t.start(); |
mjr | 33:d832bcab089e | 1888 | this->stable = this->prv = initVal; |
mjr | 33:d832bcab089e | 1889 | this->tmin = tmin; |
mjr | 33:d832bcab089e | 1890 | } |
mjr | 33:d832bcab089e | 1891 | |
mjr | 33:d832bcab089e | 1892 | // Get the current stable value |
mjr | 33:d832bcab089e | 1893 | bool val() const { return stable; } |
mjr | 33:d832bcab089e | 1894 | |
mjr | 33:d832bcab089e | 1895 | // Apply a new sample. This tells us the new raw reading from the |
mjr | 33:d832bcab089e | 1896 | // input device. |
mjr | 33:d832bcab089e | 1897 | void sampleIn(bool val) |
mjr | 33:d832bcab089e | 1898 | { |
mjr | 33:d832bcab089e | 1899 | // If the new raw reading is different from the previous |
mjr | 33:d832bcab089e | 1900 | // raw reading, we've detected an edge - start the clock |
mjr | 33:d832bcab089e | 1901 | // on the sample reader. |
mjr | 33:d832bcab089e | 1902 | if (val != prv) |
mjr | 33:d832bcab089e | 1903 | { |
mjr | 33:d832bcab089e | 1904 | // we have an edge - reset the sample clock |
mjr | 33:d832bcab089e | 1905 | t.reset(); |
mjr | 33:d832bcab089e | 1906 | |
mjr | 33:d832bcab089e | 1907 | // this is now the previous raw sample for nxt time |
mjr | 33:d832bcab089e | 1908 | prv = val; |
mjr | 33:d832bcab089e | 1909 | } |
mjr | 33:d832bcab089e | 1910 | else if (val != stable) |
mjr | 33:d832bcab089e | 1911 | { |
mjr | 33:d832bcab089e | 1912 | // The new raw sample is the same as the last raw sample, |
mjr | 33:d832bcab089e | 1913 | // and different from the stable value. This means that |
mjr | 33:d832bcab089e | 1914 | // the sample value has been the same for the time currently |
mjr | 33:d832bcab089e | 1915 | // indicated by our timer. If enough time has elapsed to |
mjr | 33:d832bcab089e | 1916 | // consider the value stable, apply the new value. |
mjr | 33:d832bcab089e | 1917 | if (t.read() > tmin) |
mjr | 33:d832bcab089e | 1918 | stable = val; |
mjr | 33:d832bcab089e | 1919 | } |
mjr | 33:d832bcab089e | 1920 | } |
mjr | 33:d832bcab089e | 1921 | |
mjr | 33:d832bcab089e | 1922 | private: |
mjr | 33:d832bcab089e | 1923 | // current stable value |
mjr | 33:d832bcab089e | 1924 | bool stable; |
mjr | 33:d832bcab089e | 1925 | |
mjr | 33:d832bcab089e | 1926 | // last raw sample value |
mjr | 33:d832bcab089e | 1927 | bool prv; |
mjr | 33:d832bcab089e | 1928 | |
mjr | 33:d832bcab089e | 1929 | // elapsed time since last raw input change |
mjr | 33:d832bcab089e | 1930 | Timer t; |
mjr | 33:d832bcab089e | 1931 | |
mjr | 33:d832bcab089e | 1932 | // Minimum time interval for stability, in seconds. Input readings |
mjr | 33:d832bcab089e | 1933 | // must be stable for this long before the stable value is updated. |
mjr | 33:d832bcab089e | 1934 | float tmin; |
mjr | 33:d832bcab089e | 1935 | }; |
mjr | 33:d832bcab089e | 1936 | |
mjr | 33:d832bcab089e | 1937 | |
mjr | 33:d832bcab089e | 1938 | // --------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 1939 | // |
mjr | 33:d832bcab089e | 1940 | // Turn off all outputs and restore everything to the default LedWiz |
mjr | 33:d832bcab089e | 1941 | // state. This sets outputs #1-32 to LedWiz profile value 48 (full |
mjr | 33:d832bcab089e | 1942 | // brightness) and switch state Off, sets all extended outputs (#33 |
mjr | 33:d832bcab089e | 1943 | // and above) to zero brightness, and sets the LedWiz flash rate to 2. |
mjr | 33:d832bcab089e | 1944 | // This effectively restores the power-on conditions. |
mjr | 33:d832bcab089e | 1945 | // |
mjr | 33:d832bcab089e | 1946 | void allOutputsOff() |
mjr | 33:d832bcab089e | 1947 | { |
mjr | 33:d832bcab089e | 1948 | // reset all LedWiz outputs to OFF/48 |
mjr | 35:e959ffba78fd | 1949 | for (int i = 0 ; i < numLwOutputs ; ++i) |
mjr | 33:d832bcab089e | 1950 | { |
mjr | 33:d832bcab089e | 1951 | outLevel[i] = 0; |
mjr | 33:d832bcab089e | 1952 | wizOn[i] = 0; |
mjr | 33:d832bcab089e | 1953 | wizVal[i] = 48; |
mjr | 33:d832bcab089e | 1954 | lwPin[i]->set(0); |
mjr | 33:d832bcab089e | 1955 | } |
mjr | 33:d832bcab089e | 1956 | |
mjr | 33:d832bcab089e | 1957 | // reset all extended outputs (ports >32) to full off (brightness 0) |
mjr | 40:cc0d9814522b | 1958 | for (int i = numLwOutputs ; i < numOutputs ; ++i) |
mjr | 33:d832bcab089e | 1959 | { |
mjr | 33:d832bcab089e | 1960 | outLevel[i] = 0; |
mjr | 33:d832bcab089e | 1961 | lwPin[i]->set(0); |
mjr | 33:d832bcab089e | 1962 | } |
mjr | 33:d832bcab089e | 1963 | |
mjr | 33:d832bcab089e | 1964 | // restore default LedWiz flash rate |
mjr | 33:d832bcab089e | 1965 | wizSpeed = 2; |
mjr | 34:6b981a2afab7 | 1966 | |
mjr | 34:6b981a2afab7 | 1967 | // flush changes to hc595, if applicable |
mjr | 35:e959ffba78fd | 1968 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 1969 | hc595->update(); |
mjr | 33:d832bcab089e | 1970 | } |
mjr | 33:d832bcab089e | 1971 | |
mjr | 33:d832bcab089e | 1972 | // --------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 1973 | // |
mjr | 33:d832bcab089e | 1974 | // TV ON timer. If this feature is enabled, we toggle a TV power switch |
mjr | 33:d832bcab089e | 1975 | // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly |
mjr | 33:d832bcab089e | 1976 | // after the system is powered. This is useful for TVs that don't remember |
mjr | 33:d832bcab089e | 1977 | // their power state and don't turn back on automatically after being |
mjr | 33:d832bcab089e | 1978 | // unplugged and plugged in again. This feature requires external |
mjr | 33:d832bcab089e | 1979 | // circuitry, which is built in to the expansion board and can also be |
mjr | 33:d832bcab089e | 1980 | // built separately - see the Build Guide for the circuit plan. |
mjr | 33:d832bcab089e | 1981 | // |
mjr | 33:d832bcab089e | 1982 | // Theory of operation: to use this feature, the cabinet must have a |
mjr | 33:d832bcab089e | 1983 | // secondary PC-style power supply (PSU2) for the feedback devices, and |
mjr | 33:d832bcab089e | 1984 | // this secondary supply must be plugged in to the same power strip or |
mjr | 33:d832bcab089e | 1985 | // switched outlet that controls power to the TVs. This lets us use PSU2 |
mjr | 33:d832bcab089e | 1986 | // as a proxy for the TV power state - when PSU2 is on, the TV outlet is |
mjr | 33:d832bcab089e | 1987 | // powered, and when PSU2 is off, the TV outlet is off. We use a little |
mjr | 33:d832bcab089e | 1988 | // latch circuit powered by PSU2 to monitor the status. The latch has a |
mjr | 33:d832bcab089e | 1989 | // current state, ON or OFF, that we can read via a GPIO input pin, and |
mjr | 33:d832bcab089e | 1990 | // we can set the state to ON by pulsing a separate GPIO output pin. As |
mjr | 33:d832bcab089e | 1991 | // long as PSU2 is powered off, the latch stays in the OFF state, even if |
mjr | 33:d832bcab089e | 1992 | // we try to set it by pulsing the SET pin. When PSU2 is turned on after |
mjr | 33:d832bcab089e | 1993 | // being off, the latch starts receiving power but stays in the OFF state, |
mjr | 33:d832bcab089e | 1994 | // since this is the initial condition when the power first comes on. So |
mjr | 33:d832bcab089e | 1995 | // if our latch state pin is reading OFF, we know that PSU2 is either off |
mjr | 33:d832bcab089e | 1996 | // now or *was* off some time since we last checked. We use a timer to |
mjr | 33:d832bcab089e | 1997 | // check the state periodically. Each time we see the state is OFF, we |
mjr | 33:d832bcab089e | 1998 | // try pulsing the SET pin. If the state still reads as OFF, we know |
mjr | 33:d832bcab089e | 1999 | // that PSU2 is currently off; if the state changes to ON, though, we |
mjr | 33:d832bcab089e | 2000 | // know that PSU2 has gone from OFF to ON some time between now and the |
mjr | 33:d832bcab089e | 2001 | // previous check. When we see this condition, we start a countdown |
mjr | 33:d832bcab089e | 2002 | // timer, and pulse the TV switch relay when the countdown ends. |
mjr | 33:d832bcab089e | 2003 | // |
mjr | 40:cc0d9814522b | 2004 | // This scheme might seem a little convoluted, but it handles a number |
mjr | 40:cc0d9814522b | 2005 | // of tricky but likely scenarios: |
mjr | 33:d832bcab089e | 2006 | // |
mjr | 33:d832bcab089e | 2007 | // - Most cabinets systems are set up with "soft" PC power switches, |
mjr | 40:cc0d9814522b | 2008 | // so that the PC goes into "Soft Off" mode when the user turns off |
mjr | 40:cc0d9814522b | 2009 | // the cabinet by pushing the power button or using the Shut Down |
mjr | 40:cc0d9814522b | 2010 | // command from within Windows. In Windows parlance, this "soft off" |
mjr | 40:cc0d9814522b | 2011 | // condition is called ACPI State S5. In this state, the main CPU |
mjr | 40:cc0d9814522b | 2012 | // power is turned off, but the motherboard still provides power to |
mjr | 40:cc0d9814522b | 2013 | // USB devices. This means that the KL25Z keeps running. Without |
mjr | 40:cc0d9814522b | 2014 | // the external power sensing circuit, the only hint that we're in |
mjr | 40:cc0d9814522b | 2015 | // this state is that the USB connection to the host goes into Suspend |
mjr | 40:cc0d9814522b | 2016 | // mode, but that could mean other things as well. The latch circuit |
mjr | 40:cc0d9814522b | 2017 | // lets us tell for sure that we're in this state. |
mjr | 33:d832bcab089e | 2018 | // |
mjr | 33:d832bcab089e | 2019 | // - Some cabinet builders might prefer to use "hard" power switches, |
mjr | 33:d832bcab089e | 2020 | // cutting all power to the cabinet, including the PC motherboard (and |
mjr | 33:d832bcab089e | 2021 | // thus the KL25Z) every time the machine is turned off. This also |
mjr | 33:d832bcab089e | 2022 | // applies to the "soft" switch case above when the cabinet is unplugged, |
mjr | 33:d832bcab089e | 2023 | // a power outage occurs, etc. In these cases, the KL25Z will do a cold |
mjr | 33:d832bcab089e | 2024 | // boot when the PC is turned on. We don't know whether the KL25Z |
mjr | 33:d832bcab089e | 2025 | // will power up before or after PSU2, so it's not good enough to |
mjr | 40:cc0d9814522b | 2026 | // observe the current state of PSU2 when we first check. If PSU2 |
mjr | 40:cc0d9814522b | 2027 | // were to come on first, checking only the current state would fool |
mjr | 40:cc0d9814522b | 2028 | // us into thinking that no action is required, because we'd only see |
mjr | 40:cc0d9814522b | 2029 | // that PSU2 is turned on any time we check. The latch handles this |
mjr | 40:cc0d9814522b | 2030 | // case by letting us see that PSU2 was indeed off some time before our |
mjr | 40:cc0d9814522b | 2031 | // first check. |
mjr | 33:d832bcab089e | 2032 | // |
mjr | 33:d832bcab089e | 2033 | // - If the KL25Z is rebooted while the main system is running, or the |
mjr | 40:cc0d9814522b | 2034 | // KL25Z is unplugged and plugged back in, we'll correctly leave the |
mjr | 33:d832bcab089e | 2035 | // TVs as they are. The latch state is independent of the KL25Z's |
mjr | 33:d832bcab089e | 2036 | // power or software state, so it's won't affect the latch state when |
mjr | 33:d832bcab089e | 2037 | // the KL25Z is unplugged or rebooted; when we boot, we'll see that |
mjr | 33:d832bcab089e | 2038 | // the latch is already on and that we don't have to turn on the TVs. |
mjr | 33:d832bcab089e | 2039 | // This is important because TV ON buttons are usually on/off toggles, |
mjr | 33:d832bcab089e | 2040 | // so we don't want to push the button on a TV that's already on. |
mjr | 33:d832bcab089e | 2041 | // |
mjr | 33:d832bcab089e | 2042 | |
mjr | 33:d832bcab089e | 2043 | // Current PSU2 state: |
mjr | 33:d832bcab089e | 2044 | // 1 -> default: latch was on at last check, or we haven't checked yet |
mjr | 33:d832bcab089e | 2045 | // 2 -> latch was off at last check, SET pulsed high |
mjr | 33:d832bcab089e | 2046 | // 3 -> SET pulsed low, ready to check status |
mjr | 33:d832bcab089e | 2047 | // 4 -> TV timer countdown in progress |
mjr | 33:d832bcab089e | 2048 | // 5 -> TV relay on |
mjr | 33:d832bcab089e | 2049 | int psu2_state = 1; |
mjr | 35:e959ffba78fd | 2050 | |
mjr | 35:e959ffba78fd | 2051 | // PSU2 power sensing circuit connections |
mjr | 35:e959ffba78fd | 2052 | DigitalIn *psu2_status_sense; |
mjr | 35:e959ffba78fd | 2053 | DigitalOut *psu2_status_set; |
mjr | 35:e959ffba78fd | 2054 | |
mjr | 35:e959ffba78fd | 2055 | // TV ON switch relay control |
mjr | 35:e959ffba78fd | 2056 | DigitalOut *tv_relay; |
mjr | 35:e959ffba78fd | 2057 | |
mjr | 35:e959ffba78fd | 2058 | // Timer interrupt |
mjr | 35:e959ffba78fd | 2059 | Ticker tv_ticker; |
mjr | 35:e959ffba78fd | 2060 | float tv_delay_time; |
mjr | 33:d832bcab089e | 2061 | void TVTimerInt() |
mjr | 33:d832bcab089e | 2062 | { |
mjr | 35:e959ffba78fd | 2063 | // time since last state change |
mjr | 35:e959ffba78fd | 2064 | static Timer tv_timer; |
mjr | 35:e959ffba78fd | 2065 | |
mjr | 33:d832bcab089e | 2066 | // Check our internal state |
mjr | 33:d832bcab089e | 2067 | switch (psu2_state) |
mjr | 33:d832bcab089e | 2068 | { |
mjr | 33:d832bcab089e | 2069 | case 1: |
mjr | 33:d832bcab089e | 2070 | // Default state. This means that the latch was on last |
mjr | 33:d832bcab089e | 2071 | // time we checked or that this is the first check. In |
mjr | 33:d832bcab089e | 2072 | // either case, if the latch is off, switch to state 2 and |
mjr | 33:d832bcab089e | 2073 | // try pulsing the latch. Next time we check, if the latch |
mjr | 33:d832bcab089e | 2074 | // stuck, it means that PSU2 is now on after being off. |
mjr | 35:e959ffba78fd | 2075 | if (!psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 2076 | { |
mjr | 33:d832bcab089e | 2077 | // switch to OFF state |
mjr | 33:d832bcab089e | 2078 | psu2_state = 2; |
mjr | 33:d832bcab089e | 2079 | |
mjr | 33:d832bcab089e | 2080 | // try setting the latch |
mjr | 35:e959ffba78fd | 2081 | psu2_status_set->write(1); |
mjr | 33:d832bcab089e | 2082 | } |
mjr | 33:d832bcab089e | 2083 | break; |
mjr | 33:d832bcab089e | 2084 | |
mjr | 33:d832bcab089e | 2085 | case 2: |
mjr | 33:d832bcab089e | 2086 | // PSU2 was off last time we checked, and we tried setting |
mjr | 33:d832bcab089e | 2087 | // the latch. Drop the SET signal and go to CHECK state. |
mjr | 35:e959ffba78fd | 2088 | psu2_status_set->write(0); |
mjr | 33:d832bcab089e | 2089 | psu2_state = 3; |
mjr | 33:d832bcab089e | 2090 | break; |
mjr | 33:d832bcab089e | 2091 | |
mjr | 33:d832bcab089e | 2092 | case 3: |
mjr | 33:d832bcab089e | 2093 | // CHECK state: we pulsed SET, and we're now ready to see |
mjr | 40:cc0d9814522b | 2094 | // if it stuck. If the latch is now on, PSU2 has transitioned |
mjr | 33:d832bcab089e | 2095 | // from OFF to ON, so start the TV countdown. If the latch is |
mjr | 33:d832bcab089e | 2096 | // off, our SET command didn't stick, so PSU2 is still off. |
mjr | 35:e959ffba78fd | 2097 | if (psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 2098 | { |
mjr | 33:d832bcab089e | 2099 | // The latch stuck, so PSU2 has transitioned from OFF |
mjr | 33:d832bcab089e | 2100 | // to ON. Start the TV countdown timer. |
mjr | 33:d832bcab089e | 2101 | tv_timer.reset(); |
mjr | 33:d832bcab089e | 2102 | tv_timer.start(); |
mjr | 33:d832bcab089e | 2103 | psu2_state = 4; |
mjr | 33:d832bcab089e | 2104 | } |
mjr | 33:d832bcab089e | 2105 | else |
mjr | 33:d832bcab089e | 2106 | { |
mjr | 33:d832bcab089e | 2107 | // The latch didn't stick, so PSU2 was still off at |
mjr | 33:d832bcab089e | 2108 | // our last check. Try pulsing it again in case PSU2 |
mjr | 33:d832bcab089e | 2109 | // was turned on since the last check. |
mjr | 35:e959ffba78fd | 2110 | psu2_status_set->write(1); |
mjr | 33:d832bcab089e | 2111 | psu2_state = 2; |
mjr | 33:d832bcab089e | 2112 | } |
mjr | 33:d832bcab089e | 2113 | break; |
mjr | 33:d832bcab089e | 2114 | |
mjr | 33:d832bcab089e | 2115 | case 4: |
mjr | 33:d832bcab089e | 2116 | // TV timer countdown in progress. If we've reached the |
mjr | 33:d832bcab089e | 2117 | // delay time, pulse the relay. |
mjr | 35:e959ffba78fd | 2118 | if (tv_timer.read() >= tv_delay_time) |
mjr | 33:d832bcab089e | 2119 | { |
mjr | 33:d832bcab089e | 2120 | // turn on the relay for one timer interval |
mjr | 35:e959ffba78fd | 2121 | tv_relay->write(1); |
mjr | 33:d832bcab089e | 2122 | psu2_state = 5; |
mjr | 33:d832bcab089e | 2123 | } |
mjr | 33:d832bcab089e | 2124 | break; |
mjr | 33:d832bcab089e | 2125 | |
mjr | 33:d832bcab089e | 2126 | case 5: |
mjr | 33:d832bcab089e | 2127 | // TV timer relay on. We pulse this for one interval, so |
mjr | 33:d832bcab089e | 2128 | // it's now time to turn it off and return to the default state. |
mjr | 35:e959ffba78fd | 2129 | tv_relay->write(0); |
mjr | 33:d832bcab089e | 2130 | psu2_state = 1; |
mjr | 33:d832bcab089e | 2131 | break; |
mjr | 33:d832bcab089e | 2132 | } |
mjr | 33:d832bcab089e | 2133 | } |
mjr | 33:d832bcab089e | 2134 | |
mjr | 35:e959ffba78fd | 2135 | // Start the TV ON checker. If the status sense circuit is enabled in |
mjr | 35:e959ffba78fd | 2136 | // the configuration, we'll set up the pin connections and start the |
mjr | 35:e959ffba78fd | 2137 | // interrupt handler that periodically checks the status. Does nothing |
mjr | 35:e959ffba78fd | 2138 | // if any of the pins are configured as NC. |
mjr | 35:e959ffba78fd | 2139 | void startTVTimer(Config &cfg) |
mjr | 35:e959ffba78fd | 2140 | { |
mjr | 35:e959ffba78fd | 2141 | // only start the timer if the status sense circuit pins are configured |
mjr | 35:e959ffba78fd | 2142 | if (cfg.TVON.statusPin != NC && cfg.TVON.latchPin != NC && cfg.TVON.relayPin != NC) |
mjr | 35:e959ffba78fd | 2143 | { |
mjr | 35:e959ffba78fd | 2144 | psu2_status_sense = new DigitalIn(cfg.TVON.statusPin); |
mjr | 35:e959ffba78fd | 2145 | psu2_status_set = new DigitalOut(cfg.TVON.latchPin); |
mjr | 35:e959ffba78fd | 2146 | tv_relay = new DigitalOut(cfg.TVON.relayPin); |
mjr | 40:cc0d9814522b | 2147 | tv_delay_time = cfg.TVON.delayTime/100.0; |
mjr | 35:e959ffba78fd | 2148 | |
mjr | 35:e959ffba78fd | 2149 | // Set up our time routine to run every 1/4 second. |
mjr | 35:e959ffba78fd | 2150 | tv_ticker.attach(&TVTimerInt, 0.25); |
mjr | 35:e959ffba78fd | 2151 | } |
mjr | 35:e959ffba78fd | 2152 | } |
mjr | 35:e959ffba78fd | 2153 | |
mjr | 35:e959ffba78fd | 2154 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 2155 | // |
mjr | 35:e959ffba78fd | 2156 | // In-memory configuration data structure. This is the live version in RAM |
mjr | 35:e959ffba78fd | 2157 | // that we use to determine how things are set up. |
mjr | 35:e959ffba78fd | 2158 | // |
mjr | 35:e959ffba78fd | 2159 | // When we save the configuration settings, we copy this structure to |
mjr | 35:e959ffba78fd | 2160 | // non-volatile flash memory. At startup, we check the flash location where |
mjr | 35:e959ffba78fd | 2161 | // we might have saved settings on a previous run, and it's valid, we copy |
mjr | 35:e959ffba78fd | 2162 | // the flash data to this structure. Firmware updates wipe the flash |
mjr | 35:e959ffba78fd | 2163 | // memory area, so you have to use the PC config tool to send the settings |
mjr | 35:e959ffba78fd | 2164 | // again each time the firmware is updated. |
mjr | 35:e959ffba78fd | 2165 | // |
mjr | 35:e959ffba78fd | 2166 | NVM nvm; |
mjr | 35:e959ffba78fd | 2167 | |
mjr | 35:e959ffba78fd | 2168 | // For convenience, a macro for the Config part of the NVM structure |
mjr | 35:e959ffba78fd | 2169 | #define cfg (nvm.d.c) |
mjr | 35:e959ffba78fd | 2170 | |
mjr | 35:e959ffba78fd | 2171 | // flash memory controller interface |
mjr | 35:e959ffba78fd | 2172 | FreescaleIAP iap; |
mjr | 35:e959ffba78fd | 2173 | |
mjr | 35:e959ffba78fd | 2174 | // figure the flash address as a pointer along with the number of sectors |
mjr | 35:e959ffba78fd | 2175 | // required to store the structure |
mjr | 35:e959ffba78fd | 2176 | NVM *configFlashAddr(int &addr, int &numSectors) |
mjr | 35:e959ffba78fd | 2177 | { |
mjr | 35:e959ffba78fd | 2178 | // figure how many flash sectors we span, rounding up to whole sectors |
mjr | 35:e959ffba78fd | 2179 | numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE; |
mjr | 35:e959ffba78fd | 2180 | |
mjr | 35:e959ffba78fd | 2181 | // figure the address - this is the highest flash address where the |
mjr | 35:e959ffba78fd | 2182 | // structure will fit with the start aligned on a sector boundary |
mjr | 35:e959ffba78fd | 2183 | addr = iap.flash_size() - (numSectors * SECTOR_SIZE); |
mjr | 35:e959ffba78fd | 2184 | |
mjr | 35:e959ffba78fd | 2185 | // return the address as a pointer |
mjr | 35:e959ffba78fd | 2186 | return (NVM *)addr; |
mjr | 35:e959ffba78fd | 2187 | } |
mjr | 35:e959ffba78fd | 2188 | |
mjr | 35:e959ffba78fd | 2189 | // figure the flash address as a pointer |
mjr | 35:e959ffba78fd | 2190 | NVM *configFlashAddr() |
mjr | 35:e959ffba78fd | 2191 | { |
mjr | 35:e959ffba78fd | 2192 | int addr, numSectors; |
mjr | 35:e959ffba78fd | 2193 | return configFlashAddr(addr, numSectors); |
mjr | 35:e959ffba78fd | 2194 | } |
mjr | 35:e959ffba78fd | 2195 | |
mjr | 35:e959ffba78fd | 2196 | // Load the config from flash |
mjr | 35:e959ffba78fd | 2197 | void loadConfigFromFlash() |
mjr | 35:e959ffba78fd | 2198 | { |
mjr | 35:e959ffba78fd | 2199 | // We want to use the KL25Z's on-board flash to store our configuration |
mjr | 35:e959ffba78fd | 2200 | // data persistently, so that we can restore it across power cycles. |
mjr | 35:e959ffba78fd | 2201 | // Unfortunatly, the mbed platform doesn't explicitly support this. |
mjr | 35:e959ffba78fd | 2202 | // mbed treats the on-board flash as a raw storage device for linker |
mjr | 35:e959ffba78fd | 2203 | // output, and assumes that the linker output is the only thing |
mjr | 35:e959ffba78fd | 2204 | // stored there. There's no file system and no allowance for shared |
mjr | 35:e959ffba78fd | 2205 | // use for other purposes. Fortunately, the linker ues the space in |
mjr | 35:e959ffba78fd | 2206 | // the obvious way, storing the entire linked program in a contiguous |
mjr | 35:e959ffba78fd | 2207 | // block starting at the lowest flash address. This means that the |
mjr | 35:e959ffba78fd | 2208 | // rest of flash - from the end of the linked program to the highest |
mjr | 35:e959ffba78fd | 2209 | // flash address - is all unused free space. Writing our data there |
mjr | 35:e959ffba78fd | 2210 | // won't conflict with anything else. Since the linker doesn't give |
mjr | 35:e959ffba78fd | 2211 | // us any programmatic access to the total linker output size, it's |
mjr | 35:e959ffba78fd | 2212 | // safest to just store our config data at the very end of the flash |
mjr | 35:e959ffba78fd | 2213 | // region (i.e., the highest address). As long as it's smaller than |
mjr | 35:e959ffba78fd | 2214 | // the free space, it won't collide with the linker area. |
mjr | 35:e959ffba78fd | 2215 | |
mjr | 35:e959ffba78fd | 2216 | // Figure how many sectors we need for our structure |
mjr | 35:e959ffba78fd | 2217 | NVM *flash = configFlashAddr(); |
mjr | 35:e959ffba78fd | 2218 | |
mjr | 35:e959ffba78fd | 2219 | // if the flash is valid, load it; otherwise initialize to defaults |
mjr | 35:e959ffba78fd | 2220 | if (flash->valid()) |
mjr | 35:e959ffba78fd | 2221 | { |
mjr | 35:e959ffba78fd | 2222 | // flash is valid - load it into the RAM copy of the structure |
mjr | 35:e959ffba78fd | 2223 | memcpy(&nvm, flash, sizeof(NVM)); |
mjr | 35:e959ffba78fd | 2224 | } |
mjr | 35:e959ffba78fd | 2225 | else |
mjr | 35:e959ffba78fd | 2226 | { |
mjr | 35:e959ffba78fd | 2227 | // flash is invalid - load factory settings nito RAM structure |
mjr | 35:e959ffba78fd | 2228 | cfg.setFactoryDefaults(); |
mjr | 35:e959ffba78fd | 2229 | } |
mjr | 35:e959ffba78fd | 2230 | } |
mjr | 35:e959ffba78fd | 2231 | |
mjr | 35:e959ffba78fd | 2232 | void saveConfigToFlash() |
mjr | 33:d832bcab089e | 2233 | { |
mjr | 35:e959ffba78fd | 2234 | int addr, sectors; |
mjr | 35:e959ffba78fd | 2235 | configFlashAddr(addr, sectors); |
mjr | 35:e959ffba78fd | 2236 | nvm.save(iap, addr); |
mjr | 35:e959ffba78fd | 2237 | } |
mjr | 35:e959ffba78fd | 2238 | |
mjr | 35:e959ffba78fd | 2239 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 2240 | // |
mjr | 40:cc0d9814522b | 2241 | // Night mode setting updates |
mjr | 40:cc0d9814522b | 2242 | // |
mjr | 38:091e511ce8a0 | 2243 | |
mjr | 38:091e511ce8a0 | 2244 | // Turn night mode on or off |
mjr | 38:091e511ce8a0 | 2245 | static void setNightMode(bool on) |
mjr | 38:091e511ce8a0 | 2246 | { |
mjr | 40:cc0d9814522b | 2247 | // set the new night mode flag in the noisy output class |
mjr | 40:cc0d9814522b | 2248 | LwNoisyOut::nightMode = on; |
mjr | 40:cc0d9814522b | 2249 | |
mjr | 40:cc0d9814522b | 2250 | // update the special output pin that shows the night mode state |
mjr | 40:cc0d9814522b | 2251 | specialPin[SPECIAL_PIN_NIGHTMODE]->set(on ? 255 : 0); |
mjr | 40:cc0d9814522b | 2252 | |
mjr | 40:cc0d9814522b | 2253 | // update all outputs for the mode change |
mjr | 40:cc0d9814522b | 2254 | updateAllOuts(); |
mjr | 38:091e511ce8a0 | 2255 | } |
mjr | 38:091e511ce8a0 | 2256 | |
mjr | 38:091e511ce8a0 | 2257 | // Toggle night mode |
mjr | 38:091e511ce8a0 | 2258 | static void toggleNightMode() |
mjr | 38:091e511ce8a0 | 2259 | { |
mjr | 40:cc0d9814522b | 2260 | setNightMode(!LwNoisyOut::nightMode); |
mjr | 38:091e511ce8a0 | 2261 | } |
mjr | 38:091e511ce8a0 | 2262 | |
mjr | 38:091e511ce8a0 | 2263 | |
mjr | 38:091e511ce8a0 | 2264 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 2265 | // |
mjr | 35:e959ffba78fd | 2266 | // Plunger Sensor |
mjr | 35:e959ffba78fd | 2267 | // |
mjr | 35:e959ffba78fd | 2268 | |
mjr | 35:e959ffba78fd | 2269 | // the plunger sensor interface object |
mjr | 35:e959ffba78fd | 2270 | PlungerSensor *plungerSensor = 0; |
mjr | 35:e959ffba78fd | 2271 | |
mjr | 35:e959ffba78fd | 2272 | // Create the plunger sensor based on the current configuration. If |
mjr | 35:e959ffba78fd | 2273 | // there's already a sensor object, we'll delete it. |
mjr | 35:e959ffba78fd | 2274 | void createPlunger() |
mjr | 35:e959ffba78fd | 2275 | { |
mjr | 35:e959ffba78fd | 2276 | // create the new sensor object according to the type |
mjr | 35:e959ffba78fd | 2277 | switch (cfg.plunger.sensorType) |
mjr | 35:e959ffba78fd | 2278 | { |
mjr | 35:e959ffba78fd | 2279 | case PlungerType_TSL1410RS: |
mjr | 35:e959ffba78fd | 2280 | // pins are: SI, CLOCK, AO |
mjr | 35:e959ffba78fd | 2281 | plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC); |
mjr | 35:e959ffba78fd | 2282 | break; |
mjr | 35:e959ffba78fd | 2283 | |
mjr | 35:e959ffba78fd | 2284 | case PlungerType_TSL1410RP: |
mjr | 35:e959ffba78fd | 2285 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 35:e959ffba78fd | 2286 | plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]); |
mjr | 35:e959ffba78fd | 2287 | break; |
mjr | 35:e959ffba78fd | 2288 | |
mjr | 35:e959ffba78fd | 2289 | case PlungerType_TSL1412RS: |
mjr | 35:e959ffba78fd | 2290 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 35:e959ffba78fd | 2291 | plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC); |
mjr | 35:e959ffba78fd | 2292 | break; |
mjr | 35:e959ffba78fd | 2293 | |
mjr | 35:e959ffba78fd | 2294 | case PlungerType_TSL1412RP: |
mjr | 35:e959ffba78fd | 2295 | // pins are: SI, CLOCK, AO1, AO2 |
mjr | 35:e959ffba78fd | 2296 | plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]); |
mjr | 35:e959ffba78fd | 2297 | break; |
mjr | 35:e959ffba78fd | 2298 | |
mjr | 35:e959ffba78fd | 2299 | case PlungerType_Pot: |
mjr | 35:e959ffba78fd | 2300 | // pins are: AO |
mjr | 35:e959ffba78fd | 2301 | plungerSensor = new PlungerSensorPot(cfg.plunger.sensorPin[0]); |
mjr | 35:e959ffba78fd | 2302 | break; |
mjr | 35:e959ffba78fd | 2303 | |
mjr | 35:e959ffba78fd | 2304 | case PlungerType_None: |
mjr | 35:e959ffba78fd | 2305 | default: |
mjr | 35:e959ffba78fd | 2306 | plungerSensor = new PlungerSensorNull(); |
mjr | 35:e959ffba78fd | 2307 | break; |
mjr | 35:e959ffba78fd | 2308 | } |
mjr | 33:d832bcab089e | 2309 | } |
mjr | 33:d832bcab089e | 2310 | |
mjr | 48:058ace2aed1d | 2311 | // Plunger reader |
mjr | 48:058ace2aed1d | 2312 | class PlungerReader |
mjr | 48:058ace2aed1d | 2313 | { |
mjr | 48:058ace2aed1d | 2314 | public: |
mjr | 48:058ace2aed1d | 2315 | PlungerReader() |
mjr | 48:058ace2aed1d | 2316 | { |
mjr | 48:058ace2aed1d | 2317 | // not in a firing event yet |
mjr | 48:058ace2aed1d | 2318 | firing = 0; |
mjr | 48:058ace2aed1d | 2319 | |
mjr | 48:058ace2aed1d | 2320 | // no history yet |
mjr | 48:058ace2aed1d | 2321 | histIdx = 0; |
mjr | 48:058ace2aed1d | 2322 | |
mjr | 48:058ace2aed1d | 2323 | // not in calibration mode |
mjr | 48:058ace2aed1d | 2324 | cal = false; |
mjr | 48:058ace2aed1d | 2325 | } |
mjr | 48:058ace2aed1d | 2326 | |
mjr | 48:058ace2aed1d | 2327 | // Collect a reading from the plunger sensor. The main loop calls |
mjr | 48:058ace2aed1d | 2328 | // this frequently to read the current raw position data from the |
mjr | 48:058ace2aed1d | 2329 | // sensor. We analyze the raw data to produce the calibrated |
mjr | 48:058ace2aed1d | 2330 | // position that we report to the PC via the joystick interface. |
mjr | 48:058ace2aed1d | 2331 | void read() |
mjr | 48:058ace2aed1d | 2332 | { |
mjr | 48:058ace2aed1d | 2333 | // Read a sample from the sensor |
mjr | 48:058ace2aed1d | 2334 | PlungerReading r; |
mjr | 48:058ace2aed1d | 2335 | if (plungerSensor->read(r)) |
mjr | 48:058ace2aed1d | 2336 | { |
mjr | 48:058ace2aed1d | 2337 | // if in calibration mode, apply it to the calibration |
mjr | 48:058ace2aed1d | 2338 | if (cal) |
mjr | 48:058ace2aed1d | 2339 | { |
mjr | 48:058ace2aed1d | 2340 | // if it's outside of the current calibration bounds, |
mjr | 48:058ace2aed1d | 2341 | // expand the bounds |
mjr | 48:058ace2aed1d | 2342 | if (r.pos < cfg.plunger.cal.min) |
mjr | 48:058ace2aed1d | 2343 | cfg.plunger.cal.min = r.pos; |
mjr | 48:058ace2aed1d | 2344 | if (r.pos < cfg.plunger.cal.zero) |
mjr | 48:058ace2aed1d | 2345 | cfg.plunger.cal.zero = r.pos; |
mjr | 48:058ace2aed1d | 2346 | if (r.pos > cfg.plunger.cal.max) |
mjr | 48:058ace2aed1d | 2347 | cfg.plunger.cal.max = r.pos; |
mjr | 48:058ace2aed1d | 2348 | |
mjr | 48:058ace2aed1d | 2349 | // As long as we're in calibration mode, return the raw |
mjr | 48:058ace2aed1d | 2350 | // sensor position as the joystick value, adjusted to the |
mjr | 48:058ace2aed1d | 2351 | // JOYMAX scale. |
mjr | 48:058ace2aed1d | 2352 | z = int16_t((long(r.pos) * JOYMAX)/65535); |
mjr | 48:058ace2aed1d | 2353 | return; |
mjr | 48:058ace2aed1d | 2354 | } |
mjr | 48:058ace2aed1d | 2355 | |
mjr | 48:058ace2aed1d | 2356 | // If the new reading is within 2ms of the previous reading, |
mjr | 48:058ace2aed1d | 2357 | // ignore it. We require a minimum time between samples to |
mjr | 48:058ace2aed1d | 2358 | // ensure that we have a usable amount of precision in the |
mjr | 48:058ace2aed1d | 2359 | // denominator (the time interval) for calculating the plunger |
mjr | 48:058ace2aed1d | 2360 | // velocity. (The CCD sensor can't take readings faster than |
mjr | 48:058ace2aed1d | 2361 | // this anyway, but other sensor types, such as potentiometers, |
mjr | 48:058ace2aed1d | 2362 | // can, so we have to throttle the rate artifically in case |
mjr | 48:058ace2aed1d | 2363 | // we're using a fast sensor like that.) |
mjr | 48:058ace2aed1d | 2364 | if (uint32_t(r.t - prv.t) < 2000UL) |
mjr | 48:058ace2aed1d | 2365 | return; |
mjr | 48:058ace2aed1d | 2366 | |
mjr | 48:058ace2aed1d | 2367 | // bounds-check the calibration data |
mjr | 48:058ace2aed1d | 2368 | checkCalBounds(r.pos); |
mjr | 48:058ace2aed1d | 2369 | |
mjr | 48:058ace2aed1d | 2370 | // calibrate and rescale the value |
mjr | 48:058ace2aed1d | 2371 | int pos = int( |
mjr | 48:058ace2aed1d | 2372 | (long(r.pos - cfg.plunger.cal.zero) * JOYMAX) |
mjr | 48:058ace2aed1d | 2373 | / (cfg.plunger.cal.max - cfg.plunger.cal.zero)); |
mjr | 48:058ace2aed1d | 2374 | |
mjr | 48:058ace2aed1d | 2375 | // Calculate the velocity from the previous reading to here, |
mjr | 48:058ace2aed1d | 2376 | // in joystick distance units per microsecond. |
mjr | 48:058ace2aed1d | 2377 | // |
mjr | 48:058ace2aed1d | 2378 | // For reference, the physical plunger velocity ranges up |
mjr | 48:058ace2aed1d | 2379 | // to about 100,000 joystick distance units/sec. This is |
mjr | 48:058ace2aed1d | 2380 | // based on empirical measurements. The typical time for |
mjr | 48:058ace2aed1d | 2381 | // a real plunger to travel the full distance when released |
mjr | 48:058ace2aed1d | 2382 | // from full retraction is about 85ms, so the average velocity |
mjr | 48:058ace2aed1d | 2383 | // covering this distance is about 56,000 units/sec. The |
mjr | 48:058ace2aed1d | 2384 | // peak is probably about twice that. In real-world units, |
mjr | 48:058ace2aed1d | 2385 | // this translates to an average speed of about .75 m/s and |
mjr | 48:058ace2aed1d | 2386 | // a peak of about 1.5 m/s. |
mjr | 48:058ace2aed1d | 2387 | // |
mjr | 48:058ace2aed1d | 2388 | // Note that we actually calculate the value here in units |
mjr | 48:058ace2aed1d | 2389 | // per *microsecond* - the discussion above is in terms of |
mjr | 48:058ace2aed1d | 2390 | // units/sec because that's more on a human scale. Our |
mjr | 48:058ace2aed1d | 2391 | // choice of internal units here really isn't important, |
mjr | 48:058ace2aed1d | 2392 | // since we only use the velocity for comparison purposes, |
mjr | 48:058ace2aed1d | 2393 | // to detect acceleration trends. We therefore save ourselves |
mjr | 48:058ace2aed1d | 2394 | // a little CPU time by using the natural units of our inputs. |
mjr | 48:058ace2aed1d | 2395 | float v = float(pos - prv.pos)/float(r.t - prv.t); |
mjr | 48:058ace2aed1d | 2396 | |
mjr | 48:058ace2aed1d | 2397 | // presume we'll just report the latest reading |
mjr | 48:058ace2aed1d | 2398 | z = pos; |
mjr | 48:058ace2aed1d | 2399 | vz = v; |
mjr | 48:058ace2aed1d | 2400 | |
mjr | 48:058ace2aed1d | 2401 | // Check firing events |
mjr | 48:058ace2aed1d | 2402 | switch (firing) |
mjr | 48:058ace2aed1d | 2403 | { |
mjr | 48:058ace2aed1d | 2404 | case 0: |
mjr | 48:058ace2aed1d | 2405 | // Default state - not in a firing event. |
mjr | 48:058ace2aed1d | 2406 | |
mjr | 48:058ace2aed1d | 2407 | // Check for a recent high water mark. Keep the high point |
mjr | 48:058ace2aed1d | 2408 | // within a small window |
mjr | 48:058ace2aed1d | 2409 | |
mjr | 48:058ace2aed1d | 2410 | // If we have forward motion from a position that's retracted |
mjr | 48:058ace2aed1d | 2411 | // beyond a threshold, enter phase 1. |
mjr | 48:058ace2aed1d | 2412 | if (v < 0 && pos > JOYMAX/6) |
mjr | 48:058ace2aed1d | 2413 | { |
mjr | 48:058ace2aed1d | 2414 | // enter phase 1 |
mjr | 48:058ace2aed1d | 2415 | firingMode(1); |
mjr | 48:058ace2aed1d | 2416 | |
mjr | 48:058ace2aed1d | 2417 | // we don't have a freeze position yet, but note the start time |
mjr | 48:058ace2aed1d | 2418 | f1.pos = 0; |
mjr | 48:058ace2aed1d | 2419 | f1.t = r.t; |
mjr | 48:058ace2aed1d | 2420 | |
mjr | 48:058ace2aed1d | 2421 | // Figure the fake "bounce" position in case we complete the |
mjr | 48:058ace2aed1d | 2422 | // firing event. This is the barrel spring compression proportional |
mjr | 48:058ace2aed1d | 2423 | // to the starting position. The barrel spring is about 1/6 the |
mjr | 48:058ace2aed1d | 2424 | // length of the main spring, so figure it compresses by 1/6 the |
mjr | 48:058ace2aed1d | 2425 | // distance. |
mjr | 48:058ace2aed1d | 2426 | f2.pos = -pos/6; |
mjr | 48:058ace2aed1d | 2427 | } |
mjr | 48:058ace2aed1d | 2428 | break; |
mjr | 48:058ace2aed1d | 2429 | |
mjr | 48:058ace2aed1d | 2430 | case 1: |
mjr | 48:058ace2aed1d | 2431 | // Phase 1 - acceleration. If we cross the zero point, trigger |
mjr | 48:058ace2aed1d | 2432 | // the firing event. Otherwise, continue monitoring as long as we |
mjr | 48:058ace2aed1d | 2433 | // see acceleration in the forward direction. |
mjr | 48:058ace2aed1d | 2434 | if (pos <= 0) |
mjr | 48:058ace2aed1d | 2435 | { |
mjr | 48:058ace2aed1d | 2436 | // switch to the synthetic firing mode |
mjr | 48:058ace2aed1d | 2437 | firingMode(2); |
mjr | 48:058ace2aed1d | 2438 | |
mjr | 48:058ace2aed1d | 2439 | // note the start time for the firing phase |
mjr | 48:058ace2aed1d | 2440 | f2.t = r.t; |
mjr | 48:058ace2aed1d | 2441 | } |
mjr | 48:058ace2aed1d | 2442 | else if (v < vprv) |
mjr | 48:058ace2aed1d | 2443 | { |
mjr | 48:058ace2aed1d | 2444 | // We're still accelerating, and we haven't crossed the zero |
mjr | 48:058ace2aed1d | 2445 | // point yet - stay in phase 1. (Note that forward motion is |
mjr | 48:058ace2aed1d | 2446 | // negative velocity, so accelerating means that the new |
mjr | 48:058ace2aed1d | 2447 | // velocity is more negative than the previous one, which |
mjr | 48:058ace2aed1d | 2448 | // is to say numerically less than - that's why the test |
mjr | 48:058ace2aed1d | 2449 | // for acceleration is the seemingly backwards 'v < vprv'.) |
mjr | 48:058ace2aed1d | 2450 | } |
mjr | 48:058ace2aed1d | 2451 | else if (uint32_t(r.t - prv.t) < 5000UL) |
mjr | 48:058ace2aed1d | 2452 | { |
mjr | 48:058ace2aed1d | 2453 | // We're not accelerating relative to the previous reading, |
mjr | 48:058ace2aed1d | 2454 | // but we're within 5ms of it. Throw out this reading to |
mjr | 48:058ace2aed1d | 2455 | // collect more data. |
mjr | 48:058ace2aed1d | 2456 | pos = prv.pos; |
mjr | 48:058ace2aed1d | 2457 | r.t = prv.t; |
mjr | 48:058ace2aed1d | 2458 | v = vprv; |
mjr | 48:058ace2aed1d | 2459 | } |
mjr | 48:058ace2aed1d | 2460 | else |
mjr | 48:058ace2aed1d | 2461 | { |
mjr | 48:058ace2aed1d | 2462 | // We're not accelerating. Cancel the firing event. |
mjr | 48:058ace2aed1d | 2463 | firingMode(0); |
mjr | 48:058ace2aed1d | 2464 | } |
mjr | 48:058ace2aed1d | 2465 | |
mjr | 48:058ace2aed1d | 2466 | // If we've been in phase 1 for at least 25ms, we're probably |
mjr | 48:058ace2aed1d | 2467 | // really doing a release. Jump back to the recent local |
mjr | 48:058ace2aed1d | 2468 | // maximum where the release *really* started. This is always |
mjr | 48:058ace2aed1d | 2469 | // a bit before we started seeing sustained accleration, because |
mjr | 48:058ace2aed1d | 2470 | // the plunger motion for the first few milliseconds is too slow |
mjr | 48:058ace2aed1d | 2471 | // for our sensor precision to reliably detect acceleration. |
mjr | 48:058ace2aed1d | 2472 | if (firing == 1) |
mjr | 48:058ace2aed1d | 2473 | { |
mjr | 48:058ace2aed1d | 2474 | if (f1.pos != 0) |
mjr | 48:058ace2aed1d | 2475 | { |
mjr | 48:058ace2aed1d | 2476 | // we have a reset point - freeze there |
mjr | 48:058ace2aed1d | 2477 | z = f1.pos; |
mjr | 48:058ace2aed1d | 2478 | } |
mjr | 48:058ace2aed1d | 2479 | else if (uint32_t(r.t - f1.t) >= 25000UL) |
mjr | 48:058ace2aed1d | 2480 | { |
mjr | 48:058ace2aed1d | 2481 | // it's been long enough - set a reset point. |
mjr | 48:058ace2aed1d | 2482 | f1.pos = z = histLocalMax(r.t, 50000UL); |
mjr | 48:058ace2aed1d | 2483 | } |
mjr | 48:058ace2aed1d | 2484 | } |
mjr | 48:058ace2aed1d | 2485 | break; |
mjr | 48:058ace2aed1d | 2486 | |
mjr | 48:058ace2aed1d | 2487 | case 2: |
mjr | 48:058ace2aed1d | 2488 | // Phase 2 - start of synthetic firing event. Report the fake |
mjr | 48:058ace2aed1d | 2489 | // bounce for 25ms. VP polls the joystick about every 10ms, so |
mjr | 48:058ace2aed1d | 2490 | // this should be enough time to guarantee that VP sees this |
mjr | 48:058ace2aed1d | 2491 | // report at least once. |
mjr | 48:058ace2aed1d | 2492 | if (uint32_t(r.t - f2.t) < 25000UL) |
mjr | 48:058ace2aed1d | 2493 | { |
mjr | 48:058ace2aed1d | 2494 | // report the bounce position |
mjr | 48:058ace2aed1d | 2495 | z = f2.pos; |
mjr | 48:058ace2aed1d | 2496 | } |
mjr | 48:058ace2aed1d | 2497 | else |
mjr | 48:058ace2aed1d | 2498 | { |
mjr | 48:058ace2aed1d | 2499 | // it's been long enough - switch to phase 3, where we |
mjr | 48:058ace2aed1d | 2500 | // report the park position until the real plunger comes |
mjr | 48:058ace2aed1d | 2501 | // to rest |
mjr | 48:058ace2aed1d | 2502 | firingMode(3); |
mjr | 48:058ace2aed1d | 2503 | z = 0; |
mjr | 48:058ace2aed1d | 2504 | |
mjr | 48:058ace2aed1d | 2505 | // set the start of the "stability window" to the rest position |
mjr | 48:058ace2aed1d | 2506 | f3s.t = r.t; |
mjr | 48:058ace2aed1d | 2507 | f3s.pos = 0; |
mjr | 48:058ace2aed1d | 2508 | |
mjr | 48:058ace2aed1d | 2509 | // set the start of the "retraction window" to the actual position |
mjr | 48:058ace2aed1d | 2510 | f3r = r; |
mjr | 48:058ace2aed1d | 2511 | } |
mjr | 48:058ace2aed1d | 2512 | break; |
mjr | 48:058ace2aed1d | 2513 | |
mjr | 48:058ace2aed1d | 2514 | case 3: |
mjr | 48:058ace2aed1d | 2515 | // Phase 3 - in synthetic firing event. Report the park position |
mjr | 48:058ace2aed1d | 2516 | // until the plunger position stabilizes. Left to its own devices, |
mjr | 48:058ace2aed1d | 2517 | // the plunger will usualy bounce off the barrel spring several |
mjr | 48:058ace2aed1d | 2518 | // times before coming to rest, so we'll see oscillating motion |
mjr | 48:058ace2aed1d | 2519 | // for a second or two. In the simplest case, we can aimply wait |
mjr | 48:058ace2aed1d | 2520 | // for the plunger to stop moving for a short time. However, the |
mjr | 48:058ace2aed1d | 2521 | // player might intervene by pulling the plunger back again, so |
mjr | 48:058ace2aed1d | 2522 | // watch for that motion as well. If we're just bouncing freely, |
mjr | 48:058ace2aed1d | 2523 | // we'll see the direction change frequently. If the player is |
mjr | 48:058ace2aed1d | 2524 | // moving the plunger manually, the direction will be constant |
mjr | 48:058ace2aed1d | 2525 | // for longer. |
mjr | 48:058ace2aed1d | 2526 | if (v >= 0) |
mjr | 48:058ace2aed1d | 2527 | { |
mjr | 48:058ace2aed1d | 2528 | // We're moving back (or standing still). If this has been |
mjr | 48:058ace2aed1d | 2529 | // going on for a while, the user must have taken control. |
mjr | 48:058ace2aed1d | 2530 | if (uint32_t(r.t - f3r.t) > 65000UL) |
mjr | 48:058ace2aed1d | 2531 | { |
mjr | 48:058ace2aed1d | 2532 | // user has taken control - cancel firing mode |
mjr | 48:058ace2aed1d | 2533 | firingMode(0); |
mjr | 48:058ace2aed1d | 2534 | break; |
mjr | 48:058ace2aed1d | 2535 | } |
mjr | 48:058ace2aed1d | 2536 | } |
mjr | 48:058ace2aed1d | 2537 | else |
mjr | 48:058ace2aed1d | 2538 | { |
mjr | 48:058ace2aed1d | 2539 | // forward motion - reset retraction window |
mjr | 48:058ace2aed1d | 2540 | f3r.t = r.t; |
mjr | 48:058ace2aed1d | 2541 | } |
mjr | 48:058ace2aed1d | 2542 | |
mjr | 48:058ace2aed1d | 2543 | // check if we've come to rest, or close enough |
mjr | 48:058ace2aed1d | 2544 | if (abs(r.pos - f3s.pos) < 200) |
mjr | 48:058ace2aed1d | 2545 | { |
mjr | 48:058ace2aed1d | 2546 | // It's within an eighth inch of the last starting point. |
mjr | 48:058ace2aed1d | 2547 | // If it's been here for 30ms, consider it stable. |
mjr | 48:058ace2aed1d | 2548 | if (uint32_t(r.t - f3s.t) > 30000UL) |
mjr | 48:058ace2aed1d | 2549 | { |
mjr | 48:058ace2aed1d | 2550 | // we're done with the firing event |
mjr | 48:058ace2aed1d | 2551 | firingMode(0); |
mjr | 48:058ace2aed1d | 2552 | } |
mjr | 48:058ace2aed1d | 2553 | else |
mjr | 48:058ace2aed1d | 2554 | { |
mjr | 48:058ace2aed1d | 2555 | // it's close to the last position but hasn't been |
mjr | 48:058ace2aed1d | 2556 | // here long enough; stay in firing mode and continue |
mjr | 48:058ace2aed1d | 2557 | // to report the park position |
mjr | 48:058ace2aed1d | 2558 | z = 0; |
mjr | 48:058ace2aed1d | 2559 | } |
mjr | 48:058ace2aed1d | 2560 | } |
mjr | 48:058ace2aed1d | 2561 | else |
mjr | 48:058ace2aed1d | 2562 | { |
mjr | 48:058ace2aed1d | 2563 | // It's not close enough to the last starting point, so use |
mjr | 48:058ace2aed1d | 2564 | // this as a new starting point, and stay in firing mode. |
mjr | 48:058ace2aed1d | 2565 | f3s = r; |
mjr | 48:058ace2aed1d | 2566 | z = 0; |
mjr | 48:058ace2aed1d | 2567 | } |
mjr | 48:058ace2aed1d | 2568 | break; |
mjr | 48:058ace2aed1d | 2569 | } |
mjr | 48:058ace2aed1d | 2570 | |
mjr | 48:058ace2aed1d | 2571 | // save the new reading for next time |
mjr | 48:058ace2aed1d | 2572 | prv.pos = pos; |
mjr | 48:058ace2aed1d | 2573 | prv.t = r.t; |
mjr | 48:058ace2aed1d | 2574 | vprv = v; |
mjr | 48:058ace2aed1d | 2575 | |
mjr | 48:058ace2aed1d | 2576 | // add it to the circular history buffer as well |
mjr | 48:058ace2aed1d | 2577 | hist[histIdx++] = prv; |
mjr | 48:058ace2aed1d | 2578 | histIdx %= countof(hist); |
mjr | 48:058ace2aed1d | 2579 | } |
mjr | 48:058ace2aed1d | 2580 | } |
mjr | 48:058ace2aed1d | 2581 | |
mjr | 48:058ace2aed1d | 2582 | // Get the current value to report through the joystick interface |
mjr | 48:058ace2aed1d | 2583 | int16_t getPosition() const { return z; } |
mjr | 48:058ace2aed1d | 2584 | |
mjr | 48:058ace2aed1d | 2585 | // Get the current velocity (joystick distance units per microsecond) |
mjr | 48:058ace2aed1d | 2586 | float getVelocity() const { return vz; } |
mjr | 48:058ace2aed1d | 2587 | |
mjr | 48:058ace2aed1d | 2588 | // get the timestamp of the current joystick report (microseconds) |
mjr | 48:058ace2aed1d | 2589 | uint32_t getTimestamp() const { return prv.t; } |
mjr | 48:058ace2aed1d | 2590 | |
mjr | 48:058ace2aed1d | 2591 | // Set calibration mode on or off |
mjr | 48:058ace2aed1d | 2592 | void calMode(bool f) |
mjr | 48:058ace2aed1d | 2593 | { |
mjr | 48:058ace2aed1d | 2594 | // if entering calibration mode, reset the saved calibration data |
mjr | 48:058ace2aed1d | 2595 | if (f && !cal) |
mjr | 48:058ace2aed1d | 2596 | cfg.plunger.cal.begin(); |
mjr | 48:058ace2aed1d | 2597 | |
mjr | 48:058ace2aed1d | 2598 | // remember the new mode |
mjr | 48:058ace2aed1d | 2599 | cal = f; |
mjr | 48:058ace2aed1d | 2600 | } |
mjr | 48:058ace2aed1d | 2601 | |
mjr | 48:058ace2aed1d | 2602 | // is a firing event in progress? |
mjr | 48:058ace2aed1d | 2603 | bool isFiring() { return firing > 3; } |
mjr | 48:058ace2aed1d | 2604 | |
mjr | 48:058ace2aed1d | 2605 | private: |
mjr | 48:058ace2aed1d | 2606 | // set a firing mode |
mjr | 48:058ace2aed1d | 2607 | inline void firingMode(int m) |
mjr | 48:058ace2aed1d | 2608 | { |
mjr | 48:058ace2aed1d | 2609 | firing = m; |
mjr | 48:058ace2aed1d | 2610 | |
mjr | 48:058ace2aed1d | 2611 | // $$$ |
mjr | 48:058ace2aed1d | 2612 | lwPin[3]->set(0); |
mjr | 48:058ace2aed1d | 2613 | lwPin[4]->set(0); |
mjr | 48:058ace2aed1d | 2614 | lwPin[5]->set(0); |
mjr | 48:058ace2aed1d | 2615 | switch (m) |
mjr | 48:058ace2aed1d | 2616 | { |
mjr | 48:058ace2aed1d | 2617 | case 1: lwPin[3]->set(255); break; // red |
mjr | 48:058ace2aed1d | 2618 | case 2: lwPin[4]->set(255); break; // green |
mjr | 48:058ace2aed1d | 2619 | case 3: lwPin[5]->set(255); break; // blue |
mjr | 48:058ace2aed1d | 2620 | case 4: lwPin[3]->set(255); lwPin[5]->set(255); break; // purple |
mjr | 48:058ace2aed1d | 2621 | } |
mjr | 48:058ace2aed1d | 2622 | //$$$ |
mjr | 48:058ace2aed1d | 2623 | } |
mjr | 48:058ace2aed1d | 2624 | |
mjr | 48:058ace2aed1d | 2625 | // Find the most recent local maximum in the history data, up to |
mjr | 48:058ace2aed1d | 2626 | // the given time limit. |
mjr | 48:058ace2aed1d | 2627 | int histLocalMax(uint32_t tcur, uint32_t dt) |
mjr | 48:058ace2aed1d | 2628 | { |
mjr | 48:058ace2aed1d | 2629 | // start with the prior entry |
mjr | 48:058ace2aed1d | 2630 | int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1; |
mjr | 48:058ace2aed1d | 2631 | int hi = hist[idx].pos; |
mjr | 48:058ace2aed1d | 2632 | |
mjr | 48:058ace2aed1d | 2633 | // scan backwards for a local maximum |
mjr | 48:058ace2aed1d | 2634 | for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1) |
mjr | 48:058ace2aed1d | 2635 | { |
mjr | 48:058ace2aed1d | 2636 | // if this isn't within the time window, stop |
mjr | 48:058ace2aed1d | 2637 | if (uint32_t(tcur - hist[idx].t) > dt) |
mjr | 48:058ace2aed1d | 2638 | break; |
mjr | 48:058ace2aed1d | 2639 | |
mjr | 48:058ace2aed1d | 2640 | // if this isn't above the current hith, stop |
mjr | 48:058ace2aed1d | 2641 | if (hist[idx].pos < hi) |
mjr | 48:058ace2aed1d | 2642 | break; |
mjr | 48:058ace2aed1d | 2643 | |
mjr | 48:058ace2aed1d | 2644 | // this is the new high |
mjr | 48:058ace2aed1d | 2645 | hi = hist[idx].pos; |
mjr | 48:058ace2aed1d | 2646 | } |
mjr | 48:058ace2aed1d | 2647 | |
mjr | 48:058ace2aed1d | 2648 | // return the local maximum |
mjr | 48:058ace2aed1d | 2649 | return hi; |
mjr | 48:058ace2aed1d | 2650 | } |
mjr | 48:058ace2aed1d | 2651 | |
mjr | 48:058ace2aed1d | 2652 | // Adjust the calibration bounds for a new reading. This is used |
mjr | 48:058ace2aed1d | 2653 | // while NOT in calibration mode to ensure that a reading doesn't |
mjr | 48:058ace2aed1d | 2654 | // violate the calibration limits. If it does, we'll readjust the |
mjr | 48:058ace2aed1d | 2655 | // limits to incorporate the new value. |
mjr | 48:058ace2aed1d | 2656 | void checkCalBounds(int pos) |
mjr | 48:058ace2aed1d | 2657 | { |
mjr | 48:058ace2aed1d | 2658 | // If the value is beyond the calibration maximum, increase the |
mjr | 48:058ace2aed1d | 2659 | // calibration point. This ensures that our joystick reading |
mjr | 48:058ace2aed1d | 2660 | // is always within the valid joystick field range. |
mjr | 48:058ace2aed1d | 2661 | if (pos > cfg.plunger.cal.max) |
mjr | 48:058ace2aed1d | 2662 | cfg.plunger.cal.max = pos; |
mjr | 48:058ace2aed1d | 2663 | |
mjr | 48:058ace2aed1d | 2664 | // make sure we don't overflow in the opposite direction |
mjr | 48:058ace2aed1d | 2665 | if (pos < cfg.plunger.cal.zero |
mjr | 48:058ace2aed1d | 2666 | && cfg.plunger.cal.zero - pos > cfg.plunger.cal.max) |
mjr | 48:058ace2aed1d | 2667 | { |
mjr | 48:058ace2aed1d | 2668 | // we need to raise 'max' by this much to keep things in range |
mjr | 48:058ace2aed1d | 2669 | int adj = cfg.plunger.cal.zero - pos - cfg.plunger.cal.max; |
mjr | 48:058ace2aed1d | 2670 | |
mjr | 48:058ace2aed1d | 2671 | // we can raise 'max' at most this much before overflowing |
mjr | 48:058ace2aed1d | 2672 | int lim = 0xffff - cfg.plunger.cal.max; |
mjr | 48:058ace2aed1d | 2673 | |
mjr | 48:058ace2aed1d | 2674 | // if we have headroom to raise 'max' by 'adj', do so, otherwise |
mjr | 48:058ace2aed1d | 2675 | // raise it as much as we can and apply the excess to lowering the |
mjr | 48:058ace2aed1d | 2676 | // zero point |
mjr | 48:058ace2aed1d | 2677 | if (adj > lim) |
mjr | 48:058ace2aed1d | 2678 | { |
mjr | 48:058ace2aed1d | 2679 | cfg.plunger.cal.zero -= adj - lim; |
mjr | 48:058ace2aed1d | 2680 | adj = lim; |
mjr | 48:058ace2aed1d | 2681 | } |
mjr | 48:058ace2aed1d | 2682 | cfg.plunger.cal.max += adj; |
mjr | 48:058ace2aed1d | 2683 | } |
mjr | 48:058ace2aed1d | 2684 | |
mjr | 48:058ace2aed1d | 2685 | // If the calibration max isn't higher than the calibration |
mjr | 48:058ace2aed1d | 2686 | // zero, we have a negative or zero scale range, which isn't |
mjr | 48:058ace2aed1d | 2687 | // physically meaningful. Fix it by forcing the max above |
mjr | 48:058ace2aed1d | 2688 | // the zero point (or the zero point below the max, if they're |
mjr | 48:058ace2aed1d | 2689 | // both pegged at the datatype maximum). |
mjr | 48:058ace2aed1d | 2690 | if (cfg.plunger.cal.max <= cfg.plunger.cal.zero) |
mjr | 48:058ace2aed1d | 2691 | { |
mjr | 48:058ace2aed1d | 2692 | if (cfg.plunger.cal.zero != 0xFFFF) |
mjr | 48:058ace2aed1d | 2693 | cfg.plunger.cal.max = cfg.plunger.cal.zero + 1; |
mjr | 48:058ace2aed1d | 2694 | else |
mjr | 48:058ace2aed1d | 2695 | cfg.plunger.cal.zero -= 1; |
mjr | 48:058ace2aed1d | 2696 | } |
mjr | 48:058ace2aed1d | 2697 | } |
mjr | 48:058ace2aed1d | 2698 | |
mjr | 48:058ace2aed1d | 2699 | // Previous reading |
mjr | 48:058ace2aed1d | 2700 | PlungerReading prv; |
mjr | 48:058ace2aed1d | 2701 | |
mjr | 48:058ace2aed1d | 2702 | // velocity at previous reading |
mjr | 48:058ace2aed1d | 2703 | float vprv; |
mjr | 48:058ace2aed1d | 2704 | |
mjr | 48:058ace2aed1d | 2705 | // Circular buffer of recent readings. We keep a short history |
mjr | 48:058ace2aed1d | 2706 | // of readings to analyze during firing events. We can only identify |
mjr | 48:058ace2aed1d | 2707 | // a firing event once it's somewhat under way, so we need a little |
mjr | 48:058ace2aed1d | 2708 | // retrospective information to accurately determine after the fact |
mjr | 48:058ace2aed1d | 2709 | // exactly when it started. We throttle our readings to no more |
mjr | 48:058ace2aed1d | 2710 | // than one every 2ms, so we have at least N*2ms of history in this |
mjr | 48:058ace2aed1d | 2711 | // array. |
mjr | 48:058ace2aed1d | 2712 | PlungerReading hist[25]; |
mjr | 48:058ace2aed1d | 2713 | int histIdx; |
mjr | 48:058ace2aed1d | 2714 | |
mjr | 48:058ace2aed1d | 2715 | // Firing event state. |
mjr | 48:058ace2aed1d | 2716 | // |
mjr | 48:058ace2aed1d | 2717 | // A "firing event" happens when we detect that the physical plunger |
mjr | 48:058ace2aed1d | 2718 | // is moving forward fast enough that it was probably released. When |
mjr | 48:058ace2aed1d | 2719 | // we detect a firing event, we momentarily disconnect the joystick |
mjr | 48:058ace2aed1d | 2720 | // readings from the physical sensor, and instead feed in a series of |
mjr | 48:058ace2aed1d | 2721 | // synthesized readings that simulate an idealized release motion. |
mjr | 48:058ace2aed1d | 2722 | // |
mjr | 48:058ace2aed1d | 2723 | // The reason we create these synthetic readings is that they give us |
mjr | 48:058ace2aed1d | 2724 | // better results in VP and other PC pinball players. The joystick |
mjr | 48:058ace2aed1d | 2725 | // interface only lets us report the instantaneous plunger position. |
mjr | 48:058ace2aed1d | 2726 | // VP only reads the position at certain intervals, so it picks up |
mjr | 48:058ace2aed1d | 2727 | // a series of snapshots of the position, which it uses to infer the |
mjr | 48:058ace2aed1d | 2728 | // plunger velocity. But the plunger release motion is so fast that |
mjr | 48:058ace2aed1d | 2729 | // VP's sampling rate creates a classic digital "aliasing" problem. |
mjr | 48:058ace2aed1d | 2730 | // |
mjr | 48:058ace2aed1d | 2731 | // Our synthesized report structure is designed to overcome the |
mjr | 48:058ace2aed1d | 2732 | // aliasing problem by removing the intermediate position reports |
mjr | 48:058ace2aed1d | 2733 | // and only reporting the starting and ending positions. This |
mjr | 48:058ace2aed1d | 2734 | // allows the PC side to reliably read the extremes of the travel |
mjr | 48:058ace2aed1d | 2735 | // and work entirely in the simulation domain to simulate a plunger |
mjr | 48:058ace2aed1d | 2736 | // release of the detected distance. This produces more realistic |
mjr | 48:058ace2aed1d | 2737 | // results than feeding VP the real data, ironically. |
mjr | 48:058ace2aed1d | 2738 | // |
mjr | 48:058ace2aed1d | 2739 | // DETECTING A RELEASE MOTION |
mjr | 48:058ace2aed1d | 2740 | // |
mjr | 48:058ace2aed1d | 2741 | // How do we tell when the plunger is being released? The basic |
mjr | 48:058ace2aed1d | 2742 | // idea is to monitor the sensor data and look for a series of |
mjr | 48:058ace2aed1d | 2743 | // readings that match the profile of a release motion. For an |
mjr | 48:058ace2aed1d | 2744 | // idealized, mathematical model of a plunger, a release causes |
mjr | 48:058ace2aed1d | 2745 | // the plunger to start accelerating under the spring force. |
mjr | 48:058ace2aed1d | 2746 | // |
mjr | 48:058ace2aed1d | 2747 | // The real system has a couple of complications. First, there |
mjr | 48:058ace2aed1d | 2748 | // are some mechanical effects that make the motion less than |
mjr | 48:058ace2aed1d | 2749 | // ideal (in the sense of matching the mathematical model), |
mjr | 48:058ace2aed1d | 2750 | // like friction and wobble. This seems to be especially |
mjr | 48:058ace2aed1d | 2751 | // significant for the first 10-20ms of the release, probably |
mjr | 48:058ace2aed1d | 2752 | // because friction is a bigger factor at slow speeds, and |
mjr | 48:058ace2aed1d | 2753 | // also because of the uneven forces as the user lets go. |
mjr | 48:058ace2aed1d | 2754 | // Second, our sensor doesn't have infinite precision, and |
mjr | 48:058ace2aed1d | 2755 | // our clock doesn't either, and these error bars compound |
mjr | 48:058ace2aed1d | 2756 | // when we combine position and time to compute velocity. |
mjr | 48:058ace2aed1d | 2757 | // |
mjr | 48:058ace2aed1d | 2758 | // To deal with these real-world complications, we have a couple |
mjr | 48:058ace2aed1d | 2759 | // of strategies. First, we tolerate a little bit of non-uniformity |
mjr | 48:058ace2aed1d | 2760 | // in the acceleration, by waiting a little longer if we get a |
mjr | 48:058ace2aed1d | 2761 | // reading that doesn't appear to be accelerating. We still |
mjr | 48:058ace2aed1d | 2762 | // insist on continuous acceleration, but we basically double-check |
mjr | 48:058ace2aed1d | 2763 | // a reading by extending the time window when necessary. Second, |
mjr | 48:058ace2aed1d | 2764 | // when we detect a series of accelerating readings, we go back |
mjr | 48:058ace2aed1d | 2765 | // to prior readings from before the sustained acceleration |
mjr | 48:058ace2aed1d | 2766 | // began to find out when the motion really began. |
mjr | 48:058ace2aed1d | 2767 | // |
mjr | 48:058ace2aed1d | 2768 | // PROCESSING A RELEASE MOTION |
mjr | 48:058ace2aed1d | 2769 | // |
mjr | 48:058ace2aed1d | 2770 | // We continuously monitor the sensor data. When we see the position |
mjr | 48:058ace2aed1d | 2771 | // moving forward, toward the zero point, we start watching for |
mjr | 48:058ace2aed1d | 2772 | // sustained acceleration . If we see acceleration for more than a |
mjr | 48:058ace2aed1d | 2773 | // minimum threshold time (about 20ms), we freeze the reported |
mjr | 48:058ace2aed1d | 2774 | // position at the recent local maximum (from the recent history of |
mjr | 48:058ace2aed1d | 2775 | // readings) and wait for the acceleration to stop or for the plunger |
mjr | 48:058ace2aed1d | 2776 | // to cross the zero position. If it crosses the zero position |
mjr | 48:058ace2aed1d | 2777 | // while still accelerating, we initiate a firing event. Otherwise |
mjr | 48:058ace2aed1d | 2778 | // we return to instantaneous reporting of the actual position. |
mjr | 48:058ace2aed1d | 2779 | // |
mjr | 48:058ace2aed1d | 2780 | // HOW THIS LOOKS TO THE USER |
mjr | 48:058ace2aed1d | 2781 | // |
mjr | 48:058ace2aed1d | 2782 | // The typical timing to reach the zero point during a release |
mjr | 48:058ace2aed1d | 2783 | // is about 60-80ms. This is essentially the longest that we can |
mjr | 48:058ace2aed1d | 2784 | // stay in phase 1, so it's the longest that the readings will be |
mjr | 48:058ace2aed1d | 2785 | // frozen while we try to decide about a firing event. This is |
mjr | 48:058ace2aed1d | 2786 | // fast enough that it should be barely perceptible to the user. |
mjr | 48:058ace2aed1d | 2787 | // The synthetic firing event should trigger almost immediately |
mjr | 48:058ace2aed1d | 2788 | // upon releasing the plunger, from the user's perspective. |
mjr | 48:058ace2aed1d | 2789 | // |
mjr | 48:058ace2aed1d | 2790 | // The big danger with this approach is "false positives": |
mjr | 48:058ace2aed1d | 2791 | // mistaking manual motion under the user's control for a possible |
mjr | 48:058ace2aed1d | 2792 | // firing event. A false positive would produce a highly visible |
mjr | 48:058ace2aed1d | 2793 | // artifact, namely the on-screen plunger freezing in place while |
mjr | 48:058ace2aed1d | 2794 | // the player moves the real plunger. The strategy we use makes it |
mjr | 48:058ace2aed1d | 2795 | // almost impossible for this to happen long enough to be |
mjr | 48:058ace2aed1d | 2796 | // perceptible. To fool the system, you have to accelerate the |
mjr | 48:058ace2aed1d | 2797 | // plunger very steadily - with about 5ms granularity. It's |
mjr | 48:058ace2aed1d | 2798 | // really hard to do this, and especially unlikely that a user |
mjr | 48:058ace2aed1d | 2799 | // would do so accidentally. |
mjr | 48:058ace2aed1d | 2800 | // |
mjr | 48:058ace2aed1d | 2801 | // FIRING STATE VARIABLE |
mjr | 48:058ace2aed1d | 2802 | // |
mjr | 48:058ace2aed1d | 2803 | // The firing states are: |
mjr | 48:058ace2aed1d | 2804 | // |
mjr | 48:058ace2aed1d | 2805 | // 0 - Default state. We report the real instantaneous plunger |
mjr | 48:058ace2aed1d | 2806 | // position to the joystick interface. |
mjr | 48:058ace2aed1d | 2807 | // |
mjr | 48:058ace2aed1d | 2808 | // 1 - Phase 1 - acceleration |
mjr | 48:058ace2aed1d | 2809 | // |
mjr | 48:058ace2aed1d | 2810 | // 2 - Firing event started. We report the "bounce" position for |
mjr | 48:058ace2aed1d | 2811 | // a minimum time. |
mjr | 48:058ace2aed1d | 2812 | // |
mjr | 48:058ace2aed1d | 2813 | // 3 - Firing event hold. We report the rest position for a |
mjr | 48:058ace2aed1d | 2814 | // minimum interval, or until the real plunger comes to rest |
mjr | 48:058ace2aed1d | 2815 | // somewhere, whichever comes first. |
mjr | 48:058ace2aed1d | 2816 | // |
mjr | 48:058ace2aed1d | 2817 | int firing; |
mjr | 48:058ace2aed1d | 2818 | |
mjr | 48:058ace2aed1d | 2819 | // Position/timestamp at start of firing phase 1. We freeze the |
mjr | 48:058ace2aed1d | 2820 | // joystick reports at this position until we decide whether or not |
mjr | 48:058ace2aed1d | 2821 | // we're actually in a firing event. This isn't set until we're |
mjr | 48:058ace2aed1d | 2822 | // confident that we've been in the accleration phase for long |
mjr | 48:058ace2aed1d | 2823 | // enough; pos is non-zero when this is valid. |
mjr | 48:058ace2aed1d | 2824 | PlungerReading f1; |
mjr | 48:058ace2aed1d | 2825 | |
mjr | 48:058ace2aed1d | 2826 | // Position/timestamp at start of firing phase 2. The position is |
mjr | 48:058ace2aed1d | 2827 | // the fake "bounce" position we report during this phase, and the |
mjr | 48:058ace2aed1d | 2828 | // timestamp tells us when the phase began so that we can end it |
mjr | 48:058ace2aed1d | 2829 | // after enough time elapses. |
mjr | 48:058ace2aed1d | 2830 | PlungerReading f2; |
mjr | 48:058ace2aed1d | 2831 | |
mjr | 48:058ace2aed1d | 2832 | // Position/timestamp of start of stability window during phase 3. |
mjr | 48:058ace2aed1d | 2833 | // We use this to determine when the plunger comes to rest. We set |
mjr | 48:058ace2aed1d | 2834 | // this at the beginning of phase 4, and then reset it when the |
mjr | 48:058ace2aed1d | 2835 | // plunger moves too far from the last position. |
mjr | 48:058ace2aed1d | 2836 | PlungerReading f3s; |
mjr | 48:058ace2aed1d | 2837 | |
mjr | 48:058ace2aed1d | 2838 | // Position/timestamp of start of retraction window during phase 3. |
mjr | 48:058ace2aed1d | 2839 | // We use this to determine if the user is drawing the plunger back. |
mjr | 48:058ace2aed1d | 2840 | // If we see retraction motion for more than about 65ms, we assume |
mjr | 48:058ace2aed1d | 2841 | // that the user has taken over, because we should see forward |
mjr | 48:058ace2aed1d | 2842 | // motion within this timeframe if the plunger is just bouncing |
mjr | 48:058ace2aed1d | 2843 | // freely. |
mjr | 48:058ace2aed1d | 2844 | PlungerReading f3r; |
mjr | 48:058ace2aed1d | 2845 | |
mjr | 48:058ace2aed1d | 2846 | // flag: we're in calibration mode |
mjr | 48:058ace2aed1d | 2847 | bool cal; |
mjr | 48:058ace2aed1d | 2848 | |
mjr | 48:058ace2aed1d | 2849 | // next Z value to report to the joystick interface (in joystick |
mjr | 48:058ace2aed1d | 2850 | // distance units) |
mjr | 48:058ace2aed1d | 2851 | int z; |
mjr | 48:058ace2aed1d | 2852 | |
mjr | 48:058ace2aed1d | 2853 | // velocity of this reading (joystick distance units per microsecond) |
mjr | 48:058ace2aed1d | 2854 | float vz; |
mjr | 48:058ace2aed1d | 2855 | }; |
mjr | 48:058ace2aed1d | 2856 | |
mjr | 48:058ace2aed1d | 2857 | // plunger reader singleton |
mjr | 48:058ace2aed1d | 2858 | PlungerReader plungerReader; |
mjr | 48:058ace2aed1d | 2859 | |
mjr | 48:058ace2aed1d | 2860 | // --------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 2861 | // |
mjr | 48:058ace2aed1d | 2862 | // Handle the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 2863 | // |
mjr | 48:058ace2aed1d | 2864 | // The ZB Launch Ball feature, if enabled, lets the mechanical plunger |
mjr | 48:058ace2aed1d | 2865 | // serve as a substitute for a physical Launch Ball button. When a table |
mjr | 48:058ace2aed1d | 2866 | // is loaded in VP, and the table has the ZB Launch Ball LedWiz port |
mjr | 48:058ace2aed1d | 2867 | // turned on, we'll disable mechanical plunger reports through the |
mjr | 48:058ace2aed1d | 2868 | // joystick interface and instead use the plunger only to simulate the |
mjr | 48:058ace2aed1d | 2869 | // Launch Ball button. When the mode is active, pulling back and |
mjr | 48:058ace2aed1d | 2870 | // releasing the plunger causes a brief simulated press of the Launch |
mjr | 48:058ace2aed1d | 2871 | // button, and pushing the plunger forward of the rest position presses |
mjr | 48:058ace2aed1d | 2872 | // the Launch button as long as the plunger is pressed forward. |
mjr | 48:058ace2aed1d | 2873 | // |
mjr | 48:058ace2aed1d | 2874 | // This feature has two configuration components: |
mjr | 48:058ace2aed1d | 2875 | // |
mjr | 48:058ace2aed1d | 2876 | // - An LedWiz port number. This port is a "virtual" port that doesn't |
mjr | 48:058ace2aed1d | 2877 | // have to be attached to any actual output. DOF uses it to signal |
mjr | 48:058ace2aed1d | 2878 | // that the current table uses a Launch button instead of a plunger. |
mjr | 48:058ace2aed1d | 2879 | // DOF simply turns the port on when such a table is loaded and turns |
mjr | 48:058ace2aed1d | 2880 | // it off at all other times. We use it to enable and disable the |
mjr | 48:058ace2aed1d | 2881 | // plunger/launch button connection. |
mjr | 48:058ace2aed1d | 2882 | // |
mjr | 48:058ace2aed1d | 2883 | // - A joystick button ID. We simulate pressing this button when the |
mjr | 48:058ace2aed1d | 2884 | // launch feature is activated via the LedWiz port and the plunger is |
mjr | 48:058ace2aed1d | 2885 | // either pulled back and releasd, or pushed forward past the rest |
mjr | 48:058ace2aed1d | 2886 | // position. |
mjr | 48:058ace2aed1d | 2887 | // |
mjr | 48:058ace2aed1d | 2888 | class ZBLaunchBall |
mjr | 48:058ace2aed1d | 2889 | { |
mjr | 48:058ace2aed1d | 2890 | public: |
mjr | 48:058ace2aed1d | 2891 | ZBLaunchBall() |
mjr | 48:058ace2aed1d | 2892 | { |
mjr | 48:058ace2aed1d | 2893 | // start in the default state |
mjr | 48:058ace2aed1d | 2894 | lbState = 0; |
mjr | 48:058ace2aed1d | 2895 | |
mjr | 48:058ace2aed1d | 2896 | // get the button bit for the ZB Launch Ball button |
mjr | 48:058ace2aed1d | 2897 | lbButtonBit = (1 << (cfg.plunger.zbLaunchBall.btn - 1)); |
mjr | 48:058ace2aed1d | 2898 | |
mjr | 48:058ace2aed1d | 2899 | // start the state transition timer |
mjr | 48:058ace2aed1d | 2900 | lbTimer.start(); |
mjr | 48:058ace2aed1d | 2901 | } |
mjr | 48:058ace2aed1d | 2902 | |
mjr | 48:058ace2aed1d | 2903 | // Update state. This checks the current plunger position and |
mjr | 48:058ace2aed1d | 2904 | // the timers to see if the plunger is in a position that simulates |
mjr | 48:058ace2aed1d | 2905 | // a Launch Ball button press via the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 2906 | // Updates the simulated button vector according to the current |
mjr | 48:058ace2aed1d | 2907 | // launch ball state. The main loop calls this before each |
mjr | 48:058ace2aed1d | 2908 | // joystick update to figure the new simulated button state. |
mjr | 48:058ace2aed1d | 2909 | void update(uint32_t &simButtons) |
mjr | 48:058ace2aed1d | 2910 | { |
mjr | 48:058ace2aed1d | 2911 | // Check for a simulated Launch Ball button press, if enabled |
mjr | 48:058ace2aed1d | 2912 | if (cfg.plunger.zbLaunchBall.port != 0) |
mjr | 48:058ace2aed1d | 2913 | { |
mjr | 48:058ace2aed1d | 2914 | int znew = plungerReader.getPosition(); |
mjr | 48:058ace2aed1d | 2915 | const int cockThreshold = JOYMAX/3; |
mjr | 48:058ace2aed1d | 2916 | const uint16_t pushThreshold = uint16_t(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0 * 65535.0); |
mjr | 48:058ace2aed1d | 2917 | int newState = lbState; |
mjr | 48:058ace2aed1d | 2918 | switch (lbState) |
mjr | 48:058ace2aed1d | 2919 | { |
mjr | 48:058ace2aed1d | 2920 | case 0: |
mjr | 48:058ace2aed1d | 2921 | // Base state. If the plunger is pulled back by an inch |
mjr | 48:058ace2aed1d | 2922 | // or more, go to "cocked" state. If the plunger is pushed |
mjr | 48:058ace2aed1d | 2923 | // forward by 1/4" or more, go to "pressed" state. |
mjr | 48:058ace2aed1d | 2924 | if (znew >= cockThreshold) |
mjr | 48:058ace2aed1d | 2925 | newState = 1; |
mjr | 48:058ace2aed1d | 2926 | else if (znew <= pushThreshold) |
mjr | 48:058ace2aed1d | 2927 | newState = 5; |
mjr | 48:058ace2aed1d | 2928 | break; |
mjr | 48:058ace2aed1d | 2929 | |
mjr | 48:058ace2aed1d | 2930 | case 1: |
mjr | 48:058ace2aed1d | 2931 | // Cocked state. If a firing event is now in progress, |
mjr | 48:058ace2aed1d | 2932 | // go to "launch" state. Otherwise, if the plunger is less |
mjr | 48:058ace2aed1d | 2933 | // than 1" retracted, go to "uncocked" state - the player |
mjr | 48:058ace2aed1d | 2934 | // might be slowly returning the plunger to rest so as not |
mjr | 48:058ace2aed1d | 2935 | // to trigger a launch. |
mjr | 48:058ace2aed1d | 2936 | if (plungerReader.isFiring() || znew <= 0) |
mjr | 48:058ace2aed1d | 2937 | newState = 3; |
mjr | 48:058ace2aed1d | 2938 | else if (znew < cockThreshold) |
mjr | 48:058ace2aed1d | 2939 | newState = 2; |
mjr | 48:058ace2aed1d | 2940 | break; |
mjr | 48:058ace2aed1d | 2941 | |
mjr | 48:058ace2aed1d | 2942 | case 2: |
mjr | 48:058ace2aed1d | 2943 | // Uncocked state. If the plunger is more than an inch |
mjr | 48:058ace2aed1d | 2944 | // retracted, return to cocked state. If we've been in |
mjr | 48:058ace2aed1d | 2945 | // the uncocked state for more than half a second, return |
mjr | 48:058ace2aed1d | 2946 | // to the base state. This allows the user to return the |
mjr | 48:058ace2aed1d | 2947 | // plunger to rest without triggering a launch, by moving |
mjr | 48:058ace2aed1d | 2948 | // it at manual speed to the rest position rather than |
mjr | 48:058ace2aed1d | 2949 | // releasing it. |
mjr | 48:058ace2aed1d | 2950 | if (znew >= cockThreshold) |
mjr | 48:058ace2aed1d | 2951 | newState = 1; |
mjr | 48:058ace2aed1d | 2952 | else if (lbTimer.read_us() > 500000) |
mjr | 48:058ace2aed1d | 2953 | newState = 0; |
mjr | 48:058ace2aed1d | 2954 | break; |
mjr | 48:058ace2aed1d | 2955 | |
mjr | 48:058ace2aed1d | 2956 | case 3: |
mjr | 48:058ace2aed1d | 2957 | // Launch state. If the plunger is no longer pushed |
mjr | 48:058ace2aed1d | 2958 | // forward, switch to launch rest state. |
mjr | 48:058ace2aed1d | 2959 | if (znew >= 0) |
mjr | 48:058ace2aed1d | 2960 | newState = 4; |
mjr | 48:058ace2aed1d | 2961 | break; |
mjr | 48:058ace2aed1d | 2962 | |
mjr | 48:058ace2aed1d | 2963 | case 4: |
mjr | 48:058ace2aed1d | 2964 | // Launch rest state. If the plunger is pushed forward |
mjr | 48:058ace2aed1d | 2965 | // again, switch back to launch state. If not, and we've |
mjr | 48:058ace2aed1d | 2966 | // been in this state for at least 200ms, return to the |
mjr | 48:058ace2aed1d | 2967 | // default state. |
mjr | 48:058ace2aed1d | 2968 | if (znew <= pushThreshold) |
mjr | 48:058ace2aed1d | 2969 | newState = 3; |
mjr | 48:058ace2aed1d | 2970 | else if (lbTimer.read_us() > 200000) |
mjr | 48:058ace2aed1d | 2971 | newState = 0; |
mjr | 48:058ace2aed1d | 2972 | break; |
mjr | 48:058ace2aed1d | 2973 | |
mjr | 48:058ace2aed1d | 2974 | case 5: |
mjr | 48:058ace2aed1d | 2975 | // Press-and-Hold state. If the plunger is no longer pushed |
mjr | 48:058ace2aed1d | 2976 | // forward, AND it's been at least 50ms since we generated |
mjr | 48:058ace2aed1d | 2977 | // the simulated Launch Ball button press, return to the base |
mjr | 48:058ace2aed1d | 2978 | // state. The minimum time is to ensure that VP has a chance |
mjr | 48:058ace2aed1d | 2979 | // to see the button press and to avoid transient key bounce |
mjr | 48:058ace2aed1d | 2980 | // effects when the plunger position is right on the threshold. |
mjr | 48:058ace2aed1d | 2981 | if (znew > pushThreshold && lbTimer.read_us() > 50000) |
mjr | 48:058ace2aed1d | 2982 | newState = 0; |
mjr | 48:058ace2aed1d | 2983 | break; |
mjr | 48:058ace2aed1d | 2984 | } |
mjr | 48:058ace2aed1d | 2985 | |
mjr | 48:058ace2aed1d | 2986 | // change states if desired |
mjr | 48:058ace2aed1d | 2987 | if (newState != lbState) |
mjr | 48:058ace2aed1d | 2988 | { |
mjr | 48:058ace2aed1d | 2989 | // If we're entering Launch state OR we're entering the |
mjr | 48:058ace2aed1d | 2990 | // Press-and-Hold state, AND the ZB Launch Ball LedWiz signal |
mjr | 48:058ace2aed1d | 2991 | // is turned on, simulate a Launch Ball button press. |
mjr | 48:058ace2aed1d | 2992 | if (((newState == 3 && lbState != 4) || newState == 5) |
mjr | 48:058ace2aed1d | 2993 | && wizOn[cfg.plunger.zbLaunchBall.port-1]) |
mjr | 48:058ace2aed1d | 2994 | { |
mjr | 48:058ace2aed1d | 2995 | lbBtnTimer.reset(); |
mjr | 48:058ace2aed1d | 2996 | lbBtnTimer.start(); |
mjr | 48:058ace2aed1d | 2997 | simButtons |= lbButtonBit; |
mjr | 48:058ace2aed1d | 2998 | } |
mjr | 48:058ace2aed1d | 2999 | |
mjr | 48:058ace2aed1d | 3000 | // if we're switching to state 0, release the button |
mjr | 48:058ace2aed1d | 3001 | if (newState == 0) |
mjr | 48:058ace2aed1d | 3002 | simButtons &= ~(1 << (cfg.plunger.zbLaunchBall.btn - 1)); |
mjr | 48:058ace2aed1d | 3003 | |
mjr | 48:058ace2aed1d | 3004 | // switch to the new state |
mjr | 48:058ace2aed1d | 3005 | lbState = newState; |
mjr | 48:058ace2aed1d | 3006 | |
mjr | 48:058ace2aed1d | 3007 | // start timing in the new state |
mjr | 48:058ace2aed1d | 3008 | lbTimer.reset(); |
mjr | 48:058ace2aed1d | 3009 | } |
mjr | 48:058ace2aed1d | 3010 | |
mjr | 48:058ace2aed1d | 3011 | // If the Launch Ball button press is in effect, but the |
mjr | 48:058ace2aed1d | 3012 | // ZB Launch Ball LedWiz signal is no longer turned on, turn |
mjr | 48:058ace2aed1d | 3013 | // off the button. |
mjr | 48:058ace2aed1d | 3014 | // |
mjr | 48:058ace2aed1d | 3015 | // If we're in one of the Launch states (state #3 or #4), |
mjr | 48:058ace2aed1d | 3016 | // and the button has been on for long enough, turn it off. |
mjr | 48:058ace2aed1d | 3017 | // The Launch mode is triggered by a pull-and-release gesture. |
mjr | 48:058ace2aed1d | 3018 | // From the user's perspective, this is just a single gesture |
mjr | 48:058ace2aed1d | 3019 | // that should trigger just one momentary press on the Launch |
mjr | 48:058ace2aed1d | 3020 | // Ball button. Physically, though, the plunger usually |
mjr | 48:058ace2aed1d | 3021 | // bounces back and forth for 500ms or so before coming to |
mjr | 48:058ace2aed1d | 3022 | // rest after this gesture. That's what the whole state |
mjr | 48:058ace2aed1d | 3023 | // #3-#4 business is all about - we stay in this pair of |
mjr | 48:058ace2aed1d | 3024 | // states until the plunger comes to rest. As long as we're |
mjr | 48:058ace2aed1d | 3025 | // in these states, we won't send duplicate button presses. |
mjr | 48:058ace2aed1d | 3026 | // But we also don't want the one button press to continue |
mjr | 48:058ace2aed1d | 3027 | // the whole time, so we'll time it out now. |
mjr | 48:058ace2aed1d | 3028 | // |
mjr | 48:058ace2aed1d | 3029 | // (This could be written as one big 'if' condition, but |
mjr | 48:058ace2aed1d | 3030 | // I'm breaking it out verbosely like this to make it easier |
mjr | 48:058ace2aed1d | 3031 | // for human readers such as myself to comprehend the logic.) |
mjr | 48:058ace2aed1d | 3032 | if ((simButtons & lbButtonBit) != 0) |
mjr | 48:058ace2aed1d | 3033 | { |
mjr | 48:058ace2aed1d | 3034 | int turnOff = false; |
mjr | 48:058ace2aed1d | 3035 | |
mjr | 48:058ace2aed1d | 3036 | // turn it off if the ZB Launch Ball signal is off |
mjr | 48:058ace2aed1d | 3037 | if (!wizOn[cfg.plunger.zbLaunchBall.port-1]) |
mjr | 48:058ace2aed1d | 3038 | turnOff = true; |
mjr | 48:058ace2aed1d | 3039 | |
mjr | 48:058ace2aed1d | 3040 | // also turn it off if we're in state 3 or 4 ("Launch"), |
mjr | 48:058ace2aed1d | 3041 | // and the button has been on long enough |
mjr | 48:058ace2aed1d | 3042 | if ((lbState == 3 || lbState == 4) && lbBtnTimer.read_us() > 250000) |
mjr | 48:058ace2aed1d | 3043 | turnOff = true; |
mjr | 48:058ace2aed1d | 3044 | |
mjr | 48:058ace2aed1d | 3045 | // if we decided to turn off the button, do so |
mjr | 48:058ace2aed1d | 3046 | if (turnOff) |
mjr | 48:058ace2aed1d | 3047 | { |
mjr | 48:058ace2aed1d | 3048 | lbBtnTimer.stop(); |
mjr | 48:058ace2aed1d | 3049 | simButtons &= ~lbButtonBit; |
mjr | 48:058ace2aed1d | 3050 | } |
mjr | 48:058ace2aed1d | 3051 | } |
mjr | 48:058ace2aed1d | 3052 | } |
mjr | 48:058ace2aed1d | 3053 | } |
mjr | 48:058ace2aed1d | 3054 | |
mjr | 48:058ace2aed1d | 3055 | private: |
mjr | 48:058ace2aed1d | 3056 | // Simulated Launch Ball button state. If a "ZB Launch Ball" port is |
mjr | 48:058ace2aed1d | 3057 | // defined for our LedWiz port mapping, any time that port is turned ON, |
mjr | 48:058ace2aed1d | 3058 | // we'll simulate pushing the Launch Ball button if the player pulls |
mjr | 48:058ace2aed1d | 3059 | // back and releases the plunger, or simply pushes on the plunger from |
mjr | 48:058ace2aed1d | 3060 | // the rest position. This allows the plunger to be used in lieu of a |
mjr | 48:058ace2aed1d | 3061 | // physical Launch Ball button for tables that don't have plungers. |
mjr | 48:058ace2aed1d | 3062 | // |
mjr | 48:058ace2aed1d | 3063 | // States: |
mjr | 48:058ace2aed1d | 3064 | // 0 = default |
mjr | 48:058ace2aed1d | 3065 | // 1 = cocked (plunger has been pulled back about 1" from state 0) |
mjr | 48:058ace2aed1d | 3066 | // 2 = uncocked (plunger is pulled back less than 1" from state 1) |
mjr | 48:058ace2aed1d | 3067 | // 3 = launching, plunger is forward beyond park position |
mjr | 48:058ace2aed1d | 3068 | // 4 = launching, plunger is behind park position |
mjr | 48:058ace2aed1d | 3069 | // 5 = pressed and holding (plunger has been pressed forward beyond |
mjr | 48:058ace2aed1d | 3070 | // the park position from state 0) |
mjr | 48:058ace2aed1d | 3071 | int lbState; |
mjr | 48:058ace2aed1d | 3072 | |
mjr | 48:058ace2aed1d | 3073 | // button bit for ZB launch ball button |
mjr | 48:058ace2aed1d | 3074 | uint32_t lbButtonBit; |
mjr | 48:058ace2aed1d | 3075 | |
mjr | 48:058ace2aed1d | 3076 | // Time since last lbState transition. Some of the states are time- |
mjr | 48:058ace2aed1d | 3077 | // sensitive. In the "uncocked" state, we'll return to state 0 if |
mjr | 48:058ace2aed1d | 3078 | // we remain in this state for more than a few milliseconds, since |
mjr | 48:058ace2aed1d | 3079 | // it indicates that the plunger is being slowly returned to rest |
mjr | 48:058ace2aed1d | 3080 | // rather than released. In the "launching" state, we need to release |
mjr | 48:058ace2aed1d | 3081 | // the Launch Ball button after a moment, and we need to wait for |
mjr | 48:058ace2aed1d | 3082 | // the plunger to come to rest before returning to state 0. |
mjr | 48:058ace2aed1d | 3083 | Timer lbTimer; |
mjr | 48:058ace2aed1d | 3084 | |
mjr | 48:058ace2aed1d | 3085 | // Launch Ball simulated push timer. We start this when we simulate |
mjr | 48:058ace2aed1d | 3086 | // the button push, and turn off the simulated button when enough time |
mjr | 48:058ace2aed1d | 3087 | // has elapsed. |
mjr | 48:058ace2aed1d | 3088 | Timer lbBtnTimer; |
mjr | 48:058ace2aed1d | 3089 | }; |
mjr | 48:058ace2aed1d | 3090 | |
mjr | 35:e959ffba78fd | 3091 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3092 | // |
mjr | 35:e959ffba78fd | 3093 | // Reboot - resets the microcontroller |
mjr | 35:e959ffba78fd | 3094 | // |
mjr | 35:e959ffba78fd | 3095 | void reboot(USBJoystick &js) |
mjr | 35:e959ffba78fd | 3096 | { |
mjr | 35:e959ffba78fd | 3097 | // disconnect from USB |
mjr | 35:e959ffba78fd | 3098 | js.disconnect(); |
mjr | 35:e959ffba78fd | 3099 | |
mjr | 35:e959ffba78fd | 3100 | // wait a few seconds to make sure the host notices the disconnect |
mjr | 35:e959ffba78fd | 3101 | wait(5); |
mjr | 35:e959ffba78fd | 3102 | |
mjr | 35:e959ffba78fd | 3103 | // reset the device |
mjr | 35:e959ffba78fd | 3104 | NVIC_SystemReset(); |
mjr | 35:e959ffba78fd | 3105 | while (true) { } |
mjr | 35:e959ffba78fd | 3106 | } |
mjr | 35:e959ffba78fd | 3107 | |
mjr | 35:e959ffba78fd | 3108 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3109 | // |
mjr | 35:e959ffba78fd | 3110 | // Translate joystick readings from raw values to reported values, based |
mjr | 35:e959ffba78fd | 3111 | // on the orientation of the controller card in the cabinet. |
mjr | 35:e959ffba78fd | 3112 | // |
mjr | 35:e959ffba78fd | 3113 | void accelRotate(int &x, int &y) |
mjr | 35:e959ffba78fd | 3114 | { |
mjr | 35:e959ffba78fd | 3115 | int tmp; |
mjr | 35:e959ffba78fd | 3116 | switch (cfg.orientation) |
mjr | 35:e959ffba78fd | 3117 | { |
mjr | 35:e959ffba78fd | 3118 | case OrientationFront: |
mjr | 35:e959ffba78fd | 3119 | tmp = x; |
mjr | 35:e959ffba78fd | 3120 | x = y; |
mjr | 35:e959ffba78fd | 3121 | y = tmp; |
mjr | 35:e959ffba78fd | 3122 | break; |
mjr | 35:e959ffba78fd | 3123 | |
mjr | 35:e959ffba78fd | 3124 | case OrientationLeft: |
mjr | 35:e959ffba78fd | 3125 | x = -x; |
mjr | 35:e959ffba78fd | 3126 | break; |
mjr | 35:e959ffba78fd | 3127 | |
mjr | 35:e959ffba78fd | 3128 | case OrientationRight: |
mjr | 35:e959ffba78fd | 3129 | y = -y; |
mjr | 35:e959ffba78fd | 3130 | break; |
mjr | 35:e959ffba78fd | 3131 | |
mjr | 35:e959ffba78fd | 3132 | case OrientationRear: |
mjr | 35:e959ffba78fd | 3133 | tmp = -x; |
mjr | 35:e959ffba78fd | 3134 | x = -y; |
mjr | 35:e959ffba78fd | 3135 | y = tmp; |
mjr | 35:e959ffba78fd | 3136 | break; |
mjr | 35:e959ffba78fd | 3137 | } |
mjr | 35:e959ffba78fd | 3138 | } |
mjr | 35:e959ffba78fd | 3139 | |
mjr | 35:e959ffba78fd | 3140 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3141 | // |
mjr | 35:e959ffba78fd | 3142 | // Device status. We report this on each update so that the host config |
mjr | 35:e959ffba78fd | 3143 | // tool can detect our current settings. This is a bit mask consisting |
mjr | 35:e959ffba78fd | 3144 | // of these bits: |
mjr | 35:e959ffba78fd | 3145 | // 0x0001 -> plunger sensor enabled |
mjr | 35:e959ffba78fd | 3146 | // 0x8000 -> RESERVED - must always be zero |
mjr | 35:e959ffba78fd | 3147 | // |
mjr | 35:e959ffba78fd | 3148 | // Note that the high bit (0x8000) must always be 0, since we use that |
mjr | 35:e959ffba78fd | 3149 | // to distinguish special request reply packets. |
mjr | 35:e959ffba78fd | 3150 | uint16_t statusFlags; |
mjr | 35:e959ffba78fd | 3151 | |
mjr | 45:c42166b2878c | 3152 | // Pixel dump mode - the host requested a dump of image sensor pixels |
mjr | 45:c42166b2878c | 3153 | // (helpful for installing and setting up the sensor and light source) |
mjr | 35:e959ffba78fd | 3154 | bool reportPix = false; |
mjr | 48:058ace2aed1d | 3155 | uint8_t reportPixFlags; // pixel report flag bits (see ccdSensor.h) |
mjr | 48:058ace2aed1d | 3156 | uint8_t reportPixVisMode; // pixel report visualization mode (see ccdSensor.h) |
mjr | 35:e959ffba78fd | 3157 | |
mjr | 33:d832bcab089e | 3158 | |
mjr | 35:e959ffba78fd | 3159 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3160 | // |
mjr | 35:e959ffba78fd | 3161 | // Calibration button state: |
mjr | 35:e959ffba78fd | 3162 | // 0 = not pushed |
mjr | 35:e959ffba78fd | 3163 | // 1 = pushed, not yet debounced |
mjr | 35:e959ffba78fd | 3164 | // 2 = pushed, debounced, waiting for hold time |
mjr | 35:e959ffba78fd | 3165 | // 3 = pushed, hold time completed - in calibration mode |
mjr | 35:e959ffba78fd | 3166 | int calBtnState = 0; |
mjr | 35:e959ffba78fd | 3167 | |
mjr | 35:e959ffba78fd | 3168 | // calibration button debounce timer |
mjr | 35:e959ffba78fd | 3169 | Timer calBtnTimer; |
mjr | 35:e959ffba78fd | 3170 | |
mjr | 35:e959ffba78fd | 3171 | // calibration button light state |
mjr | 35:e959ffba78fd | 3172 | int calBtnLit = false; |
mjr | 35:e959ffba78fd | 3173 | |
mjr | 35:e959ffba78fd | 3174 | |
mjr | 35:e959ffba78fd | 3175 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3176 | // |
mjr | 40:cc0d9814522b | 3177 | // Configuration variable get/set message handling |
mjr | 35:e959ffba78fd | 3178 | // |
mjr | 40:cc0d9814522b | 3179 | |
mjr | 40:cc0d9814522b | 3180 | // Handle SET messages - write configuration variables from USB message data |
mjr | 40:cc0d9814522b | 3181 | #define if_msg_valid(test) if (test) |
mjr | 40:cc0d9814522b | 3182 | #define v_byte(var, ofs) cfg.var = data[ofs] |
mjr | 40:cc0d9814522b | 3183 | #define v_ui16(var, ofs) cfg.var = wireUI16(data+ofs) |
mjr | 40:cc0d9814522b | 3184 | #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs]) |
mjr | 40:cc0d9814522b | 3185 | #define v_func configVarSet |
mjr | 40:cc0d9814522b | 3186 | #include "cfgVarMsgMap.h" |
mjr | 35:e959ffba78fd | 3187 | |
mjr | 40:cc0d9814522b | 3188 | // redefine everything for the SET messages |
mjr | 40:cc0d9814522b | 3189 | #undef if_msg_valid |
mjr | 40:cc0d9814522b | 3190 | #undef v_byte |
mjr | 40:cc0d9814522b | 3191 | #undef v_ui16 |
mjr | 40:cc0d9814522b | 3192 | #undef v_pin |
mjr | 40:cc0d9814522b | 3193 | #undef v_func |
mjr | 38:091e511ce8a0 | 3194 | |
mjr | 40:cc0d9814522b | 3195 | // Handle GET messages - read variable values and return in USB message daa |
mjr | 40:cc0d9814522b | 3196 | #define if_msg_valid(test) |
mjr | 40:cc0d9814522b | 3197 | #define v_byte(var, ofs) data[ofs] = cfg.var |
mjr | 40:cc0d9814522b | 3198 | #define v_ui16(var, ofs) ui16Wire(data+ofs, cfg.var) |
mjr | 40:cc0d9814522b | 3199 | #define v_pin(var, ofs) pinNameWire(data+ofs, cfg.var) |
mjr | 40:cc0d9814522b | 3200 | #define v_func configVarGet |
mjr | 40:cc0d9814522b | 3201 | #include "cfgVarMsgMap.h" |
mjr | 40:cc0d9814522b | 3202 | |
mjr | 35:e959ffba78fd | 3203 | |
mjr | 35:e959ffba78fd | 3204 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 3205 | // |
mjr | 35:e959ffba78fd | 3206 | // Handle an input report from the USB host. Input reports use our extended |
mjr | 35:e959ffba78fd | 3207 | // LedWiz protocol. |
mjr | 33:d832bcab089e | 3208 | // |
mjr | 48:058ace2aed1d | 3209 | void handleInputMsg(LedWizMsg &lwm, USBJoystick &js) |
mjr | 35:e959ffba78fd | 3210 | { |
mjr | 38:091e511ce8a0 | 3211 | // LedWiz commands come in two varieties: SBA and PBA. An |
mjr | 38:091e511ce8a0 | 3212 | // SBA is marked by the first byte having value 64 (0x40). In |
mjr | 38:091e511ce8a0 | 3213 | // the real LedWiz protocol, any other value in the first byte |
mjr | 38:091e511ce8a0 | 3214 | // means it's a PBA message. However, *valid* PBA messages |
mjr | 38:091e511ce8a0 | 3215 | // always have a first byte (and in fact all 8 bytes) in the |
mjr | 38:091e511ce8a0 | 3216 | // range 0-49 or 129-132. Anything else is invalid. We take |
mjr | 38:091e511ce8a0 | 3217 | // advantage of this to implement private protocol extensions. |
mjr | 38:091e511ce8a0 | 3218 | // So our full protocol is as follows: |
mjr | 38:091e511ce8a0 | 3219 | // |
mjr | 38:091e511ce8a0 | 3220 | // first byte = |
mjr | 38:091e511ce8a0 | 3221 | // 0-48 -> LWZ-PBA |
mjr | 38:091e511ce8a0 | 3222 | // 64 -> LWZ SBA |
mjr | 38:091e511ce8a0 | 3223 | // 65 -> private control message; second byte specifies subtype |
mjr | 38:091e511ce8a0 | 3224 | // 129-132 -> LWZ-PBA |
mjr | 38:091e511ce8a0 | 3225 | // 200-228 -> extended bank brightness set for outputs N to N+6, where |
mjr | 38:091e511ce8a0 | 3226 | // N is (first byte - 200)*7 |
mjr | 38:091e511ce8a0 | 3227 | // other -> reserved for future use |
mjr | 38:091e511ce8a0 | 3228 | // |
mjr | 39:b3815a1c3802 | 3229 | uint8_t *data = lwm.data; |
mjr | 38:091e511ce8a0 | 3230 | if (data[0] == 64) |
mjr | 35:e959ffba78fd | 3231 | { |
mjr | 38:091e511ce8a0 | 3232 | // LWZ-SBA - first four bytes are bit-packed on/off flags |
mjr | 38:091e511ce8a0 | 3233 | // for the outputs; 5th byte is the pulse speed (1-7) |
mjr | 38:091e511ce8a0 | 3234 | //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n", |
mjr | 38:091e511ce8a0 | 3235 | // data[1], data[2], data[3], data[4], data[5]); |
mjr | 38:091e511ce8a0 | 3236 | |
mjr | 38:091e511ce8a0 | 3237 | // update all on/off states |
mjr | 38:091e511ce8a0 | 3238 | for (int i = 0, bit = 1, ri = 1 ; i < numLwOutputs ; ++i, bit <<= 1) |
mjr | 35:e959ffba78fd | 3239 | { |
mjr | 38:091e511ce8a0 | 3240 | // figure the on/off state bit for this output |
mjr | 38:091e511ce8a0 | 3241 | if (bit == 0x100) { |
mjr | 38:091e511ce8a0 | 3242 | bit = 1; |
mjr | 38:091e511ce8a0 | 3243 | ++ri; |
mjr | 35:e959ffba78fd | 3244 | } |
mjr | 35:e959ffba78fd | 3245 | |
mjr | 38:091e511ce8a0 | 3246 | // set the on/off state |
mjr | 38:091e511ce8a0 | 3247 | wizOn[i] = ((data[ri] & bit) != 0); |
mjr | 38:091e511ce8a0 | 3248 | |
mjr | 38:091e511ce8a0 | 3249 | // If the wizVal setting is 255, it means that this |
mjr | 38:091e511ce8a0 | 3250 | // output was last set to a brightness value with the |
mjr | 38:091e511ce8a0 | 3251 | // extended protocol. Return it to LedWiz control by |
mjr | 38:091e511ce8a0 | 3252 | // rescaling the brightness setting to the LedWiz range |
mjr | 38:091e511ce8a0 | 3253 | // and updating wizVal with the result. If it's any |
mjr | 38:091e511ce8a0 | 3254 | // other value, it was previously set by a PBA message, |
mjr | 38:091e511ce8a0 | 3255 | // so simply retain the last setting - in the normal |
mjr | 38:091e511ce8a0 | 3256 | // LedWiz protocol, the "profile" (brightness) and on/off |
mjr | 38:091e511ce8a0 | 3257 | // states are independent, so an SBA just turns an output |
mjr | 38:091e511ce8a0 | 3258 | // on or off but retains its last brightness level. |
mjr | 38:091e511ce8a0 | 3259 | if (wizVal[i] == 255) |
mjr | 40:cc0d9814522b | 3260 | wizVal[i] = (uint8_t)round(outLevel[i]/255.0 * 48.0); |
mjr | 38:091e511ce8a0 | 3261 | } |
mjr | 38:091e511ce8a0 | 3262 | |
mjr | 38:091e511ce8a0 | 3263 | // set the flash speed - enforce the value range 1-7 |
mjr | 38:091e511ce8a0 | 3264 | wizSpeed = data[5]; |
mjr | 38:091e511ce8a0 | 3265 | if (wizSpeed < 1) |
mjr | 38:091e511ce8a0 | 3266 | wizSpeed = 1; |
mjr | 38:091e511ce8a0 | 3267 | else if (wizSpeed > 7) |
mjr | 38:091e511ce8a0 | 3268 | wizSpeed = 7; |
mjr | 38:091e511ce8a0 | 3269 | |
mjr | 38:091e511ce8a0 | 3270 | // update the physical outputs |
mjr | 38:091e511ce8a0 | 3271 | updateWizOuts(); |
mjr | 38:091e511ce8a0 | 3272 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 3273 | hc595->update(); |
mjr | 38:091e511ce8a0 | 3274 | |
mjr | 38:091e511ce8a0 | 3275 | // reset the PBA counter |
mjr | 38:091e511ce8a0 | 3276 | pbaIdx = 0; |
mjr | 38:091e511ce8a0 | 3277 | } |
mjr | 38:091e511ce8a0 | 3278 | else if (data[0] == 65) |
mjr | 38:091e511ce8a0 | 3279 | { |
mjr | 38:091e511ce8a0 | 3280 | // Private control message. This isn't an LedWiz message - it's |
mjr | 38:091e511ce8a0 | 3281 | // an extension for this device. 65 is an invalid PBA setting, |
mjr | 38:091e511ce8a0 | 3282 | // and isn't used for any other LedWiz message, so we appropriate |
mjr | 38:091e511ce8a0 | 3283 | // it for our own private use. The first byte specifies the |
mjr | 38:091e511ce8a0 | 3284 | // message type. |
mjr | 39:b3815a1c3802 | 3285 | switch (data[1]) |
mjr | 38:091e511ce8a0 | 3286 | { |
mjr | 39:b3815a1c3802 | 3287 | case 0: |
mjr | 39:b3815a1c3802 | 3288 | // No Op |
mjr | 39:b3815a1c3802 | 3289 | break; |
mjr | 39:b3815a1c3802 | 3290 | |
mjr | 39:b3815a1c3802 | 3291 | case 1: |
mjr | 38:091e511ce8a0 | 3292 | // 1 = Old Set Configuration: |
mjr | 38:091e511ce8a0 | 3293 | // data[2] = LedWiz unit number (0x00 to 0x0f) |
mjr | 38:091e511ce8a0 | 3294 | // data[3] = feature enable bit mask: |
mjr | 38:091e511ce8a0 | 3295 | // 0x01 = enable plunger sensor |
mjr | 39:b3815a1c3802 | 3296 | { |
mjr | 39:b3815a1c3802 | 3297 | |
mjr | 39:b3815a1c3802 | 3298 | // get the new LedWiz unit number - this is 0-15, whereas we |
mjr | 39:b3815a1c3802 | 3299 | // we save the *nominal* unit number 1-16 in the config |
mjr | 39:b3815a1c3802 | 3300 | uint8_t newUnitNo = (data[2] & 0x0f) + 1; |
mjr | 39:b3815a1c3802 | 3301 | |
mjr | 39:b3815a1c3802 | 3302 | // we'll need a reset if the LedWiz unit number is changing |
mjr | 39:b3815a1c3802 | 3303 | bool needReset = (newUnitNo != cfg.psUnitNo); |
mjr | 39:b3815a1c3802 | 3304 | |
mjr | 39:b3815a1c3802 | 3305 | // set the configuration parameters from the message |
mjr | 39:b3815a1c3802 | 3306 | cfg.psUnitNo = newUnitNo; |
mjr | 39:b3815a1c3802 | 3307 | cfg.plunger.enabled = data[3] & 0x01; |
mjr | 39:b3815a1c3802 | 3308 | |
mjr | 39:b3815a1c3802 | 3309 | // update the status flags |
mjr | 39:b3815a1c3802 | 3310 | statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01); |
mjr | 39:b3815a1c3802 | 3311 | |
mjr | 39:b3815a1c3802 | 3312 | // save the configuration |
mjr | 39:b3815a1c3802 | 3313 | saveConfigToFlash(); |
mjr | 39:b3815a1c3802 | 3314 | |
mjr | 39:b3815a1c3802 | 3315 | // reboot if necessary |
mjr | 39:b3815a1c3802 | 3316 | if (needReset) |
mjr | 39:b3815a1c3802 | 3317 | reboot(js); |
mjr | 39:b3815a1c3802 | 3318 | } |
mjr | 39:b3815a1c3802 | 3319 | break; |
mjr | 38:091e511ce8a0 | 3320 | |
mjr | 39:b3815a1c3802 | 3321 | case 2: |
mjr | 38:091e511ce8a0 | 3322 | // 2 = Calibrate plunger |
mjr | 38:091e511ce8a0 | 3323 | // (No parameters) |
mjr | 38:091e511ce8a0 | 3324 | |
mjr | 38:091e511ce8a0 | 3325 | // enter calibration mode |
mjr | 38:091e511ce8a0 | 3326 | calBtnState = 3; |
mjr | 48:058ace2aed1d | 3327 | plungerReader.calMode(true); |
mjr | 38:091e511ce8a0 | 3328 | calBtnTimer.reset(); |
mjr | 39:b3815a1c3802 | 3329 | break; |
mjr | 39:b3815a1c3802 | 3330 | |
mjr | 39:b3815a1c3802 | 3331 | case 3: |
mjr | 38:091e511ce8a0 | 3332 | // 3 = pixel dump |
mjr | 48:058ace2aed1d | 3333 | // data[2] = flag bits |
mjr | 48:058ace2aed1d | 3334 | // data[3] = visualization mode |
mjr | 38:091e511ce8a0 | 3335 | reportPix = true; |
mjr | 48:058ace2aed1d | 3336 | reportPixFlags = data[2]; |
mjr | 48:058ace2aed1d | 3337 | reportPixVisMode = data[3]; |
mjr | 38:091e511ce8a0 | 3338 | |
mjr | 38:091e511ce8a0 | 3339 | // show purple until we finish sending the report |
mjr | 38:091e511ce8a0 | 3340 | diagLED(1, 0, 1); |
mjr | 39:b3815a1c3802 | 3341 | break; |
mjr | 39:b3815a1c3802 | 3342 | |
mjr | 39:b3815a1c3802 | 3343 | case 4: |
mjr | 38:091e511ce8a0 | 3344 | // 4 = hardware configuration query |
mjr | 38:091e511ce8a0 | 3345 | // (No parameters) |
mjr | 38:091e511ce8a0 | 3346 | js.reportConfig( |
mjr | 38:091e511ce8a0 | 3347 | numOutputs, |
mjr | 38:091e511ce8a0 | 3348 | cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally) |
mjr | 40:cc0d9814522b | 3349 | cfg.plunger.cal.zero, cfg.plunger.cal.max, |
mjr | 40:cc0d9814522b | 3350 | nvm.valid()); |
mjr | 39:b3815a1c3802 | 3351 | break; |
mjr | 39:b3815a1c3802 | 3352 | |
mjr | 39:b3815a1c3802 | 3353 | case 5: |
mjr | 38:091e511ce8a0 | 3354 | // 5 = all outputs off, reset to LedWiz defaults |
mjr | 38:091e511ce8a0 | 3355 | allOutputsOff(); |
mjr | 39:b3815a1c3802 | 3356 | break; |
mjr | 39:b3815a1c3802 | 3357 | |
mjr | 39:b3815a1c3802 | 3358 | case 6: |
mjr | 38:091e511ce8a0 | 3359 | // 6 = Save configuration to flash. |
mjr | 38:091e511ce8a0 | 3360 | saveConfigToFlash(); |
mjr | 38:091e511ce8a0 | 3361 | |
mjr | 38:091e511ce8a0 | 3362 | // Reboot the microcontroller. Nearly all config changes |
mjr | 38:091e511ce8a0 | 3363 | // require a reset, and a reset only takes a few seconds, |
mjr | 38:091e511ce8a0 | 3364 | // so we don't bother tracking whether or not a reboot is |
mjr | 38:091e511ce8a0 | 3365 | // really needed. |
mjr | 38:091e511ce8a0 | 3366 | reboot(js); |
mjr | 39:b3815a1c3802 | 3367 | break; |
mjr | 40:cc0d9814522b | 3368 | |
mjr | 40:cc0d9814522b | 3369 | case 7: |
mjr | 40:cc0d9814522b | 3370 | // 7 = Device ID report |
mjr | 40:cc0d9814522b | 3371 | // (No parameters) |
mjr | 40:cc0d9814522b | 3372 | js.reportID(); |
mjr | 40:cc0d9814522b | 3373 | break; |
mjr | 40:cc0d9814522b | 3374 | |
mjr | 40:cc0d9814522b | 3375 | case 8: |
mjr | 40:cc0d9814522b | 3376 | // 8 = Engage/disengage night mode. |
mjr | 40:cc0d9814522b | 3377 | // data[2] = 1 to engage, 0 to disengage |
mjr | 40:cc0d9814522b | 3378 | setNightMode(data[2]); |
mjr | 40:cc0d9814522b | 3379 | break; |
mjr | 38:091e511ce8a0 | 3380 | } |
mjr | 38:091e511ce8a0 | 3381 | } |
mjr | 38:091e511ce8a0 | 3382 | else if (data[0] == 66) |
mjr | 38:091e511ce8a0 | 3383 | { |
mjr | 38:091e511ce8a0 | 3384 | // Extended protocol - Set configuration variable. |
mjr | 38:091e511ce8a0 | 3385 | // The second byte of the message is the ID of the variable |
mjr | 38:091e511ce8a0 | 3386 | // to update, and the remaining bytes give the new value, |
mjr | 38:091e511ce8a0 | 3387 | // in a variable-dependent format. |
mjr | 40:cc0d9814522b | 3388 | configVarSet(data); |
mjr | 38:091e511ce8a0 | 3389 | } |
mjr | 38:091e511ce8a0 | 3390 | else if (data[0] >= 200 && data[0] <= 228) |
mjr | 38:091e511ce8a0 | 3391 | { |
mjr | 38:091e511ce8a0 | 3392 | // Extended protocol - Extended output port brightness update. |
mjr | 38:091e511ce8a0 | 3393 | // data[0]-200 gives us the bank of 7 outputs we're setting: |
mjr | 38:091e511ce8a0 | 3394 | // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc. |
mjr | 38:091e511ce8a0 | 3395 | // The remaining bytes are brightness levels, 0-255, for the |
mjr | 38:091e511ce8a0 | 3396 | // seven outputs in the selected bank. The LedWiz flashing |
mjr | 38:091e511ce8a0 | 3397 | // modes aren't accessible in this message type; we can only |
mjr | 38:091e511ce8a0 | 3398 | // set a fixed brightness, but in exchange we get 8-bit |
mjr | 38:091e511ce8a0 | 3399 | // resolution rather than the paltry 0-48 scale that the real |
mjr | 38:091e511ce8a0 | 3400 | // LedWiz uses. There's no separate on/off status for outputs |
mjr | 38:091e511ce8a0 | 3401 | // adjusted with this message type, either, as there would be |
mjr | 38:091e511ce8a0 | 3402 | // for a PBA message - setting a non-zero value immediately |
mjr | 38:091e511ce8a0 | 3403 | // turns the output, overriding the last SBA setting. |
mjr | 38:091e511ce8a0 | 3404 | // |
mjr | 38:091e511ce8a0 | 3405 | // For outputs 0-31, this overrides any previous PBA/SBA |
mjr | 38:091e511ce8a0 | 3406 | // settings for the port. Any subsequent PBA/SBA message will |
mjr | 38:091e511ce8a0 | 3407 | // in turn override the setting made here. It's simple - the |
mjr | 38:091e511ce8a0 | 3408 | // most recent message of either type takes precedence. For |
mjr | 38:091e511ce8a0 | 3409 | // outputs above the LedWiz range, PBA/SBA messages can't |
mjr | 38:091e511ce8a0 | 3410 | // address those ports anyway. |
mjr | 38:091e511ce8a0 | 3411 | int i0 = (data[0] - 200)*7; |
mjr | 38:091e511ce8a0 | 3412 | int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs; |
mjr | 38:091e511ce8a0 | 3413 | for (int i = i0 ; i < i1 ; ++i) |
mjr | 38:091e511ce8a0 | 3414 | { |
mjr | 38:091e511ce8a0 | 3415 | // set the brightness level for the output |
mjr | 40:cc0d9814522b | 3416 | uint8_t b = data[i-i0+1]; |
mjr | 38:091e511ce8a0 | 3417 | outLevel[i] = b; |
mjr | 38:091e511ce8a0 | 3418 | |
mjr | 38:091e511ce8a0 | 3419 | // if it's in the basic LedWiz output set, set the LedWiz |
mjr | 38:091e511ce8a0 | 3420 | // profile value to 255, which means "use outLevel" |
mjr | 38:091e511ce8a0 | 3421 | if (i < 32) |
mjr | 38:091e511ce8a0 | 3422 | wizVal[i] = 255; |
mjr | 38:091e511ce8a0 | 3423 | |
mjr | 38:091e511ce8a0 | 3424 | // set the output |
mjr | 40:cc0d9814522b | 3425 | lwPin[i]->set(b); |
mjr | 38:091e511ce8a0 | 3426 | } |
mjr | 38:091e511ce8a0 | 3427 | |
mjr | 38:091e511ce8a0 | 3428 | // update 74HC595 outputs, if attached |
mjr | 38:091e511ce8a0 | 3429 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 3430 | hc595->update(); |
mjr | 38:091e511ce8a0 | 3431 | } |
mjr | 38:091e511ce8a0 | 3432 | else |
mjr | 38:091e511ce8a0 | 3433 | { |
mjr | 38:091e511ce8a0 | 3434 | // Everything else is LWZ-PBA. This is a full "profile" |
mjr | 38:091e511ce8a0 | 3435 | // dump from the host for one bank of 8 outputs. Each |
mjr | 38:091e511ce8a0 | 3436 | // byte sets one output in the current bank. The current |
mjr | 38:091e511ce8a0 | 3437 | // bank is implied; the bank starts at 0 and is reset to 0 |
mjr | 38:091e511ce8a0 | 3438 | // by any LWZ-SBA message, and is incremented to the next |
mjr | 38:091e511ce8a0 | 3439 | // bank by each LWZ-PBA message. Our variable pbaIdx keeps |
mjr | 38:091e511ce8a0 | 3440 | // track of our notion of the current bank. There's no direct |
mjr | 38:091e511ce8a0 | 3441 | // way for the host to select the bank; it just has to count |
mjr | 38:091e511ce8a0 | 3442 | // on us staying in sync. In practice, the host will always |
mjr | 38:091e511ce8a0 | 3443 | // send a full set of 4 PBA messages in a row to set all 32 |
mjr | 38:091e511ce8a0 | 3444 | // outputs. |
mjr | 38:091e511ce8a0 | 3445 | // |
mjr | 38:091e511ce8a0 | 3446 | // Note that a PBA implicitly overrides our extended profile |
mjr | 38:091e511ce8a0 | 3447 | // messages (message prefix 200-219), because this sets the |
mjr | 38:091e511ce8a0 | 3448 | // wizVal[] entry for each output, and that takes precedence |
mjr | 38:091e511ce8a0 | 3449 | // over the extended protocol settings. |
mjr | 38:091e511ce8a0 | 3450 | // |
mjr | 38:091e511ce8a0 | 3451 | //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n", |
mjr | 38:091e511ce8a0 | 3452 | // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); |
mjr | 38:091e511ce8a0 | 3453 | |
mjr | 38:091e511ce8a0 | 3454 | // Update all output profile settings |
mjr | 38:091e511ce8a0 | 3455 | for (int i = 0 ; i < 8 ; ++i) |
mjr | 38:091e511ce8a0 | 3456 | wizVal[pbaIdx + i] = data[i]; |
mjr | 38:091e511ce8a0 | 3457 | |
mjr | 38:091e511ce8a0 | 3458 | // Update the physical LED state if this is the last bank. |
mjr | 38:091e511ce8a0 | 3459 | // Note that hosts always send a full set of four PBA |
mjr | 38:091e511ce8a0 | 3460 | // messages, so there's no need to do a physical update |
mjr | 38:091e511ce8a0 | 3461 | // until we've received the last bank's PBA message. |
mjr | 38:091e511ce8a0 | 3462 | if (pbaIdx == 24) |
mjr | 38:091e511ce8a0 | 3463 | { |
mjr | 35:e959ffba78fd | 3464 | updateWizOuts(); |
mjr | 35:e959ffba78fd | 3465 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 3466 | hc595->update(); |
mjr | 35:e959ffba78fd | 3467 | pbaIdx = 0; |
mjr | 35:e959ffba78fd | 3468 | } |
mjr | 38:091e511ce8a0 | 3469 | else |
mjr | 38:091e511ce8a0 | 3470 | pbaIdx += 8; |
mjr | 38:091e511ce8a0 | 3471 | } |
mjr | 38:091e511ce8a0 | 3472 | } |
mjr | 35:e959ffba78fd | 3473 | |
mjr | 33:d832bcab089e | 3474 | |
mjr | 38:091e511ce8a0 | 3475 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 3476 | // |
mjr | 38:091e511ce8a0 | 3477 | // Pre-connection diagnostic flasher |
mjr | 38:091e511ce8a0 | 3478 | // |
mjr | 38:091e511ce8a0 | 3479 | void preConnectFlasher() |
mjr | 38:091e511ce8a0 | 3480 | { |
mjr | 48:058ace2aed1d | 3481 | diagLED(1, 1, 0); |
mjr | 38:091e511ce8a0 | 3482 | wait(0.05); |
mjr | 38:091e511ce8a0 | 3483 | diagLED(0, 0, 0); |
mjr | 35:e959ffba78fd | 3484 | } |
mjr | 17:ab3cec0c8bf4 | 3485 | |
mjr | 17:ab3cec0c8bf4 | 3486 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 3487 | // |
mjr | 5:a70c0bce770d | 3488 | // Main program loop. This is invoked on startup and runs forever. Our |
mjr | 5:a70c0bce770d | 3489 | // main work is to read our devices (the accelerometer and the CCD), process |
mjr | 5:a70c0bce770d | 3490 | // the readings into nudge and plunger position data, and send the results |
mjr | 5:a70c0bce770d | 3491 | // to the host computer via the USB joystick interface. We also monitor |
mjr | 5:a70c0bce770d | 3492 | // the USB connection for incoming LedWiz commands and process those into |
mjr | 5:a70c0bce770d | 3493 | // port outputs. |
mjr | 5:a70c0bce770d | 3494 | // |
mjr | 0:5acbbe3f4cf4 | 3495 | int main(void) |
mjr | 0:5acbbe3f4cf4 | 3496 | { |
mjr | 39:b3815a1c3802 | 3497 | printf("\r\nPinscape Controller starting\r\n"); |
mjr | 39:b3815a1c3802 | 3498 | // memory config debugging: {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);} |
mjr | 1:d913e0afb2ac | 3499 | |
mjr | 39:b3815a1c3802 | 3500 | // clear the I2C bus (for the accelerometer) |
mjr | 35:e959ffba78fd | 3501 | clear_i2c(); |
mjr | 38:091e511ce8a0 | 3502 | |
mjr | 43:7a6364d82a41 | 3503 | // load the saved configuration (or set factory defaults if no flash |
mjr | 43:7a6364d82a41 | 3504 | // configuration has ever been saved) |
mjr | 35:e959ffba78fd | 3505 | loadConfigFromFlash(); |
mjr | 35:e959ffba78fd | 3506 | |
mjr | 38:091e511ce8a0 | 3507 | // initialize the diagnostic LEDs |
mjr | 38:091e511ce8a0 | 3508 | initDiagLEDs(cfg); |
mjr | 38:091e511ce8a0 | 3509 | |
mjr | 38:091e511ce8a0 | 3510 | // set up the pre-connected ticker |
mjr | 38:091e511ce8a0 | 3511 | Ticker preConnectTicker; |
mjr | 38:091e511ce8a0 | 3512 | preConnectTicker.attach(preConnectFlasher, 3); |
mjr | 38:091e511ce8a0 | 3513 | |
mjr | 33:d832bcab089e | 3514 | // we're not connected/awake yet |
mjr | 33:d832bcab089e | 3515 | bool connected = false; |
mjr | 40:cc0d9814522b | 3516 | Timer connectChangeTimer; |
mjr | 33:d832bcab089e | 3517 | |
mjr | 35:e959ffba78fd | 3518 | // create the plunger sensor interface |
mjr | 35:e959ffba78fd | 3519 | createPlunger(); |
mjr | 33:d832bcab089e | 3520 | |
mjr | 35:e959ffba78fd | 3521 | // set up the TLC5940 interface and start the TLC5940 clock, if applicable |
mjr | 35:e959ffba78fd | 3522 | init_tlc5940(cfg); |
mjr | 34:6b981a2afab7 | 3523 | |
mjr | 34:6b981a2afab7 | 3524 | // enable the 74HC595 chips, if present |
mjr | 35:e959ffba78fd | 3525 | init_hc595(cfg); |
mjr | 6:cc35eb643e8f | 3526 | |
mjr | 38:091e511ce8a0 | 3527 | // Initialize the LedWiz ports. Note that it's important to wait until |
mjr | 38:091e511ce8a0 | 3528 | // after initializing the various off-board output port controller chip |
mjr | 38:091e511ce8a0 | 3529 | // sybsystems (TLC5940, 74HC595), since pins attached to peripheral |
mjr | 38:091e511ce8a0 | 3530 | // controllers will need to address their respective controller objects, |
mjr | 38:091e511ce8a0 | 3531 | // which don't exit until we initialize those subsystems. |
mjr | 35:e959ffba78fd | 3532 | initLwOut(cfg); |
mjr | 48:058ace2aed1d | 3533 | |
mjr | 35:e959ffba78fd | 3534 | // start the TLC5940 clock |
mjr | 35:e959ffba78fd | 3535 | if (tlc5940 != 0) |
mjr | 35:e959ffba78fd | 3536 | tlc5940->start(); |
mjr | 35:e959ffba78fd | 3537 | |
mjr | 40:cc0d9814522b | 3538 | // start the TV timer, if applicable |
mjr | 40:cc0d9814522b | 3539 | startTVTimer(cfg); |
mjr | 48:058ace2aed1d | 3540 | |
mjr | 35:e959ffba78fd | 3541 | // initialize the button input ports |
mjr | 35:e959ffba78fd | 3542 | bool kbKeys = false; |
mjr | 35:e959ffba78fd | 3543 | initButtons(cfg, kbKeys); |
mjr | 38:091e511ce8a0 | 3544 | |
mjr | 6:cc35eb643e8f | 3545 | // Create the joystick USB client. Note that we use the LedWiz unit |
mjr | 6:cc35eb643e8f | 3546 | // number from the saved configuration. |
mjr | 35:e959ffba78fd | 3547 | MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, true, cfg.joystickEnabled, kbKeys); |
mjr | 38:091e511ce8a0 | 3548 | |
mjr | 38:091e511ce8a0 | 3549 | // we're now connected - kill the pre-connect ticker |
mjr | 38:091e511ce8a0 | 3550 | preConnectTicker.detach(); |
mjr | 40:cc0d9814522b | 3551 | |
mjr | 38:091e511ce8a0 | 3552 | // Last report timer for the joytick interface. We use the joystick timer |
mjr | 38:091e511ce8a0 | 3553 | // to throttle the report rate, because VP doesn't benefit from reports any |
mjr | 38:091e511ce8a0 | 3554 | // faster than about every 10ms. |
mjr | 38:091e511ce8a0 | 3555 | Timer jsReportTimer; |
mjr | 38:091e511ce8a0 | 3556 | jsReportTimer.start(); |
mjr | 38:091e511ce8a0 | 3557 | |
mjr | 48:058ace2aed1d | 3558 | Timer plungerIntervalTimer; plungerIntervalTimer.start(); // $$$ |
mjr | 48:058ace2aed1d | 3559 | |
mjr | 38:091e511ce8a0 | 3560 | // Time since we successfully sent a USB report. This is a hacky workaround |
mjr | 38:091e511ce8a0 | 3561 | // for sporadic problems in the USB stack that I haven't been able to figure |
mjr | 38:091e511ce8a0 | 3562 | // out. If we go too long without successfully sending a USB report, we'll |
mjr | 38:091e511ce8a0 | 3563 | // try resetting the connection. |
mjr | 38:091e511ce8a0 | 3564 | Timer jsOKTimer; |
mjr | 38:091e511ce8a0 | 3565 | jsOKTimer.start(); |
mjr | 35:e959ffba78fd | 3566 | |
mjr | 35:e959ffba78fd | 3567 | // set the initial status flags |
mjr | 35:e959ffba78fd | 3568 | statusFlags = (cfg.plunger.enabled ? 0x01 : 0x00); |
mjr | 17:ab3cec0c8bf4 | 3569 | |
mjr | 17:ab3cec0c8bf4 | 3570 | // initialize the calibration buttons, if present |
mjr | 35:e959ffba78fd | 3571 | DigitalIn *calBtn = (cfg.plunger.cal.btn == NC ? 0 : new DigitalIn(cfg.plunger.cal.btn)); |
mjr | 35:e959ffba78fd | 3572 | DigitalOut *calBtnLed = (cfg.plunger.cal.led == NC ? 0 : new DigitalOut(cfg.plunger.cal.led)); |
mjr | 6:cc35eb643e8f | 3573 | |
mjr | 35:e959ffba78fd | 3574 | // initialize the calibration button |
mjr | 1:d913e0afb2ac | 3575 | calBtnTimer.start(); |
mjr | 35:e959ffba78fd | 3576 | calBtnState = 0; |
mjr | 1:d913e0afb2ac | 3577 | |
mjr | 1:d913e0afb2ac | 3578 | // set up a timer for our heartbeat indicator |
mjr | 1:d913e0afb2ac | 3579 | Timer hbTimer; |
mjr | 1:d913e0afb2ac | 3580 | hbTimer.start(); |
mjr | 1:d913e0afb2ac | 3581 | int hb = 0; |
mjr | 5:a70c0bce770d | 3582 | uint16_t hbcnt = 0; |
mjr | 1:d913e0afb2ac | 3583 | |
mjr | 1:d913e0afb2ac | 3584 | // set a timer for accelerometer auto-centering |
mjr | 1:d913e0afb2ac | 3585 | Timer acTimer; |
mjr | 1:d913e0afb2ac | 3586 | acTimer.start(); |
mjr | 1:d913e0afb2ac | 3587 | |
mjr | 0:5acbbe3f4cf4 | 3588 | // create the accelerometer object |
mjr | 5:a70c0bce770d | 3589 | Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN); |
mjr | 48:058ace2aed1d | 3590 | |
mjr | 17:ab3cec0c8bf4 | 3591 | // last accelerometer report, in joystick units (we report the nudge |
mjr | 17:ab3cec0c8bf4 | 3592 | // acceleration via the joystick x & y axes, per the VP convention) |
mjr | 17:ab3cec0c8bf4 | 3593 | int x = 0, y = 0; |
mjr | 17:ab3cec0c8bf4 | 3594 | |
mjr | 17:ab3cec0c8bf4 | 3595 | // Simulated button states. This is a vector of button states |
mjr | 17:ab3cec0c8bf4 | 3596 | // for the simulated buttons. We combine this with the physical |
mjr | 17:ab3cec0c8bf4 | 3597 | // button states on each USB joystick report, so we will report |
mjr | 17:ab3cec0c8bf4 | 3598 | // a button as pressed if either the physical button is being pressed |
mjr | 17:ab3cec0c8bf4 | 3599 | // or we're simulating a press on the button. This is used for the |
mjr | 17:ab3cec0c8bf4 | 3600 | // simulated Launch Ball button. |
mjr | 17:ab3cec0c8bf4 | 3601 | uint32_t simButtons = 0; |
mjr | 6:cc35eb643e8f | 3602 | |
mjr | 48:058ace2aed1d | 3603 | // initialize the plunger sensor |
mjr | 35:e959ffba78fd | 3604 | plungerSensor->init(); |
mjr | 10:976666ffa4ef | 3605 | |
mjr | 48:058ace2aed1d | 3606 | // set up the ZB Launch Ball monitor |
mjr | 48:058ace2aed1d | 3607 | ZBLaunchBall zbLaunchBall; |
mjr | 48:058ace2aed1d | 3608 | |
mjr | 43:7a6364d82a41 | 3609 | Timer dbgTimer; dbgTimer.start(); // $$$ plunger debug report timer |
mjr | 43:7a6364d82a41 | 3610 | |
mjr | 1:d913e0afb2ac | 3611 | // we're all set up - now just loop, processing sensor reports and |
mjr | 1:d913e0afb2ac | 3612 | // host requests |
mjr | 0:5acbbe3f4cf4 | 3613 | for (;;) |
mjr | 0:5acbbe3f4cf4 | 3614 | { |
mjr | 48:058ace2aed1d | 3615 | // Process incoming reports on the joystick interface. The joystick |
mjr | 48:058ace2aed1d | 3616 | // "out" (receive) endpoint is used for LedWiz commands and our |
mjr | 48:058ace2aed1d | 3617 | // extended protocol commands. Limit processing time to 5ms to |
mjr | 48:058ace2aed1d | 3618 | // ensure we don't starve the input side. |
mjr | 39:b3815a1c3802 | 3619 | LedWizMsg lwm; |
mjr | 48:058ace2aed1d | 3620 | Timer lwt; |
mjr | 48:058ace2aed1d | 3621 | lwt.start(); |
mjr | 48:058ace2aed1d | 3622 | while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000) |
mjr | 48:058ace2aed1d | 3623 | handleInputMsg(lwm, js); |
mjr | 1:d913e0afb2ac | 3624 | |
mjr | 1:d913e0afb2ac | 3625 | // check for plunger calibration |
mjr | 17:ab3cec0c8bf4 | 3626 | if (calBtn != 0 && !calBtn->read()) |
mjr | 0:5acbbe3f4cf4 | 3627 | { |
mjr | 1:d913e0afb2ac | 3628 | // check the state |
mjr | 1:d913e0afb2ac | 3629 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 3630 | { |
mjr | 1:d913e0afb2ac | 3631 | case 0: |
mjr | 1:d913e0afb2ac | 3632 | // button not yet pushed - start debouncing |
mjr | 1:d913e0afb2ac | 3633 | calBtnTimer.reset(); |
mjr | 1:d913e0afb2ac | 3634 | calBtnState = 1; |
mjr | 1:d913e0afb2ac | 3635 | break; |
mjr | 1:d913e0afb2ac | 3636 | |
mjr | 1:d913e0afb2ac | 3637 | case 1: |
mjr | 1:d913e0afb2ac | 3638 | // pushed, not yet debounced - if the debounce time has |
mjr | 1:d913e0afb2ac | 3639 | // passed, start the hold period |
mjr | 48:058ace2aed1d | 3640 | if (calBtnTimer.read_us() > 50000) |
mjr | 1:d913e0afb2ac | 3641 | calBtnState = 2; |
mjr | 1:d913e0afb2ac | 3642 | break; |
mjr | 1:d913e0afb2ac | 3643 | |
mjr | 1:d913e0afb2ac | 3644 | case 2: |
mjr | 1:d913e0afb2ac | 3645 | // in the hold period - if the button has been held down |
mjr | 1:d913e0afb2ac | 3646 | // for the entire hold period, move to calibration mode |
mjr | 48:058ace2aed1d | 3647 | if (calBtnTimer.read_us() > 2050000) |
mjr | 1:d913e0afb2ac | 3648 | { |
mjr | 1:d913e0afb2ac | 3649 | // enter calibration mode |
mjr | 1:d913e0afb2ac | 3650 | calBtnState = 3; |
mjr | 9:fd65b0a94720 | 3651 | calBtnTimer.reset(); |
mjr | 35:e959ffba78fd | 3652 | |
mjr | 44:b5ac89b9cd5d | 3653 | // begin the plunger calibration limits |
mjr | 48:058ace2aed1d | 3654 | plungerReader.calMode(true); |
mjr | 1:d913e0afb2ac | 3655 | } |
mjr | 1:d913e0afb2ac | 3656 | break; |
mjr | 2:c174f9ee414a | 3657 | |
mjr | 2:c174f9ee414a | 3658 | case 3: |
mjr | 9:fd65b0a94720 | 3659 | // Already in calibration mode - pushing the button here |
mjr | 9:fd65b0a94720 | 3660 | // doesn't change the current state, but we won't leave this |
mjr | 9:fd65b0a94720 | 3661 | // state as long as it's held down. So nothing changes here. |
mjr | 2:c174f9ee414a | 3662 | break; |
mjr | 0:5acbbe3f4cf4 | 3663 | } |
mjr | 0:5acbbe3f4cf4 | 3664 | } |
mjr | 1:d913e0afb2ac | 3665 | else |
mjr | 1:d913e0afb2ac | 3666 | { |
mjr | 2:c174f9ee414a | 3667 | // Button released. If we're in calibration mode, and |
mjr | 2:c174f9ee414a | 3668 | // the calibration time has elapsed, end the calibration |
mjr | 2:c174f9ee414a | 3669 | // and save the results to flash. |
mjr | 2:c174f9ee414a | 3670 | // |
mjr | 2:c174f9ee414a | 3671 | // Otherwise, return to the base state without saving anything. |
mjr | 2:c174f9ee414a | 3672 | // If the button is released before we make it to calibration |
mjr | 2:c174f9ee414a | 3673 | // mode, it simply cancels the attempt. |
mjr | 48:058ace2aed1d | 3674 | if (calBtnState == 3 && calBtnTimer.read_us() > 15000000) |
mjr | 2:c174f9ee414a | 3675 | { |
mjr | 2:c174f9ee414a | 3676 | // exit calibration mode |
mjr | 1:d913e0afb2ac | 3677 | calBtnState = 0; |
mjr | 48:058ace2aed1d | 3678 | plungerReader.calMode(false); |
mjr | 2:c174f9ee414a | 3679 | |
mjr | 6:cc35eb643e8f | 3680 | // save the updated configuration |
mjr | 35:e959ffba78fd | 3681 | cfg.plunger.cal.calibrated = 1; |
mjr | 35:e959ffba78fd | 3682 | saveConfigToFlash(); |
mjr | 2:c174f9ee414a | 3683 | } |
mjr | 2:c174f9ee414a | 3684 | else if (calBtnState != 3) |
mjr | 2:c174f9ee414a | 3685 | { |
mjr | 2:c174f9ee414a | 3686 | // didn't make it to calibration mode - cancel the operation |
mjr | 1:d913e0afb2ac | 3687 | calBtnState = 0; |
mjr | 2:c174f9ee414a | 3688 | } |
mjr | 1:d913e0afb2ac | 3689 | } |
mjr | 1:d913e0afb2ac | 3690 | |
mjr | 1:d913e0afb2ac | 3691 | // light/flash the calibration button light, if applicable |
mjr | 1:d913e0afb2ac | 3692 | int newCalBtnLit = calBtnLit; |
mjr | 1:d913e0afb2ac | 3693 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 3694 | { |
mjr | 1:d913e0afb2ac | 3695 | case 2: |
mjr | 1:d913e0afb2ac | 3696 | // in the hold period - flash the light |
mjr | 48:058ace2aed1d | 3697 | newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1); |
mjr | 1:d913e0afb2ac | 3698 | break; |
mjr | 1:d913e0afb2ac | 3699 | |
mjr | 1:d913e0afb2ac | 3700 | case 3: |
mjr | 1:d913e0afb2ac | 3701 | // calibration mode - show steady on |
mjr | 1:d913e0afb2ac | 3702 | newCalBtnLit = true; |
mjr | 1:d913e0afb2ac | 3703 | break; |
mjr | 1:d913e0afb2ac | 3704 | |
mjr | 1:d913e0afb2ac | 3705 | default: |
mjr | 1:d913e0afb2ac | 3706 | // not calibrating/holding - show steady off |
mjr | 1:d913e0afb2ac | 3707 | newCalBtnLit = false; |
mjr | 1:d913e0afb2ac | 3708 | break; |
mjr | 1:d913e0afb2ac | 3709 | } |
mjr | 3:3514575d4f86 | 3710 | |
mjr | 3:3514575d4f86 | 3711 | // light or flash the external calibration button LED, and |
mjr | 3:3514575d4f86 | 3712 | // do the same with the on-board blue LED |
mjr | 1:d913e0afb2ac | 3713 | if (calBtnLit != newCalBtnLit) |
mjr | 1:d913e0afb2ac | 3714 | { |
mjr | 1:d913e0afb2ac | 3715 | calBtnLit = newCalBtnLit; |
mjr | 2:c174f9ee414a | 3716 | if (calBtnLit) { |
mjr | 17:ab3cec0c8bf4 | 3717 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 3718 | calBtnLed->write(1); |
mjr | 38:091e511ce8a0 | 3719 | diagLED(0, 0, 1); // blue |
mjr | 2:c174f9ee414a | 3720 | } |
mjr | 2:c174f9ee414a | 3721 | else { |
mjr | 17:ab3cec0c8bf4 | 3722 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 3723 | calBtnLed->write(0); |
mjr | 38:091e511ce8a0 | 3724 | diagLED(0, 0, 0); // off |
mjr | 2:c174f9ee414a | 3725 | } |
mjr | 1:d913e0afb2ac | 3726 | } |
mjr | 35:e959ffba78fd | 3727 | |
mjr | 48:058ace2aed1d | 3728 | // read the plunger sensor |
mjr | 48:058ace2aed1d | 3729 | plungerReader.read(); |
mjr | 48:058ace2aed1d | 3730 | |
mjr | 38:091e511ce8a0 | 3731 | // process button updates |
mjr | 38:091e511ce8a0 | 3732 | processButtons(); |
mjr | 37:ed52738445fc | 3733 | |
mjr | 48:058ace2aed1d | 3734 | // handle the ZB Launch Ball feature |
mjr | 48:058ace2aed1d | 3735 | zbLaunchBall.update(simButtons); |
mjr | 48:058ace2aed1d | 3736 | |
mjr | 38:091e511ce8a0 | 3737 | // send a keyboard report if we have new data |
mjr | 37:ed52738445fc | 3738 | if (kbState.changed) |
mjr | 37:ed52738445fc | 3739 | { |
mjr | 38:091e511ce8a0 | 3740 | // send a keyboard report |
mjr | 37:ed52738445fc | 3741 | js.kbUpdate(kbState.data); |
mjr | 37:ed52738445fc | 3742 | kbState.changed = false; |
mjr | 37:ed52738445fc | 3743 | } |
mjr | 38:091e511ce8a0 | 3744 | |
mjr | 38:091e511ce8a0 | 3745 | // likewise for the media controller |
mjr | 37:ed52738445fc | 3746 | if (mediaState.changed) |
mjr | 37:ed52738445fc | 3747 | { |
mjr | 38:091e511ce8a0 | 3748 | // send a media report |
mjr | 37:ed52738445fc | 3749 | js.mediaUpdate(mediaState.data); |
mjr | 37:ed52738445fc | 3750 | mediaState.changed = false; |
mjr | 37:ed52738445fc | 3751 | } |
mjr | 38:091e511ce8a0 | 3752 | |
mjr | 38:091e511ce8a0 | 3753 | // flag: did we successfully send a joystick report on this round? |
mjr | 38:091e511ce8a0 | 3754 | bool jsOK = false; |
mjr | 17:ab3cec0c8bf4 | 3755 | |
mjr | 17:ab3cec0c8bf4 | 3756 | // If it's been long enough since our last USB status report, |
mjr | 17:ab3cec0c8bf4 | 3757 | // send the new report. We throttle the report rate because |
mjr | 17:ab3cec0c8bf4 | 3758 | // it can overwhelm the PC side if we report too frequently. |
mjr | 17:ab3cec0c8bf4 | 3759 | // VP only wants to sync with the real world in 10ms intervals, |
mjr | 35:e959ffba78fd | 3760 | // so reporting more frequently creates I/O overhead without |
mjr | 35:e959ffba78fd | 3761 | // doing anything to improve the simulation. |
mjr | 48:058ace2aed1d | 3762 | if (cfg.joystickEnabled /* $$$ && jsReportTimer.read_us() > 10000 */) |
mjr | 17:ab3cec0c8bf4 | 3763 | { |
mjr | 17:ab3cec0c8bf4 | 3764 | // read the accelerometer |
mjr | 17:ab3cec0c8bf4 | 3765 | int xa, ya; |
mjr | 17:ab3cec0c8bf4 | 3766 | accel.get(xa, ya); |
mjr | 17:ab3cec0c8bf4 | 3767 | |
mjr | 17:ab3cec0c8bf4 | 3768 | // confine the results to our joystick axis range |
mjr | 17:ab3cec0c8bf4 | 3769 | if (xa < -JOYMAX) xa = -JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 3770 | if (xa > JOYMAX) xa = JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 3771 | if (ya < -JOYMAX) ya = -JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 3772 | if (ya > JOYMAX) ya = JOYMAX; |
mjr | 17:ab3cec0c8bf4 | 3773 | |
mjr | 17:ab3cec0c8bf4 | 3774 | // store the updated accelerometer coordinates |
mjr | 17:ab3cec0c8bf4 | 3775 | x = xa; |
mjr | 17:ab3cec0c8bf4 | 3776 | y = ya; |
mjr | 17:ab3cec0c8bf4 | 3777 | |
mjr | 48:058ace2aed1d | 3778 | // Report the current plunger position unless the plunger is |
mjr | 48:058ace2aed1d | 3779 | // disabled, or the ZB Launch Ball signal is on. In either of |
mjr | 48:058ace2aed1d | 3780 | // those cases, just report a constant 0 value. ZB Launch Ball |
mjr | 48:058ace2aed1d | 3781 | // temporarily disables mechanical plunger reporting because it |
mjr | 21:5048e16cc9ef | 3782 | // tells us that the table has a Launch Ball button instead of |
mjr | 48:058ace2aed1d | 3783 | // a traditional plunger, so we don't want to confuse VP with |
mjr | 48:058ace2aed1d | 3784 | // regular plunger inputs. |
mjr | 48:058ace2aed1d | 3785 | int z = plungerReader.getPosition(); |
mjr | 48:058ace2aed1d | 3786 | int zrep = (!cfg.plunger.enabled ? 0 : |
mjr | 48:058ace2aed1d | 3787 | cfg.plunger.zbLaunchBall.port != 0 |
mjr | 48:058ace2aed1d | 3788 | && wizOn[cfg.plunger.zbLaunchBall.port-1] ? 0 : |
mjr | 48:058ace2aed1d | 3789 | z); |
mjr | 35:e959ffba78fd | 3790 | |
mjr | 35:e959ffba78fd | 3791 | // rotate X and Y according to the device orientation in the cabinet |
mjr | 35:e959ffba78fd | 3792 | accelRotate(x, y); |
mjr | 35:e959ffba78fd | 3793 | |
mjr | 48:058ace2aed1d | 3794 | #if 0 |
mjr | 48:058ace2aed1d | 3795 | // $$$ report velocity in x axis and timestamp in y axis |
mjr | 48:058ace2aed1d | 3796 | x = int(plungerReader.getVelocity() * 1.0 * JOYMAX); |
mjr | 48:058ace2aed1d | 3797 | y = (plungerReader.getTimestamp() / 1000) % JOYMAX; |
mjr | 48:058ace2aed1d | 3798 | #endif |
mjr | 48:058ace2aed1d | 3799 | |
mjr | 35:e959ffba78fd | 3800 | // send the joystick report |
mjr | 38:091e511ce8a0 | 3801 | jsOK = js.update(x, y, zrep, jsButtons | simButtons, statusFlags); |
mjr | 21:5048e16cc9ef | 3802 | |
mjr | 17:ab3cec0c8bf4 | 3803 | // we've just started a new report interval, so reset the timer |
mjr | 38:091e511ce8a0 | 3804 | jsReportTimer.reset(); |
mjr | 17:ab3cec0c8bf4 | 3805 | } |
mjr | 21:5048e16cc9ef | 3806 | |
mjr | 10:976666ffa4ef | 3807 | // If we're in pixel dump mode, report all pixel exposure values |
mjr | 10:976666ffa4ef | 3808 | if (reportPix) |
mjr | 10:976666ffa4ef | 3809 | { |
mjr | 17:ab3cec0c8bf4 | 3810 | // send the report |
mjr | 48:058ace2aed1d | 3811 | plungerSensor->sendExposureReport(js, reportPixFlags, reportPixVisMode); |
mjr | 17:ab3cec0c8bf4 | 3812 | |
mjr | 10:976666ffa4ef | 3813 | // we have satisfied this request |
mjr | 10:976666ffa4ef | 3814 | reportPix = false; |
mjr | 10:976666ffa4ef | 3815 | } |
mjr | 10:976666ffa4ef | 3816 | |
mjr | 35:e959ffba78fd | 3817 | // If joystick reports are turned off, send a generic status report |
mjr | 35:e959ffba78fd | 3818 | // periodically for the sake of the Windows config tool. |
mjr | 48:058ace2aed1d | 3819 | if (!cfg.joystickEnabled && jsReportTimer.read_us() > 200000) |
mjr | 21:5048e16cc9ef | 3820 | { |
mjr | 38:091e511ce8a0 | 3821 | jsOK = js.updateStatus(0); |
mjr | 38:091e511ce8a0 | 3822 | jsReportTimer.reset(); |
mjr | 38:091e511ce8a0 | 3823 | } |
mjr | 38:091e511ce8a0 | 3824 | |
mjr | 38:091e511ce8a0 | 3825 | // if we successfully sent a joystick report, reset the watchdog timer |
mjr | 38:091e511ce8a0 | 3826 | if (jsOK) |
mjr | 38:091e511ce8a0 | 3827 | { |
mjr | 38:091e511ce8a0 | 3828 | jsOKTimer.reset(); |
mjr | 38:091e511ce8a0 | 3829 | jsOKTimer.start(); |
mjr | 21:5048e16cc9ef | 3830 | } |
mjr | 21:5048e16cc9ef | 3831 | |
mjr | 6:cc35eb643e8f | 3832 | #ifdef DEBUG_PRINTF |
mjr | 6:cc35eb643e8f | 3833 | if (x != 0 || y != 0) |
mjr | 6:cc35eb643e8f | 3834 | printf("%d,%d\r\n", x, y); |
mjr | 6:cc35eb643e8f | 3835 | #endif |
mjr | 6:cc35eb643e8f | 3836 | |
mjr | 33:d832bcab089e | 3837 | // check for connection status changes |
mjr | 40:cc0d9814522b | 3838 | bool newConnected = js.isConnected() && !js.isSuspended(); |
mjr | 33:d832bcab089e | 3839 | if (newConnected != connected) |
mjr | 33:d832bcab089e | 3840 | { |
mjr | 33:d832bcab089e | 3841 | // give it a few seconds to stabilize |
mjr | 40:cc0d9814522b | 3842 | connectChangeTimer.start(); |
mjr | 40:cc0d9814522b | 3843 | if (connectChangeTimer.read() > 3) |
mjr | 33:d832bcab089e | 3844 | { |
mjr | 33:d832bcab089e | 3845 | // note the new status |
mjr | 33:d832bcab089e | 3846 | connected = newConnected; |
mjr | 40:cc0d9814522b | 3847 | |
mjr | 40:cc0d9814522b | 3848 | // done with the change timer for this round - reset it for next time |
mjr | 40:cc0d9814522b | 3849 | connectChangeTimer.stop(); |
mjr | 40:cc0d9814522b | 3850 | connectChangeTimer.reset(); |
mjr | 33:d832bcab089e | 3851 | |
mjr | 40:cc0d9814522b | 3852 | // adjust to the new status |
mjr | 40:cc0d9814522b | 3853 | if (connected) |
mjr | 40:cc0d9814522b | 3854 | { |
mjr | 40:cc0d9814522b | 3855 | // We're newly connected. This means we just powered on, we were |
mjr | 40:cc0d9814522b | 3856 | // just plugged in to the PC USB port after being unplugged, or the |
mjr | 40:cc0d9814522b | 3857 | // PC just came out of sleep/suspend mode and resumed the connection. |
mjr | 40:cc0d9814522b | 3858 | // In any of these cases, we can now assume that the PC power supply |
mjr | 40:cc0d9814522b | 3859 | // is on (the PC must be on for the USB connection to be running, and |
mjr | 40:cc0d9814522b | 3860 | // if the PC is on, its power supply is on). This also means that |
mjr | 40:cc0d9814522b | 3861 | // power to any external output controller chips (TLC5940, 74HC595) |
mjr | 40:cc0d9814522b | 3862 | // is now on, because those have to be powered from the PC power |
mjr | 40:cc0d9814522b | 3863 | // supply to allow for a reliable data connection to the KL25Z. |
mjr | 40:cc0d9814522b | 3864 | // We can thus now set clear initial output state in those chips and |
mjr | 40:cc0d9814522b | 3865 | // enable their outputs. |
mjr | 40:cc0d9814522b | 3866 | if (tlc5940 != 0) |
mjr | 40:cc0d9814522b | 3867 | { |
mjr | 40:cc0d9814522b | 3868 | tlc5940->update(true); |
mjr | 40:cc0d9814522b | 3869 | tlc5940->enable(true); |
mjr | 40:cc0d9814522b | 3870 | } |
mjr | 40:cc0d9814522b | 3871 | if (hc595 != 0) |
mjr | 40:cc0d9814522b | 3872 | { |
mjr | 40:cc0d9814522b | 3873 | hc595->update(true); |
mjr | 40:cc0d9814522b | 3874 | hc595->enable(true); |
mjr | 40:cc0d9814522b | 3875 | } |
mjr | 40:cc0d9814522b | 3876 | } |
mjr | 40:cc0d9814522b | 3877 | else |
mjr | 40:cc0d9814522b | 3878 | { |
mjr | 40:cc0d9814522b | 3879 | // We're no longer connected. Turn off all outputs. |
mjr | 33:d832bcab089e | 3880 | allOutputsOff(); |
mjr | 40:cc0d9814522b | 3881 | |
mjr | 40:cc0d9814522b | 3882 | // The KL25Z runs off of USB power, so we might (depending on the PC |
mjr | 40:cc0d9814522b | 3883 | // and OS configuration) continue to receive power even when the main |
mjr | 40:cc0d9814522b | 3884 | // PC power supply is turned off, such as in soft-off or suspend/sleep |
mjr | 40:cc0d9814522b | 3885 | // mode. Any external output controller chips (TLC5940, 74HC595) might |
mjr | 40:cc0d9814522b | 3886 | // be powered from the PC power supply directly rather than from our |
mjr | 40:cc0d9814522b | 3887 | // USB power, so they might be powered off even when we're still running. |
mjr | 40:cc0d9814522b | 3888 | // To ensure cleaner startup when the power comes back on, globally |
mjr | 40:cc0d9814522b | 3889 | // disable the outputs. The global disable signals come from GPIO lines |
mjr | 40:cc0d9814522b | 3890 | // that remain powered as long as the KL25Z is powered, so these modes |
mjr | 40:cc0d9814522b | 3891 | // will apply smoothly across power state transitions in the external |
mjr | 40:cc0d9814522b | 3892 | // hardware. That is, when the external chips are powered up, they'll |
mjr | 40:cc0d9814522b | 3893 | // see the global disable signals as stable voltage inputs immediately, |
mjr | 40:cc0d9814522b | 3894 | // which will cause them to suppress any output triggering. This ensures |
mjr | 40:cc0d9814522b | 3895 | // that we don't fire any solenoids or flash any lights spuriously when |
mjr | 40:cc0d9814522b | 3896 | // the power first comes on. |
mjr | 40:cc0d9814522b | 3897 | if (tlc5940 != 0) |
mjr | 40:cc0d9814522b | 3898 | tlc5940->enable(false); |
mjr | 40:cc0d9814522b | 3899 | if (hc595 != 0) |
mjr | 40:cc0d9814522b | 3900 | hc595->enable(false); |
mjr | 40:cc0d9814522b | 3901 | } |
mjr | 33:d832bcab089e | 3902 | } |
mjr | 33:d832bcab089e | 3903 | } |
mjr | 48:058ace2aed1d | 3904 | |
mjr | 48:058ace2aed1d | 3905 | // if we're disconnected, initiate a new connection |
mjr | 48:058ace2aed1d | 3906 | if (!connected && !js.isConnected()) |
mjr | 48:058ace2aed1d | 3907 | { |
mjr | 48:058ace2aed1d | 3908 | // show connect-wait diagnostics |
mjr | 48:058ace2aed1d | 3909 | diagLED(0, 0, 0); |
mjr | 48:058ace2aed1d | 3910 | preConnectTicker.attach(preConnectFlasher, 3); |
mjr | 48:058ace2aed1d | 3911 | |
mjr | 48:058ace2aed1d | 3912 | // wait for the connection |
mjr | 48:058ace2aed1d | 3913 | js.connect(true); |
mjr | 48:058ace2aed1d | 3914 | |
mjr | 48:058ace2aed1d | 3915 | // remove the connection diagnostic ticker |
mjr | 48:058ace2aed1d | 3916 | preConnectTicker.detach(); |
mjr | 48:058ace2aed1d | 3917 | } |
mjr | 43:7a6364d82a41 | 3918 | |
mjr | 43:7a6364d82a41 | 3919 | // $$$ |
mjr | 48:058ace2aed1d | 3920 | #if 0 |
mjr | 43:7a6364d82a41 | 3921 | if (dbgTimer.read() > 10) { |
mjr | 43:7a6364d82a41 | 3922 | dbgTimer.reset(); |
mjr | 43:7a6364d82a41 | 3923 | if (plungerSensor != 0 && (cfg.plunger.sensorType == PlungerType_TSL1410RS || cfg.plunger.sensorType == PlungerType_TSL1410RP)) |
mjr | 43:7a6364d82a41 | 3924 | { |
mjr | 43:7a6364d82a41 | 3925 | PlungerSensorTSL1410R *ps = (PlungerSensorTSL1410R *)plungerSensor; |
mjr | 47:df7a88cd249c | 3926 | uint32_t nRuns; |
mjr | 48:058ace2aed1d | 3927 | uint64_t totalTime; |
mjr | 47:df7a88cd249c | 3928 | ps->ccd.getTimingStats(totalTime, nRuns); |
mjr | 48:058ace2aed1d | 3929 | printf("average plunger read time: %f ms (total=%f, n=%d)\r\n", totalTime / 1000.0f / nRuns, totalTime, nRuns); |
mjr | 43:7a6364d82a41 | 3930 | } |
mjr | 43:7a6364d82a41 | 3931 | } |
mjr | 48:058ace2aed1d | 3932 | #endif |
mjr | 43:7a6364d82a41 | 3933 | // end $$$ |
mjr | 38:091e511ce8a0 | 3934 | |
mjr | 6:cc35eb643e8f | 3935 | // provide a visual status indication on the on-board LED |
mjr | 48:058ace2aed1d | 3936 | if (calBtnState < 2 && hbTimer.read_us() > 1000000) |
mjr | 1:d913e0afb2ac | 3937 | { |
mjr | 33:d832bcab089e | 3938 | if (!newConnected) |
mjr | 2:c174f9ee414a | 3939 | { |
mjr | 5:a70c0bce770d | 3940 | // suspended - turn off the LED |
mjr | 38:091e511ce8a0 | 3941 | diagLED(0, 0, 0); |
mjr | 5:a70c0bce770d | 3942 | |
mjr | 5:a70c0bce770d | 3943 | // show a status flash every so often |
mjr | 5:a70c0bce770d | 3944 | if (hbcnt % 3 == 0) |
mjr | 5:a70c0bce770d | 3945 | { |
mjr | 38:091e511ce8a0 | 3946 | // disconnected = short red/red flash |
mjr | 38:091e511ce8a0 | 3947 | // suspended = short red flash |
mjr | 5:a70c0bce770d | 3948 | for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n) |
mjr | 5:a70c0bce770d | 3949 | { |
mjr | 38:091e511ce8a0 | 3950 | diagLED(1, 0, 0); |
mjr | 5:a70c0bce770d | 3951 | wait(0.05); |
mjr | 38:091e511ce8a0 | 3952 | diagLED(0, 0, 0); |
mjr | 5:a70c0bce770d | 3953 | wait(0.25); |
mjr | 5:a70c0bce770d | 3954 | } |
mjr | 5:a70c0bce770d | 3955 | } |
mjr | 2:c174f9ee414a | 3956 | } |
mjr | 38:091e511ce8a0 | 3957 | else if (jsOKTimer.read() > 5) |
mjr | 38:091e511ce8a0 | 3958 | { |
mjr | 39:b3815a1c3802 | 3959 | // USB freeze - show red/yellow. |
mjr | 40:cc0d9814522b | 3960 | // Our outgoing joystick messages aren't going through, even though we |
mjr | 39:b3815a1c3802 | 3961 | // think we're still connected. This indicates that one or more of our |
mjr | 39:b3815a1c3802 | 3962 | // USB endpoints have stopped working, which can happen as a result of |
mjr | 39:b3815a1c3802 | 3963 | // bugs in the USB HAL or latency responding to a USB IRQ. Show a |
mjr | 39:b3815a1c3802 | 3964 | // distinctive diagnostic flash to signal the error. I haven't found a |
mjr | 39:b3815a1c3802 | 3965 | // way to recover from this class of error other than rebooting the MCU, |
mjr | 40:cc0d9814522b | 3966 | // so the goal is to fix the HAL so that this error never happens. |
mjr | 40:cc0d9814522b | 3967 | // |
mjr | 40:cc0d9814522b | 3968 | // NOTE! This diagnostic code *hopefully* shouldn't occur. It happened |
mjr | 40:cc0d9814522b | 3969 | // in the past due to a number of bugs in the mbed KL25Z USB HAL that |
mjr | 40:cc0d9814522b | 3970 | // I've since fixed. I think I found all of the cases that caused it, |
mjr | 40:cc0d9814522b | 3971 | // but I'm leaving the diagnostics here in case there are other bugs |
mjr | 40:cc0d9814522b | 3972 | // still lurking that can trigger the same symptoms. |
mjr | 38:091e511ce8a0 | 3973 | jsOKTimer.stop(); |
mjr | 38:091e511ce8a0 | 3974 | hb = !hb; |
mjr | 38:091e511ce8a0 | 3975 | diagLED(1, hb, 0); |
mjr | 38:091e511ce8a0 | 3976 | } |
mjr | 35:e959ffba78fd | 3977 | else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated) |
mjr | 6:cc35eb643e8f | 3978 | { |
mjr | 6:cc35eb643e8f | 3979 | // connected, plunger calibration needed - flash yellow/green |
mjr | 6:cc35eb643e8f | 3980 | hb = !hb; |
mjr | 38:091e511ce8a0 | 3981 | diagLED(hb, 1, 0); |
mjr | 6:cc35eb643e8f | 3982 | } |
mjr | 6:cc35eb643e8f | 3983 | else |
mjr | 6:cc35eb643e8f | 3984 | { |
mjr | 6:cc35eb643e8f | 3985 | // connected - flash blue/green |
mjr | 2:c174f9ee414a | 3986 | hb = !hb; |
mjr | 38:091e511ce8a0 | 3987 | diagLED(0, hb, !hb); |
mjr | 2:c174f9ee414a | 3988 | } |
mjr | 1:d913e0afb2ac | 3989 | |
mjr | 1:d913e0afb2ac | 3990 | // reset the heartbeat timer |
mjr | 1:d913e0afb2ac | 3991 | hbTimer.reset(); |
mjr | 5:a70c0bce770d | 3992 | ++hbcnt; |
mjr | 1:d913e0afb2ac | 3993 | } |
mjr | 1:d913e0afb2ac | 3994 | } |
mjr | 0:5acbbe3f4cf4 | 3995 | } |